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Abstract
From the intimate realm of personal interactions to the sprawling arena of political dis-
course, discerning the trustworthy from the dubious is crucial. Here, we present a novel
behavioral task and accompanying Bayesian models that allow us to study key aspects
of this learning process in a tightly controlled setting. In our task, participants are con-
fronted with several different types of (mis-)information sources, ranging from ones
that lie to ones with biased reporting, and have to learn these attributes under varying
degrees of feedback. We formalize inference in this setting as a doubly Bayesian learn-
ing process where agents simultaneously learn about the ground truth as well as the
qualities of an information source reporting on this ground truth. Our model and detailed
analyses reveal how participants can generally follow Bayesian learning dynamics, high-
lighting a basic human ability to learn about diverse information sources. This learning is
also reflected in explicit trust reports about the sources. We additionally show how par-
ticipants approached the inference problem with priors that held sources to be helpful.
Finally, when outside feedback was noisier, participants still learned along Bayesian lines
but struggled to pick up on biases in information. Our work pins down computationally
the generally impressive human ability to learn the trustworthiness of information sources
while revealing minor fault lines when it comes to noisier environments and news sources
with a slant.

Author summary
We are bombarded with information. But how do we learn whom to believe and whom
to mistrust? For instance, how do we come to trust one news source’s report, while
believing that another is biased, produces only useless noise, or might even be lying? And
how do we incorporate such possibilities when updating our beliefs? Our work offers a
computational and empirical perspective on this learning process. We developed a novel
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and well-controlled task that allows us to characterize human learning about a host of
information sources. We show how people can sometimes be remarkably able to discern
lying and helpful sources, even when receiving only uncertain outside feedback. We also
show how participants need clear feedback to learn about a news provider’s slant.
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1. Introduction
We are luckily not alone in a complex and uncertain world, and can rely on others for infor-
mation [1–4]. Friends guide us through social life. Media guides us through political life.
While these sources can be helpful for learning, adaptive creatures also need to be wary of the
information they receive from other agents [5]. This creates a dual learning problem: We not
only need to learn about the issue at hand (“Who is the better candidate for mayor?”) but also
about the trustworthiness of an information source (“How reliable is the local newspaper?”).

Formally, this dual learning learning problem can be understood as Bayesian inference
operating on two levels. On the lower level, we need to learn about the state of the world, say
the mayor’s qualifications. On the higher level, we need to learn about how the evidence we
receive from an information source, say the local TV station, lets us make inferences about
the state of the world. This Bayesian formulation of learning whether to trust an information
source is present in many fields, including in formal epistemology [5,6], cognitive science
[7,8], economics [9,10], and applied trust and safety research [11,12].

Whether we solve this dual learning problem appropriately is crucial in many walks of
life: For example, when we trust the wrong news sources online, we risk being led astray and
falling for misinformation [13,14]. At the same time, mistrust in the right experts may leave
us uninformed – as in the discourse on climate change [15–17]. At least equally important,
psychopathology is tied closely to the way we view what others tell us. High and adaptive
“epistemic trust” has been proposed to be one of the most powerful contributors to good
mental health [18,19]. Conversely, out-sized credulity can leave us exposed to exploitation
[20–23].

Both personal and political life requires us to learn about information sources of diverse
shapes: First, even generally helpful sources are often noisy themselves and may differ in
their reliability [7,24,25]: For example, news websites may generally strive to report the truth
but nevertheless differ in their journalistic standards [26]. While we should optimally still
generally believe their evidence, we should learn to weight more the more reliable source [27].

Another group of sources may be considered unhelpful or untrustworthy: Within these
sources, we can draw a crucial distinction: Following a classification by Frankfurt [28], “bull-
shiting” sources merely produces random noise. In contrast, for a source to “lie”, it needs to
possess some underlying knowledge of the world state. Adaptive agents respond differently
to these categories: “Bullshit” can safely be ignored, like trash websites online [29]. “Lies” in
turn can have informational content, and thus license more complex inferences [30–32]. For
example, we may interact with a source that constantly tries to confuse and reliably points to a
wrong option – letting us infer another option is better, at least in a binary world [8,33].

Finally, information sources can also have biases or slant: For example, media outlets might
preferentially laud one candidate. Indeed, media bias is common and its prevalence and for-
mation has been studied both empirically and theoretically [9,34–38]. Savvy agents should
again take such bias into account: For example, a left-leaning outlet’s endorsement of a pro-
gressive candidate carries little information. In turn, a Republican newspaper’s endorsement
of a Democratic candidate should carry more weight.
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Empirically, considerable research has investigated how well people are able to make such
inferences from information sources, often under the mantle of advice-taking [7,8,33,39–
42]. Advice-taking is involved in a wide range of tasks where we might be uncertain about
our own believes, from trivia questions [43] to perceptual judgements [7] and moral deci-
sions [44]. The takeaway is that humans are generally able to learn how useful a source is
but this ability is also subject to several limitations. However, little work robustly character-
izes the individual trial-by-trial learning computations underlying this dual inference and
has investigated unifying learning dynamics underlying the diverse type of sources outlined
above.

One crucial determinant for whether we are able to learn about a news source is our level
of insight into the ground truth itself: When we have no knowledge about a subject, we are
fully at the mercy of a source. In contrast, when we are experts ourselves, or the ground truth
is directly observable (like the weather [45]), we can fact-check a source on the go, allowing
powerful and quick inferences. Both theoretical Bayesian modeling and empirical investiga-
tions support this critical role of having a good feedback signal [5–7].

Here, we investigate people’s ability to learn about the trustworthiness of informa-
tion providers (styled as ’news sources’) in a novel task and capture this behavior using
Bayesian models. We confront our participants and models with a diverse set of news
sources, including helpful, entirely random (”bullshit”), as well as lying and biased sources.
We administer two versions of this task. In one, participants learn with full feedback;
in the second, they only receive partial feedback, necessitating semi-supervised learn-
ing. The tightly controlled, albeit artificial, set-up of our task lets us control rather pre-
cisely the information participants receive on a trial-by-trial basis and therefore lets us
pin down their learning. This setup also precludes the influence of prior knowledge or
motivated reasoning that might be associated with real-world sources [15,46,47]. As a
result, we can closely track, isolate, and quantify participants doubly Bayesian learning
process.

