
Supplementary Information

S1 Participants

In experiment 1, we analyzed a total of 123 participants. (58 female, 63 male, 2
“other/would rather not say”). The mean age of participants was 38.72 years (SD =
11.07). In experiment 2, we analyzed a total of 111 participants. (54 female, 55 male, 2
“other/would rather not say”). The mean age of participants was 36.77 years (SD =
13.27). We show an overview of these demographics and participants education levels in
Fig. A.

We excluded participants based on two criteria in both experiments: Participants
were excluded it they had incorrectly responded to more than two comprehension checks
in our instructions, or if they incorrectly responded to a catch-question in the post-task
questionnaires.

Participants were remunerated with a base payment and a performance based bonus
computed via the quadratic scoring rule based on their confidence judgements during
the main block (1) .

S2 Additional results

Distribution of confidence ratings

We provide further insights into the collected dataset by testing for differences in the
confidence ratings distribution (i) between the experiments (full feedback and noisy
conditions); (ii) within the experiments (fixing the feedback condition, but varying
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Fig A. Demographics. (A-C) Experiment 1. (D-F) Experiment 2.
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Table A. Cohen’s d values between different source types. We report the value pooled
across full feedback and noisy, as well as the individual values (full feedback, noisy).

µ1 \ µ2 Helpful Random Opposite Blue-bias
Helpful 0.52 (0.74, 0.4) 0.34 (0.32, 0.35) 0.13 (0.2, 0.08)
Random -0.16 (-0.38, -0.03) -0.38 (-0.52, 0.3)
Opposite -0.21 (-0.12, -0.26)
Blue-bias

source types); and (iii) for differences within an experiment and between different
source types (interaction).

For (i), we pooled confidence ratings across different source types for each condition
and performed a permutation test to check whether the two conditions differed in their
mean confidence rating. We used permutation tests because the distributions of
confidence ratings were not Gaussian. The sample sizes per group were N1 = 28224
confidence reports for the full feedback condition, and N2 = 14784 confidence reports
for the noisy feedback condition. While the difference in means was statistically
significant (|µ1 − µ2| = 2.51 with p ≪ 0.05) the effect size was small (Cohen’s d 0.17).

For (ii), we pooled confidence ratings across the two different main conditions. We
again used permutation tests to check for significant differences, but now between
different source types. We, again, found statistically significant differences between all
of the four source types. The pooled sample sizes were N = 10752 for each condition.
We report the full values in Table A. The strongest effect was between the helpful and
the random source. The weakest was between helpful and blue-bias. This exactly
mirrors the general findings of the main study.

The analysis of interaction effects (iii) reveals that the largest effect (in both
experiments) occurred between the helpful and random source. Notably, the findings in
the noisy condition without feedback were particularly interesting. In contrast to the
full feedback condition, there was nearly no effect between the helpful and blue-bias
source, as well as between the opposite and random source. However, the differences of
helpful and blue-bias showed a moderate effect when compared to the opposite and
random conditions (magnitude of Cohens’ d > 0.25, c.f. Table A).

Noisy feedback condition: responses to independent council

In the noisy feedback condition, participants should use the independent council as a
trustworthy, albeit noisy, feedback mechanism. This means that they should respond
positively to its information, increasing their confidence in blue when they see more
blue endorsements. This shift should be visible regardless of whether participants
played with the helpful, the random, opposite or blue-biased source. This was indeed
the case, as we show in Fig. B. There, we plot the average changes of mind, that is the
difference between the final confidence after seeing the independent council and the
initial confidence after only seeing the news station. Participants shifted their beliefs
increasingly towards the blue option the more blue endorsements they saw in the
independent council. We note that there are differences in the strength of this shift
depending on the news source that participants played with – but that this is due to the
joint distributions between the respective news source and independent council, and the
accompanying ceiling effects: For example, in the case of the helpful source, participants
would have likely already seen a large number of blue endorsements, leaving little room
to shift more towards blue when the independent council also favored blue.
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Fig B. Participants used the independent council as a sensible feedback
signal and changed their mind to it accordingly in the noisy feedback
version. We plot the changes of mind in response to the independent council as a
function of the number of blue endorsement in the independent council. We computed
the changes of mind by subtracting the initial confidence (after seeing only the news
station) from the final confidence (after additionally seeing the news station). We plot
individual averages (lines and dots) and distributions over these (boxplots).

