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ABSTRACT
Signaling pathways involving NF-κB transcription factors have essential roles in inflammation, immunity, cell proliferation,
differentiation, and survival. Classical IκB proteins, such as IκBα and IκBβ, bind toNF-κB via ankyrin repeats to sequester NF-κB in
the cytoplasm and thus suppress NF-κB activity. Unlike these constitutively expressed classical IκBs, the expression of the atypical
IκBs Bcl-3, IκBNS, and IκBζ is induced in immune cells after recognition of antigens, pathogen-associated molecular patterns
(PAMPs) or cytokines, upon which they localize to the nucleus and form complexes with transcription factors and regulators on
the DNA. Atypical, nuclear IκBs have been proposed tomodulate NF-κB activity in a context-dependent manner as they can either
inhibit or increase gene expression of a subset of NF-κB target genes. This complexity may be related to the molecular function
of atypical IκBs, which bind to different transcription factor complexes and form a bridge to different cofactors or epigenetic
modifiers. Recent research has identified novel target genes of atypical IκBs that include chemokines, cytokines, and master
regulators of lymphocyte differentiation, underscoring prominent roles in adaptive immune and autoimmune responses. Here,
we summarize our current understanding of atypical IκBs in lymphocytes with a focus on their emerging role in autoimmunity.

1 Introduction

NF-κB constitutes a family of transcription factors that critically
controls immune homeostasis. Thus, mutations and aberrations

within the NF-κB signaling pathway are associated with various
autoinflammatory and autoimmune diseases [1–3]. As NF-κB
controls multiple functions, including survival, proliferation,
differentiation, and activation of immune cells, its activity and
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FIGURE 1 Overview of the regulation and function of the atypical IκB proteins, IκBζ (encoded by Nfkbiz), IκBNS (encoded by Nfkbid), and Bcl-3
(encoded by Bcl3). In resting cells, classical IκBs, such as IκBα sequester NF-κB in the cytoplasm, rendering it inactive. Upon stimulation, NF-κB is
translocated into the nucleus. Subsequently, together with multiple other transcription factors such as STATs or CEBP, NF-κB transcriptionally induces
the expression of atypical IκBs. Moreover, Regnase-1 and 3 as well as Roquin-1 and 2 regulate the mRNA stability or expression of Nfkbid and Nfkbiz,
thereby modifying the overall expression of IκBζ and IκBNS. Upon protein expression of the atypical IκBs, all three members associated with different
transcription factor complexes, thereby recruiting other (epi)-genetic co-factors, changing chromatin accessibility, and ultimately gene expression of a
subset of NF-κB target genes. Please note that miRNA-mediated regulation has been proposed for all three atypical IκBs, however, it is not displayed in
this figure, since a physiologic relevance for lymphocyte function has not been demonstrated, yet.

effects on target gene expression have to be tightly controlled.
IκB proteins comprise a key family of NF-κB-related co-factors
that not only regulate the overall activity of NF-κB but also
the expression of subgroups of NF-κB target genes. This class
of co-factors can be roughly distinguished into classical IκBs
such as IκBα and IκBβ, the precursor p105 and p100 that are
processed to p50 and p52, respectively, and the atypical IκBs,
such as Bcl-3, IκBζ, and IκBNS. Whereas classical IκBs and the
precursors p105 and p100 retain NF-κB in the cytoplasm in the
absence of NF-κB signaling, the protein family of atypical IκBs,
Bcl-3 (encoded by Bcl3), IκBζ (encoded by Nfkbiz), and IκBNS
(encoded by Nfkbid), are inducibly expressed upon activation
of NF-κB (Figure 1). Subsequently, these atypical IκBs interact
with NF-κB, but also with other transcription factors on the
chromatin to promote or suppress the transcriptional induction
of a subset of NF-κB target genes (Figure 1). Initial research
on the atypical IκB proteins has compared them to classical
IκBs and uncovered a preference for binding to p50 or p52
homodimers over p65/p50 heterodimers [4–11]. While a cocrystal
structure for the classical IκB, IκBα, in complex with NF-κB

p50/p65 has been solved [12], the interaction of atypical IκBs
remains undefined at the structural level. Various investiga-
tions on the physiologic importance, interaction partners, and
downstream function of atypical IκBs have been performed,
but their exact role and mechanism of action are still poorly
defined.

Given their flexible protein interactions, target gene regulation,
and dynamic expression patterns, a direct comparison between
studies is difficult. Thus, genetic models have been instrumental
in understanding atypical IκB functions and underscore the
prominent role of these molecules in lymphocytes and immune
responses. Mouse knockout models of all three atypical IκBs
(Bcl3,Nfkbid, andNfkbiz) showed unperturbed development, but
immune functions and cytokine production were altered already
at homeostasis, during immune responses or in disease models
[10, 13–18]. The current challenge is to understand when and how
the expression of Bcl-3, IκBNS, and IκBζ is induced, what functions
these proteins have in different cell types, which genes they
regulate, and how they impact the gene regulatory networks to
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control the differentiation of immune cells and affect the immune
system or immune responses.