To preview, we show that people are generally able to distinguish between different types
of news sources and learn to respond to them adaptively, in partial accordance with Bayesian
models. We show how this ability is attenuated when they only receive partial feedback, that
participants show a bias towards believing a source is initially helpful, and that they struggle
to pick up on biased information sources.

We begin by formalizing the computational problem and describing our paradigm at a
high level before offering analyses of the two versions of our task.

2. Methods and results
2.1. Ethics statement
Participants in our experiments provided typed informed consent in accordance with pro-
cedures approved by the Ethics Committee of the Medical Faculty and Medical Clinic at the
Eberhard-Karls-University of Tübingen (approval number 734/2019BO1).

2.2. Computational problem and paradigm overview
Imagine you need to make a decision between two political options, such as deciding which
policy might be better for your country. We can describe this as a signal detection problem
where you need to identify a state st (which policy is better) on each trial t. Crucially, instead
of having perfect knowledge about the state, you only receive noisy information about this,
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which we here denote by Xt. This can, for example, represent a news report. From this infor-
mation, you can form a probabilistic belief about the candidates, denoted by the posterior
p(st∣Xt), using Bayes rule:

p(st∣Xt)∝ P(Xt∣st)p(st) (1)

This simple Bayesian update is straightforward when we know how good the news report
is, that is how Xt is produced from st. As we alluded to, however, we often lack information
about exactly this. As a result, we need first to learn how informative the likelihood P(Xt∣st)
is.

We developed a task that captures this learning problem. Participants were told they were
citizens of an alien planet that had two types of policies, green and blue (st ∈ (green, blue)).
On each trial of the paradigm, which policy was actually better was chosen randomly with
equal probabilities. Participants saw a piece of information XI,t from an imaginary news sta-
tion I pertaining to the quality of the policies, along with a complete or partial feedback sig-
nal Yt, and then had to choose which one was better, and rate their confidence in this choice
(see Fig 1 for an overview). They were incentivized to make the correct choice and report
their confidence faithfully. In the task, different news stations were represented via. different
abstract symbols, (here, the pattern of white dots in the purple square in Fig 1B). Each news
station had an individual pattern to individuate it, making clear to participants when they
are interacting with a novel news station. However, the identity of each news station stayed
hidden.

The news report came in the form of a “News Station Council” which consisted of a panel
of n = 5 experts that endorsed either blue or green. Here, we let XI,t denote the number of blue
endorsements out of the 5 experts so that XI,t ∈ {0, 1, 2, 3, 4, 5}. This number of blue endorse-
ments was distributed according to a binomial distribution so that each expert had an inde-
pendent probability of endorsing blue or green. Crucially, this probability was a function of
the news station and the state:

XI,t ∼
⎧⎪⎪⎨⎪⎪⎩

B(n, bI) if st = blue
B(n, 1 – gI) if st = green

(2)

While this is a relatively simple statistical set-up, it allows us to model a host of differ-
ent information sources. In our experiment, participants were confronted with four distinct
sources whose signal distributions we plot in Fig 1C. We note how these sources generally
follow the forms of information providers we outlined in the introduction:

• A helpful news source with bI = gI = 0.75. This source produces more blue endorse-
ments when the blue candidate is better and more green endorsements when the green
candidate is better.

• A random source with bI = gI = 0.5. This source is entirely uninformative and does not
allow any inferences about the state from its signals.

• An opposite source bI = gI = 0.25. While this source is theoretically as informative as the
helpful source, it is inversely so, producing more green endorsements when blue is in
fact the better candidate, and vice-versa.

• A blue-biased source with bI = 0.9 and gI = 0.5. In essence, this source is excellent at
endorsing a good blue policy but useless at identifying a good green policy. As a result,
its overall distribution marginalized over states is skewed towards blue.
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Fig 1. Illustration of paradigm. (A) The dual learning problem underlying how we come to learn about the trustworthiness of a news source. (B) Illustration of the news
station task with feedback. Feedback is provided by the planet below the confidence slider lighting up in blue or green after participants have registered their choice. (C) Distri-
butions of blue endorsements in the news stations for the different sources when the ground truth is the green state (in green) and the blue state (in blue). (D) Optimal response
curve to the different number of blue endorsements depending on the source.

https://doi.org/10.1371/journal.pcbi.1012814.g001

How should participants optimally react when interacting with such news stations? Fig 1D
outlines this, showing the optimal confidence that the blue policy is better, p(st = blue∣Xt), for
all possible signals Xt and sources: For the helpful source, the optimal response is straight-
forward: the more blue endorsements an agents encounters, the more confident it should be
in the blue policy. For the random source, news reports should be entirely ignored, that is,
the response should always be 50%—recall that there is no information in “bullshit”. For the
opposite source, we should optimally invert the response to the helpful source, being more
certain that blue is better when we see more green— following Frankfurt, the opposite source
represents a simple form of lying. The blue-biased source offers the most complex pattern:
While more blue endorsements should still optimally lead to more confidence in the blue
candidate, the response curve is shifted: More blue endorsements are necessary to convince
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an optimal agent of the blue policy than in the helpful case. Indeed, majority endorsements
for blue that are only timid should be met with the belief that the green candidate is better:
Imagine a US right-wing website that only sheepishly endorsed a Republican candidate over
a Democratic candidate. Crucially, participants were only informed about the general fact
that news sources might be more or less informative or biased but were not told about these
specific sources.

We can think of the response to a news stations as a psychometric function and can cap-
ture this psychometric function via a logistic regression. This regression gives us two param-
eters that succinctly describe an agent’s or participant’s responses. These parameters should
should differ between sources: The model’s slope describes how strongly and in what direction
an agent integrates a source’s information. It should be positive for the helpful and blue-biased
source, meaning the agent increases their confidence in blue being correct the more blue
endorsements they see. In turn, the slope should be zero for the random source, meaning that
an agent ignores its information, and negative for the opposite source, signifying an inversion
of the evidence. The second parameter, the model’s intercept, should be equivalent for all but
the blue-biased sources, in whose case it should be negative, describing its shifted response
criterion. For convenience, we will subtract 2.5 from the number of blue endorsements so that
an unbiased response would have an intercept of 0.