Questionnaires and factor analysis

After finishing the main task, participants answered a number of questionnaires related
to real-world trust and media consumption patterns:

• The trust question from the World Value Survey. Specifically, participants
answered “Generally speaking, would you say that most people can be trusted or
that you need to be very careful in dealing with people?” on a scale from 0 to 100.

• The epistemic trust questionnaire from Campbell et al. (2). This questionnaire
contains three subscales: Epistemic trust : A penchant to be open to social
learning in “benign social situations”, and to do so adaptively. Epistemic mistrust:
Tendency to view any information provided by others as unreliable and malign
and the resulting hesistancy to rely on such information. Epistemic credulity:
Absence of “vigilance” towards others, and the resulting tendency to fall prey to
deception and misinformation.

• Questions assessing news consumption frequency. Participants were asked “How
often did you use the following types of sources to get news in the past week?”
with regards to ten different news types, and could respond using four different
options (“Never”, “1 - 2 days”, “3 - 4 days”, “5 - 7 days”).1

• A questionnaire about the specific news sources participants consumed via a
simple yes and no response (“Which of the following media outlets (if any) do you
follow to get news?”). 2

1The news types were: “Cable television news (e.g. CNN, Fox News, MSNBC)”, “National network
TV news (e.g. ABC, CBS, NBC)”, “Local television news”, “Social media (e.g. Facebook, Twitter,
TikTok, Reddit)”, “Podcasts”, “Blogs”, “Public radio (e.g. NPR)”, “Talk radio”, “News websites or
apps”, “Print newspapers”

2We assessed the following news organizations: ABC News, Breitbart, CBS News, CNN, Fox News,
MSNBC, NBC News, New York Times, NPR, Wall Street Journal, Washington Post, USA Today, Other;
and the following social media sources: Facebook, Instagram, Twitter, WhatsApp, Snapchat, TikTok,
YouTube, Reddit, LinkedIn, Other
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Fig C. Factor analysis of questionnaire data. Factor loadings for the three factors.

• A questionnaire assessing participants’ trust in different types of media (“To what
extent do you trust the information that comes from the following?”: “The press
(e.g. news apps, newspapers)”, “Television”, “Social media”). Participants could
answer using on a five-point scale (“None at all”, “A little”, “A moderate
amount”, “A lot”, “A great deal”).

We conducted an exploratory factor analysis on the total set of 50 questions. The
number of factors was determined using the Cattell-Nelson-Gorsuch test. We used
maximum-likelihood estimation with a an oblique rotation (oblimin). We discuss the
results of the factor analysis in the main text and the factor loadings are plotted in Fig
C.

S3 Modelling

Optimal model: Full feedback learning

In the full feedback version of the task, we can model an optimal agent’s posterior over
the sources’ probabilities as two independent beta distributions that both are governed
by an α and β parameter. We here drop the subscript I indicating the source but note
that this learning process proceeds individually and independently for all sources:
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bt|Ht ∼ Beta(αb,t, βb,t) (1)

gt|Ht ∼ Beta(αg,t, βg,t) (2)

To update its estimate of the two probabilities bt and gt, the agent computes the
following posterior (here only for bt but gt proceeds analogously):

p(bt+1|Xt, st,Ht) ∝ P (Xt|s; bt)p(bt|Ht)1(st = blue) (3)

Thereby, P (Xt|s; bt) is again a binomial likelihood, and p(bt|Ht) the prior
distribution over bt. The indicator 1(st = blue) ∈ {0, 1} means that we only update our
beliefs about bt when we are in a blue state. Because we are updating a
beta-distribution with a binomial likelihood, this update takes the form of a regular
beta-update, so that when st = blue (and vice-versa for green):

αb,t+1 = αb,t +Xt (4)

βb,t+1 = βb,t + n−Xt (5)

The four parameters αb,t, βb,t and αg,t, βg,t are thus sufficient statistics for the
qualities of the news sources and are the only quantities that need to be carried forward
between trials.