2.3. Learning and response model overview
How would an optimal agent come to give these responses? Generally, we can extend the
Bayesian update from Eq 1 to take into account uncertainty about the parameters bI and gI
of the sources. In more detail, this means that an agent will have a current belief over these
parameter, p(bI,t, gI,t∣Ht), that is based on its learning history,Ht ∈ {Xt–1,Yt–1,Ht–1}. To
update its beliefs about the underlying state given evidence Xt, the agent then marginalizes
over this distribution when doing the Bayesian update. In the remainder of this section, we
suppress subscript I for readability and suppose that this learning proceeds equivalently, and
independently, for all sources. The state update proceeds as follows:

p(st∣Xt,Ht)∝ ∫
bt
∫
gt
p(bt, gt∣Ht)P(Xt∣st; bt, gt)p(st)dbt dgt (3)

Now, to arrive at its belief over the parameters, the second part of the dual learning prob-
lem needs to be solved: the higher-level updating. As we mentioned in the introduction, at
least some feedback signal or additional knowledge is necessary for this learning to succeed
[5–7]. Here, we denote this feedback by Yt. In this paper, we consider two types of feedback:
One where the feedback signal is a full revelation of the ground truth on each trial, Yt = st,
and another where the signal is merely a noisy read-out of the state, being produced by a
distribution 𝜙 that is a function of the ground truth, so that Yt ∼ 𝜙(st).

Regardless of feedback type, the optimal learning in both cases also proceeds in a Bayesian
fashion. Specifically, the agent combines its prior estimate about the parameters of the source,
p(bt, gt∣Ht), and current information Xt and Yt to form an updated belief about the two
parameters (again dropping I):

p(bt+1, gt+1∣Xt,Yt,Ht)∝∑
st
P(Xt∣st; bt, gt)p(bt, gt∣Ht)P(Yt∣st) (4)

This form is equivalent in the full and noisy feedback case but P(Yt∣st) takes on different
shapes. In the case of full feedback, it merely becomes an indicator P(Yt∣st)∼ 𝟙(st = blue) so
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that bI only gets updated when the state is blue and gI only when the state is green. In the case
of the noisy feedback, P(Yt∣st) is then the conditional probability under the model 𝜙(st) and
differently weights the updates of bI and gI. In brief, in the full feedback case, this update takes
the form of a simple and independent closed-form beta-binomial update for bI and gI whereas
the noisy feedback case requires a more elaborate updating over their joint distribution with
no closed-form solution.

To capture participants’ expected idiosyncrasies better, we fit this model to their behavior
with a total of 9 parameters. These parameters capture a range of phenomena: For example,
given the Bayesian set-up of our model, we fit an initial prior to participants, p(bt=0, gt=0), let-
ting them be more or less trusting in the early interaction with a news source. We also imple-
ment minor biases in the model’s learning, for example letting them update quicker towards
helpful or unhelpful beliefs, or letting them forget. We note that while these parameters intro-
duce significant degrees of freedom to our model, they nevertheless situate the learning in a
Bayesian regime while allowing us to bridge the gap between data and model. We detail both
the optimal model computations as well as the parameter fitting in the S1 Text.

2.4. Experiment 1: Full feedback
2.4.1. Experimental details. In the first version of our task, participants received full

feedback about the true better policy at the end of each trial. In each trial, participants first
saw the news station consisting of five experts and had to rate their confidence. They
responded using a colored slider from “100% sure green” to “100% sure blue” (via “50/50”)
(see Fig 1B). After they had rated this confidence, participants received feedback about the
ground truth. Participants interacted with each of the sources for a total of 28 trials. We pre-
sented the sources in a blocked manner, randomizing the order between participants. Thus,
the whole experiment consisted of 4 blocks, each comprising 28 learning trials plus 6 probe
trials.

To test participants’ beliefs in the sources in a standardized manner, each block ended with
an additional six probe trials, clearly demarcated by following a short break, where partic-
ipants saw all possible constellations of blue and green endorsements XI,t ∈ {0, 1, 2, 3, 4, 5}
in random order. Participants did not receive feedback during these trials. At the end of
each block, we additionally asked participants how much they thought that the news sta-
tion improved their decision and how much they trusted the news station. At the end of the
experiment, participants filled out a battery of questions relating to trust.

We analyze data from a total of 123 US adult participants collected via Prolific with a broad
range of ages and educational backgrounds (see S1 Text for more details).

2.4.2. Results: Probe trials. For a high-level overview of participants’ learning success, we
first investigated their responses on the final probe trials. Recall that these showed each par-
ticipant all possible combinations of source endorsements and so let us investigate their full
’revealed’ belief in the source.

We plot these responses in Fig 2A showing the average responses across participants. This
reveals that participants were able to pick up on the source’s attributes (we provide a statisti-
cal analysis below): For the helpful source, on average participants were more confident that
blue was better the more blue endorsements they saw. In contrast, for the random source,
this integration was diminished, and participants tended to relatively ignore its signals. Par-
ticipants also inverted the evidence that they received from the opposite source, being more
confident in blue the more green endorsements they saw. Finally, we observed a marked shift
in the participants’ responses to the blue-biased source: When participants only saw a weak
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Fig 2. Probe trial results show good learning convergence and fit of Bayesian model in full feedback task. (A) Participants’ psychometric responses to the
sources in the probe trials. Dots represent means and error bars represent standard errors of the mean (partially occluded by the dots). (B, C) Distributions of
slopes and intercepts fit to individual participants’ probe trial responses. (D) Probe trial predictions of fit model. Dots represent means and error bars represent
standard errors of the mean (partially occluded by the dots). (E, F) Correlations of slopes and intercepts fit to individual data and model probe trial responses.

https://doi.org/10.1371/journal.pcbi.1012814.g002

endorsement of blue (XI = 3), their confidence was on average almost indifferent between blue
and green.