Optimal model: Noisy feedback learning

We here outline the computations underlying the agents’ update over the sources
parameters bI and gI in more detail. As we discussed, this is done via an update on the
joint distribution of these two parameters. We again drop the source subscript I for
convenience:

p(bt+1, gt+1|Yt, Xt, ) =
∑
st

p(bt+1, gt+1, st|Yt, Xt, ) (6)

∝
∑
st

p(Yt, Xt|st; bt, gt)p(bt, gt, st|) (7)

∝
∑
st

P (Xt|st; bt, gt)p(bt, gt|)P (Yt|st) (8)

∝ [B(Xt;n, bt)B(Yt;n, bY )+ (9)

B(Xt;n; 1− gt)B(Yt;n, 1− bY )] p(bt, gt|) (10)

Essentially, the agent updates its prior belief p(bt, gt|) with the likelihoods of Xt,
given this prior belief, but weighted by the likelihood obtained from the noisy feedback
sample Yt, all while marginalizing out the state.

Optimal model: Inferring the ground-truth

After seeing the news station, in both the full feedback and the noisy feedback case, the
model updates its beliefs equivalently, marginalizing over its current beliefs about the
sources, p(bt,I , gt,I |). Specifically, it computes the posterior as follows, here for st = blue
assuming a flat prior over states p(st) = 0.5 and dropping the subscript I for
convenience.
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P (st = blue|Xt, ) =
P (Xt|st = blue, )

P (Xt|st = blue, ) + P (Xt|st = green, )
(11)

=

∫
bt

∫
gt

p(bt, gt)
P (Xt|st = blue; bt, gt)

P (Xt|st = blue; bt, gt) + P (Xt|st = green; bt, gt)
dbtdgt (12)

=

∫
bt
P (Xt|st = blue; bt)p(bt)dbt∫

bt
P (Xt|st = blue; bt)p(bt)dbt +

∫
gt
P (Xt|st = green; gt)p(gt)dgt

(13)

Thereby, P (Xt|st = blue; bt) is simply the binomial likelihood B(Xt;n, bt) and in the
noisy feedback version p(bt) is just the marginal distribution p(bt) =

∫
gt
p(bt, gt) (and

vice-versa for st = green and gt).
In the noisy feedback version, this initial posterior is then integrated with the

information from the independent council Yt to form a final posterior (with no closed
form update):

P (st|Xt, Yt; bY , ) ∝ P (Yt|st; bY )P (st|Xt, ) (14)

Model fitting: Parameters

To capture participant idiosyncrasies in learning and confidence reporting, we
implemented an eight parameter version of the optimal model, and fit these parameters
to participants’ behavior using a ninth noise parameter. These parameters are partially
shared between the two experiments and models, and partially individual.

We begin by outlining the shared parameters. A first shared parameter by the
models relates to the way participants report their confidence in a potentially non-linear
way. Specifically, we let the confidence be scaled non-linearly using the parameter κ.
Here, we denote the reported confidence as ĉt and the original confidence
ct ∈ {P (st = 0|Xt; ), P (st = 0|Xt, Yt; bY , bt, gt)}:

ĉt = cκt /(c
κ
t + (1− ct)

κ) (15)

Crucially, this transformation only impacts the confidence report but not the
probabilistic estimates that get made and carried forward by the model.

Another set of four parameters relate to the priors about the source probabilities,
p(bt=0, gt=0), an agent might have when approaching this task. We implemented this by
instantiating the initial beliefs of the agent as beta distributions with the parameters
αb,0, βb,0, αg,0, βg,0, so that agents had the following prior

bt=0 ∼ Beta(αb,0, βb,0) (16)

gt=0 ∼ Beta(αg,0, βg,0) (17)

In the full feedback experiment, we consider three more parameters: Specifically,
agents might have a tendency towards updating their confidence in a more or less
optimistic manner. We capture this by weighting the beta-binomial update by two
parameters ωα and ωβ , so that each updates proceeds as following, here for when
st = blue:

αb,t+1 = αb,t + ωαXI (18)

βb,t+1 = βb,t + ωβ(n−XI) (19)
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Table B. Summary of fitted model parameters for the Bayesian Model.