As we outlined, we can describe this behavior via a logistic regression. We thus fit indi-
vidual regressions to participant responses (see S4 Text for details). Recall that the regres-
sion slope should be positive for the helpful and blue-biased source, zero for the random
source, and negative for the opposite source. The second parameter, the model’s intercept,
should be equivalent for all but the blue-biased sources, in whose case it should be negative.
In line with our across-participant analysis, we found that slopes fit to participants’ probe
trial responses (Fig 2B) were positive for helpful and blue-biased sources, lower for the ran-
dom sources, and negative for the opposite source. This was supported by a significant main
effect of source on slope in an ANOVA (F(3, 488) = 435.40, p < .0001) and significant differ-
ences in Tukey’s tests between all sources (all p′s < 0.0001). Participants’ slopes for the helpful,
blue-biased, and random source were all significantly higher than zero (one-sample t-tests,
all p′s < 0.0001), indicating that on average participants still held the random source to be
slightly helpful. The opposite source’s slopes were significantly lower than 0 (one-sample t-
test, t(122) = –17.10, p < .0001), indicating that participants on average inverted its evidence,
at least slightly.

In turn, there was no significant difference between the intercepts (Fig 2C) of the
helpful, random, and opposite source (Tukey’s tests, all p′s > 0.9) and they were all not
significantly different from zero (one-sample t-test, p′s > 0.2). However, the intercept
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of the blue-biased source differed significantly from all the other sources (ANOVA testing
main effect of source, F(3, 488) = 11.82, p < .001, and Tukey’s tests comparing blue-biased
means to other means of other sources, all p′s < 0.0001), and was significantly lower than 0
(one-sample t-test, t(122) = –5.54, p < .0001). However, while the intercept distribution was
generally shifted negatively for the blue-biased source, we also observed that most partici-
pants remained within the ranges of the other three source types.

Participants’ responses were well captured by our Bayesian model. This is visible in Fig 2D
where we plot the Bayesian model’s predictions. Our model was also able to capture individ-
ual patterns of responses. To check this, we fit the same logistic regressions to the fit model
posterior predictions. We observed strong correlations between the psychometric slopes
obtained from the data and model (r = 0.92, p < 0.0001). These slopes are the main differen-
tiator between the four sources and thus the main indicator for learning success. We found
a weaker albeit still significant correlation between the model and data for the intercept (r =
0.36, p < 0.0001). This is unsurprising, given that a considerable number of participants did
not, as we discussed, manage to realize there was a bias.

2.4.3. Results: Learning dynamics. Our analysis of the probe trials showed that par-
ticipants were generally able to learn the statistical regularities of these sources - but how
did they arrive at these conclusions? To answer this, we next analyzed participants’ learning
trajectories over the first 28 trials of a block (excluding the probe trials).

First, we again investigated participant averages, tracking their beliefs across the interac-
tion with a source. To do so, we fit logistic regression models akin to the ones described above
for each source individually, splitting each block into quarters of seven trials and pooling the
responses across participants.

Fig 3A and 3B show the results of this analysis: Already in the first quarter, there are
markedly different responses to the four sources, with the blue-biased and random show-
ing lower, albeit positive, slopes than the helpful source. The opposite source in turn shows
a slope close to zero (panel A). This distinction develops further across the block with the
opposite source’s slope becoming negative — that is on average participants began invert-
ing its evidence rather than just ignoring it — and the random source showing a slow decline
towards zero — that is participants began to ignore its evidence more. There was a mirrored
slight increase in the helpful source’s slope, showing a slightly larger integration of its evi-
dence towards the end of a block. In turn, the average intercepts remained equivalent for all
but the blue-biased source, whose intercept declined towards the end of the trial. This low-
ering intercept reflects learning that the blue-biased source was indeed biased. Fig 3C shows
the effects of this learning on participants’ average accuracies, computed by binarizing their
confidence ratings. Initially, participants were able to glean no information from the oppo-
site source, as shown by their random performance in the first block quarter. However, as
their interaction with the source went on, their judgement also became more accurate, almost
reaching the accuracy of the helpful source by the end of the block. Recall that the opposite
source in theory conveys just as much information as the helpful source. This general accu-
racy pattern was supported by a significant source × trial interaction in a logistic regression
predicting accuracy (𝜒2(3) = 239.43, p < 0.0001)

Our model was able to capture these dynamics as is evident in Fig 3D–3F. There, we show
the learning dynamics for the posterior predictions of the model. All response patterns are
well recovered: Both participants and model are able to develop distinguishable responses to
the sources already in the first half, already ignoring the opposite source (Fig 3D). In line with
our analyses of the probe trials, we also find that the model is able to pick up quicker (and
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Fig 3. Pooled regression analysis shows signatures of Bayesian-like model in full feedback version. (A, B) Slopes and intercepts fit to pooled
participant responses, split by block quarter and source. (C) Accuracy split by block quarter and source. (D - F) The same metrics inferred from
fit model. Dots in A, B, D, and E represent the mean regression coefficient estimates, and error bars represent their respective standard errors
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https://doi.org/10.1371/journal.pcbi.1012814.g003

more strongly) on the bias than the participants (Fig 3E). Accuracy patterns, however, were
comparable between the model and data (Fig 3F).

To investigate whether these learning patterns held on an individual level, we next fit logis-
tic regressions individually to the data. To ensure a sufficiently large sample size per regres-
sion, we split each participant’s 28 trials into two halves. We plot the results of these analy-
ses in Fig 4 with the slope and intercept values in A and B. We observed a significant two-
way source × block half interaction for both slope and intercept (slope: F(3, 976) = 27.17, p <
.0001, intercept: F(3, 976) = 5.99, p < .0001).

Crucially, participants’ slopes in response to the opposite source were significantly lower
in the second half of a block compared to the first (post-hoc Tukey’s test, p < 0.0001). Partici-
pant’s intercepts showed a decrease when interacting with the blue-biased source (p = 0.0005).
Despite trends in the expected directions, there was no significant difference between partic-
ipants’ first and second half slopes when interacting with the opposite (p = 0.30) and random
source (p = 0.25). Slopes also did not differ for the blue-biased source (p > 0.99). As we would
expect given the lack of bias, intercepts for helpful, random, and opposite sources also did not
change between the first and second half (p′s > 0.9).