αb,0, βb,0, αg,0, βg,0 parameters of Beta-priors (shared)
κ parameter of non-linear confidence scaling (shared)
ωα, ωβ weighting of beta-binomial update (full feedback)
λ forgetting rate (full feedback)
ν mixing factor of biased belief update and forgetting (noisy)
αforget, βforget forgetting distribution (noisy)

Table C. Fitted parameter statistics for the Bayesian model.

Parameter Mean (ffb) Std (ffb) Mean (Noisy) Std (Noisy)
beta priors blue 0.56 0.13 0.66 0.18
beta priors green 0.63 0.12 0.70 0.14
κ 3.83 3.28 1.58 2.55
ωα 1.08 0.47 n.a. n.a.
ωβ 1.06 0.42 n.a. n.a.
λ 0.04 0.11 n.a. n.a.
ν n.a. n.a. 0.25 0.30
αforget n.a. n.a. 28.33 13.44
βforget n.a. n.a. 19.82 11.65

Furthermore, agents might have a tendency to forget (towards the uniform
Beta(1, 1)), which we implement via a forgetting rate parameter λ. That is, between
each trial noise gets added to the parameter estimates and there is a regression to the
mean (for both green and blue parameters, hence dropping the colour subscript here):

α′
t = (1− λ)αt + λ (20)

β′
t = (1− λ)βt + λ (21)

In the noisy feedback model, we consider a similar set of phenomena. However,
this is implemented somewhat differently because of the joint belief distribution.
Specifically, we also implement a forgetting parameter but instead of merely adding
noise and forgetting towards a uniform distribution, we forget towards a specific
distribution, thereby implementing both a biased belief update and forgetting. We call
this forgetting parameter ν. Specifically, ν weights the current two-dimensional belief
state p(bt, gt) with a second two-dimensional distribution pforget(b, g) between trials:

p(bt, gt)
′
t = (1− ν) ∗ p(bt, gt) + ν ∗ pforget(b, g) (22)

We parameterize pforget(b, g) to be a 2-dimensional distribution made out of the outer
product of two beta distributions both sharing the two parameters αforget and βforget

pforget(b, g) = Beta(αforget, βforget)Beta(αforget, βforget). (23)

Table B provides an overview about all fitted parameters for quick reference.
Further, Table C shows statistics of the fitted parameters.

Model fitting: Parameter estimation

We fit the model to participants’ data using maximum likelhood estimation via
differential evolution implemented in the DEOptim package in R. Participants were fit
individually with one set of parameters for all sources. To obtain a likelihood for our
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data given a parameterized model, we fit the confidence ratings in the data ct,D as
being sampled from a Gaussian distribution centered around the model predictions
given parameters θ, ct,M |θ and a standard deviation σc:

ct,D ∼ N (ct,M |θ, σc) (24)

The noise term σc was a free parameter in our fitting, resulting in a total of 9
parameters.

In both experiments, we fit the initial confidence reported after participants had
seen the news station. In the noisy feedback experiment, we additionally fit the second
confidences participant reported after having seen the independent council. In both
versions, we also fit the 6 probe trials. The probe trials were fit using the frozen belief
state after the final main block trial, without any additional forgetting.

S4 Analysis details

Regression analysis

To obtain slopes and intercepts from our data and model, we fit logistic regressions. To
deal with the limited data per regression and participants whose responses showed
perfect separation, we used Bayesian generalized linear models implemented in the “arm”
package in R using the default Cauchy priors. We fit the following regression analyses:

• For the probe trial analysis, we fit four individual regressions per participant, each
time fitting their individual six responses per source

• For the pooled analysis split by block quarter, we pooled all participants’ data,
and then split it into bins of 7 trials, fitting one regression per source and block
quarter

• For the analysis investigating participants’ individual learning progress, we split
their data into the first and last 14 trials, and fit one regression per half and
source.

We ran these equivalent regressions on the predictions made by the model fit to
participant data. To do so, we simulated behavior from the model using the fit
parameters. We used the mean confidence prediction of the fit model with no additional
noise. In all regressions, we subtracted 2.5 from the number of of blue endorsements, so
that an unbiased response would have a intercept of 0.