Fig 4C shows that participants’ individual patterns were also well captured by our fit
model: The slopes we recovered for the two halves again showed a high correlation between
model predictions and data (r = 0.90, p < 0.0001), showing how participants and models simi-
larly picked up on the correct response patterns. As before, this correlation was still significant
for the intercept, although to a lesser degree (r = 0.57, p < 0.0001), highlighting the difficulty
participants had in learning about the bias (Fig 4D).
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Fig 4. Individual regression analysis highlights learning and model fit in full feedback version. (A, B) Slopes and intercept of psychometric curves fit to first and second
half of participant responses. (C, D) Correlation between first and second half slopes and intercepts fit to data and fit model. (E) Trajectory of mean over the two belief states.
Coloured lines represent individual participants, and black line mean over participants. (F) Distribution of mean over two prior parameters. (G) Distribution of updating ratio.

https://doi.org/10.1371/journal.pcbi.1012814.g004
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The model’s internal belief states revealed the individual learning process on a more fine-
grained level. In Fig 4E, we plot these beliefs, that is, what the model assumes to be the bino-
mial probabilities with which the source generates its information. We plot the mean over the
two beliefs (formally, 𝔼[𝔼[bI,t]+𝔼[gI,t]]/2) to highlight the learning process and note key sim-
ilarities between this plot and the dynamics we displayed in the pooled regression analysis in
Fig 3A and 3D.

We highlight two distributions of fit parameters which lets us quantify aspects of these
individual learning dynamics: Fig 4F shows the fit prior belief (averaging the prior for bI and
gI). This affirms our model-agnostic analyses using the slopes: Participants’ prior tended to
be positively skewed (𝜇 = 0.60,𝜎 = 0.11). Additionally, the closed-form belief update within
our model let us straightforwardly fit a learning bias, asking whether people tended to learn
quicker in favor of believing that a source was helpful (updating ratio > 1) versus that a source
was unhelpful (updating ratio < 1). This distribution centered around 1 (𝜇 = 1.09,𝜎 = 0.56)
indicating that participants did not update in a particularly hopeful or unforgiving man-
ner. This was supported by a one-sample t-test that showed, despite outliers, no significant
difference from 1 (t(122) = 1.80, p = 0.074).

2.5. Experiment 2: Noisy feedback
In the real world, unambiguous feedback is often lacking. In the second experiment, we inves-
tigated how well participants were able to cope with noisier feedback when learning how
reliable or biased a source was.

2.5.1. Experimental details. Participants again interacted with the four different news
sources, presented in a randomized blocked manner. However, instead of fully revealing the
better policy at the end of each trial, participants had to rely on a noisier source of informa-
tion, consisting of a panel of experts that were displayed in the same manner as the news sta-
tion. Fig 5 shows the time course of a trial: Participants again first saw the news station con-
sisting out of five green or blue endorsements, and rated an initial confidence (using the same
scale as above). Following this, they were shown the Independent Council, also consisting of

Fig 5. Illustration of trial in noisy feedback condition. Participants first saw the news station experts and rated their confidence based on this. They then saw the
independent council and were able to adjust their confidence.

https://doi.org/10.1371/journal.pcbi.1012814.g005
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five green or blue stochastic endorsements. Based on this, they could revise their confidence,
using the same slider.

Participants were told that the “Independent Council” was a helpful, albeit sometimes
erring, collection of experts. Specifically, the statistical set-up of this expert panel was such
that it was equivalent to the helpful source. Here, we denote the number of blue endorsements
as YI and the parameter producing this evidence with bY:

YI,t ∼
⎧⎪⎪⎨⎪⎪⎩

B(n, bY) if st = blue
B(n, 1 – bY) if st = green

(5)

Here, we set bY = 0.75. Participants were extensively informed about this quantity. We con-
ducted analyses to ensure that participants used the independent council’s feedback which we
report in Fig B in S1 Text in particular.

As before, participants interacted with each source for 28 trials before engaging with 6
probe trials. They also again answered the trust and improvement question at the end of each
block and a battery of questions at the end of the experiment.

We analyze data from a total of 111 US adult participants, again collected via Prolific and
including a range of ages and educational backgrounds (see S1 Text).

2.5.2. Results: Probe trials. We again first analyzed the probe trials at the end of each
block (Fig 6A–6C). This shows how participants displayed individual patterns of responses
that were broadly in line with an adaptive response but less so than in the full feedback case:
The random source was again associated with a lower slope than the helpful source (Tukey’s
test: p < 0.0001). However, on average, participants still integrated the random source’s infor-
mation, with their average slopes being significantly higher than zero (see Fig 6B, one-sample
t-test t(110) = 11.74, p < .001). On average, participants managed to invert the opposite
source’s evidence (t(110) = –3.63, p < .001), but this inversion did not mirror in strength the
helpful source. While we observed a minute shift in the response to the biased source the
individual intercepts, shown in Fig 6, were on the whole not significantly different from zero
(t(110) = –0.39, p = 0.696).

Most of these patterns were well-captured by the Bayesian model, as is visible in Fig 6D–
6F. The model’s general response patterns (panel D) matched those of the participants. Again,
this was highlighted by the strong correlation between the slopes recovered from fit model
predictions and from the data (panel E, R = 0.80, p < 0.0001). In line with most participants’
inability to realise the blue-biased sources bias, we found only a weak correlation between the
model predictions and participant data (panel F, R = 0.17, p = 0.0003).

2.5.3. Results: Learning dynamics. How did participants reach these beliefs? To investi-
gate this, we again fit regressions to the main block and investigated their dynamics. Fig 7A
and 7B show the results of this analysis. In the main block, participants’ response slopes
showed less distinction between the helpful, random, and blue-biased sources. Indeed, the
slopes in response to the random source were only slightly lower than to the helpful source
and only developed this difference over the course of the block. While the opposite source’s
slope is clearly distinguished from the remaining sources, participants’ inverting response is
not as strong as before, converging at, on average, ignoring the source rather than inverting its
evidence. As to be expected from the probe trials, participants’ average intercept in response
to the blue-biased source barely shifted away from the remaining sources.