Statistical analysis of main task

To further analyze participant behavior, we conducted the following statistical analyses,
both for the full and noisy feedback version:

• To investigate whether the slopes and intercepts differed from each other in the
probe trials between news sources, we conducted an ANOVA predicting the slope
(or intercept, respectively) from the source type. We conducted Tukey’s honest
significance test to compare the individual means.

• To investigated whether participant’s slopes and intercept differed from 0, we
conducted one-sample t-tests.

• To investigate quality of fit between probe trial slopes and intercepts computed for
the data and the model predictions, we computed Pearson’s R.
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• To investigate effects of trial and news source on participants’ accuracy, we set up
a logistic regression predicting, on a trial-by-trial basis, participants’ accuracy
from the trial number (within a block) and the source, as well as their interaction.
To test for the significant effects of these predictors, we conducted χ2 tests.

• To investigate whether slopes and intercepts differed between block halves and
news sources, we conducted an ANOVA predicting the slope/intercept from the
source type and the block half. We conducted Tukey’s honest significance test to
compare the individual means.

We ran the following analyses to compare the two conditions and the optimal model:

• To compare the accuracy achieved between the optimal model and the data, we
set up a logistic regression predicting, on a trial-by-trial basis, participants’
accuracy from the trial number (within a block), as well as from the data type
(optimal model or data) and the interaction of these two predictors. To test for
the significant effect of these predictors, we conducted a χ2 tests.

• To compare the slopes achieved by the models, we set up an ANOVA predicting
the probe trial slopes from the experiment condition and the news source. We
conducted Tukey’s honest significance test to compare the individual means.

Trust and improvement ratings

To investigate the different types of responses to the post-block trust and improvement
questionnaires, we set up an ANOVA predicting the response from the source type and
the response type (trust/improve). We conducted Tukey’s honest significance test to
compare the individual means.

To check how participants’ trust and improvement ratings were related to their task
behavior, we set up regressions predicting the respective rating from the slopes inferred
as above from the participants’ second half responses. We set up three regressions per
relationship, (1) one predicting the rating linearly from the slopes, (2) another
predicting the ratings from a quadratic function of the slopes, and (3) a final using both
a linear and quadratic function. We compared the quality of these fits using the
regressions’ respective Bayesian Information Criteria, reported in Table D. Slopes and
intercepts of the winning models all reached statistical significance (p < 0.05).

S5 Additional analyses

Individual belief states

Figures 4 and 8 showed the modeled belief states of individuals as an average of bt and
gt. To provide more detail, we show the trajectories of the separate beliefs in Figure D.

Mixed effects Bayesian logistic regression

For further validation, we fit mixed effects Bayesian logistic regression. We constructed
the model with group level slope and intercept parameters, as well as participant level
slopes for the logistic regressors. For fitting, we used the glmmTMB package3 in R.
Including a participant level intercept was not significant. While the mixed effects
logistic regression provided a better BIC in general, yet we used the quarterly analysis
in the main text to visualize the learning progress over time.

3https://cran.r-project.org/web/packages/glmmTMB
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Table D. Comparison of model fit for the post-block trust and improvement
ratings: BICs for regression models predicting the post-block trust questionnaires from
the betas fit to participants’ responses in the second half of a block.

DV News Sources Model BIC
Trust All but opposite Linear 1585.6531
Trust All but opposite Quadratic 1589.4885
Trust All but opposite Linear and quadratic 1590.7492
Trust Opposite Linear 690.0235
Trust Opposite Quadratic 696.8924
Trust Opposite Linear and quadratic 694.5620
Improve All but opposite Linear 1602.8504
Improve All but opposite Quadratic 1610.0373
Improve All but opposite Linear and quadratic 1608.9850
Improve Opposite Linear 720.3958
Improve Opposite Quadratic 718.0166
Improve Opposite Linear and quadratic 717.8379
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Fig D. Belief states reported separately for blue and green.
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Table E. Group-level parameters of mixed effects logistic regression on the participants
learning trajectories. The stars indicate statistical significance against 5%.