The effects of this slower learning are evident in Fig 7C where we plot the time course of
the participants’ average accuracies after having seen the news station (but not having seen
the helpful independent council): The positive integration of the evidence coming from the
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Fig 6. Probe trials in noisy feedback condition highlight diminished learning convergence and model fit. (A) Participants’ psychometric responses to the sources
in the probe trials. Dots represent means and error bars represent standard errors of the mean (partially occluded by the dots). (B, C) Distributions of slopes and inter-
cepts fit to individual participants’ probe trial responses. (D) Probe trial predictions of fit model. Dots represent means and error bars represent standard errors of the
mean (partially occluded by the dots). (E, F) Correlations of slopes and intercepts fit to individual data and model probe trial responses.

https://doi.org/10.1371/journal.pcbi.1012814.g006

helpful and blue-biased source results in high accuracies throughout the block. Inference
from the random source naturally remains at 50 % accuracy, containing no information. In
contrast, participants initially fall for the opposite source’s misinformation, integrating their
information in the incorrect manner: This leads them to perform below chance accuracy in
the first half of the block. Only in the second half of the block do they reach accuracy levels
that align with the random source, in line with their ignoring of the opposite source’s infor-
mation (panel A). This was again supported by a significant within-block trial number ×
source effect on accuracy (𝜒2(3) = 52.52, p < 0.0001)

Our model was again able to capture these general dynamics as is visible in Fig 7D–7F: The
model’s response slope only slowly and weakly distinguished the helpful, random, and blue-
biased source. The model initially weakly integrated the opposite source and then ignored it
towards the end of the block (panel D). There was little distinction in the intercepts (panel E).
These learning patterns were reflected in the model’s average accuracy (panel F).

Analyses of individual-level responses supported these results, as is shown in Fig 8. We
again found a significant block half × source type interaction effect in an ANOVA predicting
the slopes (F(3, 880) = 3.43, p = 0.017, see panel A). Again, participants’ response slope sig-
nificantly decreased only for the opposite source between the first and second block halves
(Tukey’s test, p = 0.027). All other sources saw no changes in slope (p′s > 0.97). Conversely,
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Fig 7. Pooled regression analysis shows signatures of Bayesian-like model in noisy feedback version. (A, B) Slopes and intercepts fit to pooled participant responses, split
by block quarter and source. (C) Accuracy split by block quarter and source. (D–F) Same metrics inferred from fit model. Dots in A, B, D and E represent the mean regression
coefficient estimates, and error bars represent their respective standard errors. Note how these error bars are partially occluded by the dots. C and D show mean accuracies and
the error bars depict standard errors of the mean (again partially occluded).

https://doi.org/10.1371/journal.pcbi.1012814.g007

there was no significant shift in intercepts, supported by a non-significant block half × source
type interaction effect in an ANOVA (F(3, 880) = 1.56, p = 0.198).

Our model captured these individual response patterns well, as is visible in panels C and
D: Slopes and intercepts fit to the model’s responses correlated with those fit to participants
data (slope: R = 0.88, p < 0.0001, intercept: R = 0.59, p < 0.0001 ).

These individual learning dynamics were also visible in the fit model’s belief states which
we show in panel E, again pooled across the two beliefs. Learning was mostly evident when
interacting with the opposite source, and participants remained largely around their own
helpful prior. Indeed, this prior was again skewed positively (𝜇 = 0.68,𝜎 = 0.11). We note that
due to the non-closed form nature of the belief update, we did not characterize the updating
bias as comparable to the full feedback case.

2.6. Summary and experiment comparison
In both experiments, the Bayesian model described participants well but not perfectly. How
did these conditions compare?

We first compared participants’ average accuracies between the two versions: As to be
expected, participants showed higher accuracy in the condition with full feedback, and this
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Fig 8. Individual regression analysis highlights learning and model fit in noisy feedback condition. (A, B) Slopes and intercept of psychometric curves fit to first and
second half of participant responses. (C, D) Correlation between first and second half slopes and intercepts fit to data and fit model. (E) Trajectory of mean over the two belief
states. Coloured lines represent individual participants, black line mean over participants. (F) Distribution of mean over two prior parameters.
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Fig 9. Full feedback version shows better empirical performance. (A) Average accuracy split by block quarter and experiment.
We show both the average accuracy from the data (continuous line) and the average accuracy achieved by the optimal parameter-less
model (dashed lines) operating with uniform priors. (B) Probe trials slopes by condition and news source. Mean slope values for the
optimal model highlighted with framed diamonds.

https://doi.org/10.1371/journal.pcbi.1012814.g009

difference increased over the course of the block (Fig 9A). This was supported by a significant
trial number × experiment condition effect (𝜒2(1) = 19.422, p < 0.0001).

We also checked how far this performance diverged from the optimal model. To do so, we
also ran the full normative models without fitting any parameters and operating with flat pri-
ors over the initial source probabilities (bt=0,I = gt=0,I = Beta(1, 1)). We overlay these perfor-
mances in Fig 9, panel A. This highlights that the optimal model significantly outperformed
participants in both feedback conditions (significant trial number × optimal model effect,
𝜒2(1) = 184.17, p < 0.0001). We also note how the performance differences between the two
feedback conditions were small for the optimal model, showing the theoretical inferential
power of an optimal semi-supervised model. Indeed, the optimal model licenses powerful
inferences in both cases and asymptotes to high performance after the second quarter. In
contrast, empirical data showed how participants struggled more with the noisy feedback
condition.

Participants’ probe trial responses were also closer to the optimal response in the full feed-
back condition (Fig 9B): Their average slope was higher in response to the helpful source and
more negative in response to the opposite source (Tukey’s tests comparing the conditions, p <
0.0001). The slope did not differ between the conditions for the blue-biased source (Tukey’s
test p = 0.40). We again overlay the optimal model’s slopes in panel B which shows how partic-
ipants’ average slopes were close to the optimal model in the full feedback condition. We note
how the comparably worse performance in the learning trials (panel A) is due to the much
higher variability of participants’ slopes (for example some participants positively integrating
the random, or ignoring the opposite source).

2.7. Questionnaire analyses
2.7.1. Post-block trust and improvement ratings. How might participants have assessed

the news sources’ qualities more broadly? To answer this, in both experiments, we asked
participants two questions at the end of each block: One relating to how much they trusted
the source and one relating to how much they thought the source improved their decisions.
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Fig 10. Participants rate trust in sources and how they improve their decisions. (A) Raw responses to post-block trust and improvement questions by source. (B, C)
Relationships between second block half psychometric slopes and trust and improvement ratings. Regression lines fit jointly to helpful, random, and blue-biased sources, and
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Specifically, participants responded on a continuous scale ranging from “Strongly Agree” to
“Strongly Disagree” (via intermediate options) to the following statements: (1) “I trust this
news station” and (2) “This news station improves my decisions”.

Analysis of participant responses revealed key distinctions between the sources (see
Fig 10A): Throughout, participants rated the helpful source highest on both trust and
improvement questions (Tukey’s tests against all other sources, p < 0.0001). The blue-biased
source was similarly rated high, albeit lower than the helpful source in both trust and
improvement questions. The random source in turn was rated as neither trustworthy nor as
particularly improving decisions and had lower trust and improvement ratings than the help-
ful and blue-biased sources (Tukey’s tests p < 0.00001). A more curious pattern emerged in
response to the opposite source: While it had the lowest average trust ratings (Tukey’s tests
against all other conditions p′s < 0.0001), some participants indeed rated it highly for improv-
ing their decisions, in line with its general usefulness. Indeed, while all other sources had
equivalent trust and improvement ratings (Tukey’s tests p′s > 0.99), the improvement rating of
the opposite source was significantly higher than its trust rating (p < 0.00001), and as high as
the improvement rating of the random source (p = 0.9970)

How did these responses relate to participants’ behavior on the task? To address this,
we correlated participants’ psychometric slopes in the second block half to their trust and
improvement ratings. We did so jointly for the helpful, random, and blue-biased source, and
separately for the opposite source, for which we observed the trust-improvement distinc-
tion. The relationship between participants’ trust ratings and their response slopes was best
captured by a simple linear regression, highlighting that the more participants integrated the
sources’ information, the more they also rated it as trustworthy (Fig 10B, for regression model
see Table D in S1 Text).

This pattern was more complex for the improvement ratings: For the helpful, random,
and blue-biased source, the relationship between slopes and ratings was still best captured by
a simple linear model. However, for the opposite source, this relationship followed a linear
quadratic function: This meant that while some participants who realised they had to invert
the source’s information did not reflect this in their improvement ratings (negative slope, low
improvement rating), other participants who had a similar realisation (negative slope) did
reflect this in high improvement ratings.
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2.7.2. Trust and media consumption patterns. How might behavior in our task relate
to more real-world behavior and attitudes? To assess this, we administered a number of ques-
tionnaires relating to general interpersonal trust as well as trust in media in both experiments.
Additionally, we investigated participants’ media consumption patterns by asking them about
their information sources and the frequency with which they engaged with these sources.

For a more principled approach to these questionnaires, we first performed an exploratory
factor analysis on the entire set of 50 questions. This revealed a three factor structure: A first
factor captured media consumption and trust, with consumption of (mainstream and social)
media and trust in this media loading highly on this factor. A second factor represented both
participants’ levels of personal mistrust and credulity with respective questionnaire sub-scales
displaying corresponding loadings. Interestingly, this factor also had weak negative load-
ings for the consumption of classical media and weak positive loadings for the consump-
tion of social media. A final factor represented more general levels of interpersonal trust with
questions around epistemic trust loading positively and questions around mistrust loading
negatively (See S1 Text Text for more details).

We had no particular set of hypotheses regarding the relationships between these ques-
tionnaires and our task. We thus conducted a number of exploratory regression analyses link-
ing the two. These analyses revealed no significant relationship between the factors extracted
above and different behavioral components such as game scores, psychometric, or model
parameters.

3. Discussion
We investigated people’s ability to learn different statistical regularities of information
providers. We framed this as a doubly Bayesian learning problem where agents learn about
both a ground truth and the trustworthiness of a source, and developed a corresponding
model. We showed how people were generally able to distinguish different kinds of informa-
tion sources and respond to them adaptively. Participants integrated trustworthy information
correctly. They also tended to learn to ignore useless information and invert information from
a reliably incorrect source. Finally, they—albeit with limitations we discuss below—were able
to uncover biases in news sources.

We conducted two experiments, in which participants received either full or noisy feed-
back. Across these tasks, we showed how participants followed the learning trajectories of
a parameterized Bayesian model. Participants showed better performance in the task ver-
sion with full feedback, in line with the more straightforward nature of the learning process
involved. Our models described participants’ learning patterns well. This is in line with previ-
ous conceptualizations of Bayesian learning about the trustworthiness of information sources,
for example theoretically proposed in similar forms by [5] and [6] and empirically shown by
[48] and [8].

Two behavioral signatures that differed from a purely optimal learning model emerged in
both experiments. First, only few participants were able to learn the bias of the blue-biased
source. This source is indeed the hardest to learn - requiring the tracking of two higher-order
probabilities instead of one. Whether and how we deal with biased information is an ongoing
question. For example, in a field experiment people adaptively took news bias into account
for more accurate judgements [36], but an experimental study highlights errors in the way
people seek information from biased sources [34].

Second, on average, participants tended to start out believing that our sources were help-
ful. This led them initially not to ignore the random source, or invert the opposite source.
While such behavior is suboptimal in this specific context, a general bias holding information
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providers to be useful may be generally adaptive. For example, most (social) media informa-
tion we encounter tends to be true [49,50], and people are sensitive to the general distribution
of misinformation in an environment [51]. Indeed, always starting to learn from scratch is
wasteful, and holding sources to be generally useful would be a healthy and adaptive induc-
tive bias in most non-adverse social environments [2,52]. We found a prior leaning more
towards a “helpful” source in the more difficult task version with noisy feedback, indicating
that participants might have relied more on the prior when learning was harder.