Condition Source Type Slope Intercept
full feedback helpful 1.95* -0.02
full feedback random 0.54* -0.01
full feedback opposite -0.66* -0.01
full feedback blue-bias 1.31* -0.23*

noisy helpful 1.28* 0.05
noisy random 1.04* 0.01
noisy opposite 0.25* -0.03
noisy blue-bias 1.17* -0.05

Most importantly, the mixed effects model agreed with our main findings using the
quarter-based and half-based analyses of learning. That is, the group level slopes were
significant for both conditions for all four source types and had the same signs as in the
quarter-based analysis. The blue-bias source had a significant intercept in the full
feedback condition, but not in the noisy condition. We report all parameter values in
Table E.

Comparison to Rescorla Wagner learning

In addition, we compare the Bayesian model against a structurally simpler model - a
Rescorla-Wagner (RW) rule, since this operates according to related, but less
sophisticated, incremental learning principles. The main difference between RW and
Bayesian learning is the fixed learning rate in RW. Learning in the Bayesian model is
fast initially (when epistemic uncertainty dominates) and slow ultimately (when
aleatoric uncertainty dominates). Thus, if the participants are more Bayesian in their
adaptation, then we can expect the RW to fit poorly, but in a way that might be hard
to predict.

For the RW, to allow for suitable generalization, we model Q values of observation x
using a quadratic form as Q(x) = w0 + w1x+ w2x

2 and apply the logistic function to
transform those Q values to probabilities. We found that a cubic term afforded no extra
predictive power, but it was not practical to test the many other possible functional
forms. Nevertheless, to provide RW with as much flexibility as possible, we allowed
separate learning rates λ0, λ1, λ2 for each parameter, per participant. Figure G shows
fitted learning rates for those RW fits.

To compare the learning behavior of the RW model together with the Bayesian
model and our participants, we conducted an analysis which parallels that in the main
paper: We simulated learning trajectories of the computational models, having fit any
parameters to the behavior of the subjects. We then split the simulated trajectories and
the behavior of the participants into two halves (akin to our procedure in the main part
of the paper) and fit psychometric slopes and intercepts using Bayesian logistic
regression as before. For each source type in each condition we used an ANOVA test to
assess whether the slopes and intercepts were significantly different between the models
and the data4. We found that the RW model had significantly lower slopes for nearly all
source types and block halves in the full feedback condition (Figure E). This suggests
that the RW model lags behind the participants’ (and the Bayesian model’s) learning
speed, likely due to its fixed learning rate. For the intercept, we only found a significant
difference in the second block half in the blue-bias condition. The RW model’s lower
intercept compared to the participants (and the Bayesian model) suggests an

4We then used pairwise t-tests to examine the difference was in the RW model.
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Fig E. Model comparison in the full feedback condition. The asterisk indicates a
significant ANOVA test for the source type, and marks whether the respective model
deviates from the participant data according to a t-test.

overestimation.
We report the findings for the noisy condition in Figure F. The results for the fitted

intercepts agree with the full feedback version. The results for the slopes are more
challenging to interpret, likely due to the additional noise. The slopes were lower for the
RW than the participants in many conditions, albeit higher for the helpful and blue-bias
source in the second half. Nevertheless, even when the ANOVA test implied significant
differences across the three learning curves, the Bayesian model only significantly
deviated from that of the participants in the first block of the helpful source.
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Fig F. Model comparison in the noisy condition. The asterisk indicates a significant
ANOVA test for the source type, and marks whether the respective model deviates from
the participant data according to a t-test.

Fig G. Fitted learning rates of the Rescorla Wagner model
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Fig. G Fitted learning rates of the Rescorla-Wagner model.

List of Table Legends

Table Description

Table A Cohen’s d values between different source types. We report the value pooled
across full feedback and noisy, as well as the individual values (full feedback,
noisy).

Table B Summary of fitted model parameters for the Bayesian model.

Table C Statistics for fitted parameters of the Bayesian model.

Table D Comparison of model fit for post-block trust and improvement ratings: Bayesian
Information Criteria (BICs) for regression models predicting post-block trust
ratings based on betas fitted to participants’ responses in the second half of a
block.

Table E Group-level parameters of a mixed-effects logistic regression on participants’
learning trajectories.
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