Our fit parameters allowed us to characterize some of these behaviors, along with provid-
ing other signatures: Participants used helpful priors, an inference also supported by model-
agnostic analyses. In the full feedback condition, our model also allowed us to characterize
participants’ learning as being neither particularly hopeful nor unforgiving. The latter is inter-
esting given that other investigations have found optimistic and pessimistic biases in Bayesian
and reinforcement learning [53,54]. Particularly when it comes to interpersonal relations,
trust is however often purported to be hard to build and easy to lose [55–57]. Similar effects
have been shown with regard to news sources in more naturalistic experiments [58]. The fact
that we do not find such a bias here might hint at this being not a general bias but rather a
function of actors in a social environment.

We note that the purpose of our model fitting was to show general alignment between
Bayesian-like learning patterns and participant behavior and not to make strong statements
about a particular class of model or parameters. Indeed, we rely on a medium to high num-
ber of parameters that are partially intertwined. Future modelling will have to disentangle
these factors. For example, resource-rational accounts might explain why only some partici-
pants learnt the bias [59]. To pin down specific effects such as the learning biases further, tar-
geted experiments will also be necessary, for example, ones that might change the quality of a
source mid-way through a block [33]. This will allow for more robust modelling conclusions
[60].

Our post-block questionnaires showed that participants were able to explicitly express their
trust in the sources and how strongly they believed that the sources improved their decision-
making. We showed how this related to behavior in our task. This points to the validity of our
paradigm. The fact that these ratings also dissociate for the opposite source hints that peo-
ple don’t purely understand trust to be a merely utilitarian construct [61]. The ratings also
demonstrate how people express divergent trust towards sources we may consider “bullshit”
and those that lie [28]. It would be interesting to consider how trust and utility trade off: For
example, would we rather (pay to) hear from a useful but untrustworthy liar or a less useful
but trustworthy source?

Our broader questionnaire measures did not correlate with individual differences in our
task. There are several lenses through which to view this finding: First, our tightly controlled
task came at the cost of external validity, and the statistical learning task we presented partic-
ipants with was necessarily abstract. More realistic extensions of our paradigm may present
participants with actual news sources like newspapers and with more realistic stimuli like
news headlines. This would naturally be accompanied by a drop in control and increase the
difficulty of quantifying the individual likelihoods associated with each item.

Second, our pure Bayesian ability to learn the trustworthiness of information sources
might only be a marginal factor driver behind our real-world attitudes and media choices.
Instead, forces like motivated reasoning [15,46] might explain more variance. Additionally,
we often do not just learn about news sources through direct interaction like we described
here but also hear about the reliability of sources from other sources. This can create triple
(or indeed quadruple) learning problems. However, it is generally important to note that we

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012814 May 5, 2025 20/ 26

https://doi.org/10.1371/journal.pcbi.1012814


ID: pcbi.1012814 — 2025/5/4 — page 21 — #21

PLOS COMPUTATIONAL BIOLOGY Mechanisms of mistrust: A Bayesian account of misinformation learning

did not set out this study to focus on individual differences, and larger samples are usually
necessary to pin down individual differences in this field [62–65].

The role that sources play in helping people identify misinformation is contested. Research
into boosting people to be more robust towards misinformation indeed tries to highlight the
source [29,66]. Indeed, people tend to generally have a good assay of the trustworthiness of
news providers, at least in a US context [25], and displaying explicit trustworthiness rating
may lower their propensity to share fake news [67]. However, other research [13] shows that
people can pay little regard to the sources of misinformation, making them more vulnera-
ble to being misled. One prominent mechanism for fostering this vulnerability is the ten-
dency of individuals to conform with majority opinion [68]. Even in the simplified setting of
our experiment, participants may experience the need to align their beliefs with the majority
opinion (represented, e.g., by the council of experts), potentially putting lower weight on their
own assessment of the trustworthiness of sources. This bias is reflected in the priors observed
in the experiment, which suggest an inherent assumption that the majority is right. This bias
is often [69–71], though not always, useful – a fact that malign actors can exploit.

The inferences our participants and models draw about news providers can be under-
stood as a basic form of theory of mind [72–75]: In essence, participants reason and learn
about how the sources produce evidence from the ground truth by inverting their model via
Bayesian inference. This type of inverse reinforcement learning has been posited as a key
computational substrate for shallow forms of Theory of Mind (ToM) [76]. More complex
forms of theory of mind can also take into account the beliefs and intentions of other agents,
and those other agents’ recursive reasoning about the participants themselves [77]. In broader
terms, the ability to deal with such intentions plays a significant role in the consumption and
interpretation of media and in psychopathology. When we suspect a source might profit from
misleading us, we become more skeptical towards it, and its messages might even backfire
[31] or be ignored as cheap talk [78]. Computationally, this can be modelled as a recursive
theory of mind, where a sender tries to hack the inference process of a receiver and where this
receiver might try to infer about such a hacking scheme and defend against it [30,32]. Over-
or under-interpreting other agents within this cognitive hierarchy can be understood as both
credulity and paranoia, important for different aspects of mental disorders [79,80]. It would
be interesting to consider the effects of such recursive modeling in our task.

A defining feature of the modern information sphere is abundant choice. Particularly in
the political realm, we can rather freely decide between news sources [81,82]. Future iter-
ations might take into account this information-seeking perspective [83–86], adding key
computational challenges but potentially letting us observe interesting behavioral patterns
(see [87] for an empirical investigation of this using a perceptual task). Specifically, agents
that have free reign over their sources need to decide when they still need to explore differ-
ent sources and when they can begin exploiting a source’s knowledge [88]. Such exploration-
exploitation dynamics also open the door for a number of path dependencies that might make
participants disengage with potentially mistakenly erroneous news sources quickly, akin to
the hot stove effect [89–91].

In summary, our results have optimistic and pessimistic implications: On the optimistic
side, our subjects were generally very successful at their dual Bayesian learning task, show-
ing that the basic components of accurate source assessment and integration have not been
dulled. However, that our subjects struggled to learn about the bias of a skewed source even
in our rarefied abstract conditions leads to pessimism that we will be able to avoid blandish-
ments exploiting motivated reasonsing, and worse. Work on prevention and cure is pressing.
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