As a large part of our knowledge has been obtained in the
mouse system, we will in this review, unless specified otherwise,
refer to the mouse genes, the mRNAs encoded in the mouse,
and functions of the proteins in the cells of the mouse immune
system. A major focus of this review is placed on the role of
atypical IκB in lymphocytes, trying to understand how these
factors impact the development of immune-related diseases and
autoimmunity.

2 Molecular Features of Atypical IκB Proteins

An overview of the genomic structure and regulation of all
three atypical IκB proteins is shown in Figure 2. Of note,
although multiple isoforms have already been described for the
atypical IκBs, isoform-specific functions have only rarely been
investigated so far.

IκBζ, encoded by Nfkbiz, was originally identified as a protein
called MAIL, short for molecule possessing ankyrin repeats
induced by lipopolysaccharide. It was also termed INAP, which
stands for interleukin (IL)-1 inducible nuclear ankyrin-repeat
protein [19, 20]. The N-terminus of IκBζ differs from the other
IκB proteins [11], providing additional interaction sites with
other transcription factors such as POU and STAT proteins.
It also contains a transactivation domain (TAD), although the
functionality of this domain remains under debate [21, 22].
Earlier publications suggested selective IκBζ complex formation
with p50 and p52 homodimers, which themselves lack a TAD,
consequently leading to an IκBζ-dependent activation of NF-κB
target genes [22–24]. Other publications showed IκBζ binding
to p65:p50 heterodimers and p50 homodimers, and involvement
in the inhibition of DNA-binding of these dimers [21, 25, 26].
IκBζ is expressed in nonhematopoietic cells such as keratinocytes,
fibroblasts, and chondrocytes [19, 27-30], as well as in innate and
adaptive immune cells [10, 31-36].

IκΒΝS, encoded by Nfkbid, is the smallest member of the atypical
IκΒ protein family [6]. It contains six ankyrin repeats which
interact withNF-κB [37]. IκΒΝS was originally identified in a study
on negative selection (NS) in the thymus and has been suggested
to interact with all members of the NF-κB family in vitro [6].
Later studies determined p50 as the main interaction partner in
macrophages [7] as well as p50:c-Rel heterodimers in CD4+ T
cells or Treg cells [9]. Promoter studies investigating regulators
of IκΒΝS expression are so far lacking, although NF-κB is likely to
be involved. IκΒΝS has been described to be expressed in adaptive
and innate immune cells and lung epithelial cells [7, 9, 13, 18,
38-43].

Bcl-3 (B cell leukemia 3 protein) is a proto-oncogene that was
originally identified by its translocation into the immunoglobulin
alpha-locus in some patients with chronic lymphocytic leukemia.
It contains amino-terminal and carboxy-terminal TADs [44, 45].
The seven ankyrin repeats of Bcl-3 interact with NF-κB p50 or p52
homodimers and early studies suggested that Bcl-3 represses the
binding of these homodimers to DNA [4, 8, 46, 47]. Of note, many
cell types express Bcl-3 at a steady state, and its expression can

be further induced by TLR activation in myeloid cells and other
NF-κB-inducing agents. This processmay partially depend on p50
expression [48].

3 Regulation

In most of the studied cell types, such as keratinocytes or T-cells,
Nfkbiz transcription, and IκBζ protein expression are induced in
response to a variety of different NF-κB- and STAT-activating
stimuli (Table 1), which is followed by rapid proteasomal degrada-
tion of the IκBζ protein [49–51]. The E3 ubiquitin ligase PDLIM2
may mediate IκBζ proteasomal degradation, at least in myeloid
cells [51]. Moreover, multiple threonine phosphorylation sites
have been identified in IκBζ, which can switch IκBζ from a gene
activator to a gene repressor by promoting the recruitment of
HDAC1 to target gene promoters [21] (Figure 2C). The Nfkbiz
mRNA is also posttranscriptionally regulated by the endoribonu-
clease activities of Regnase-1 and Regnase-3 which bind to a
defined cis-element composed of several stem-loop structures
in the 3’-UTR of Nfkbiz and induce mRNA decay but also
translational inhibition [52–56] (Figure 2B). The inhibitory effect
of Regnase-1 can also be counteracted by Arid5a, which, during
IL-17 stimulation, seems to interfere with Regnase-1 activity,
stabilizes Nfkbiz mRNA, and promotes IκBζ protein expression
[57]. Regnase-1 is a target of MALT1 proteolytic cleavage [58],
and Nfkbiz/IκBζ expression is strongly triggered by MALT1
activation in T cells [59]. Moreover, treatment of macrophages
and keratinocytes with itaconate suppressed LPS-induced IκBζ
expression, possibly through ATF3-dependent repression [60].
MicroRNAs also regulate NFKBIZ mRNA stability. In detail,
miR-376b and miR-124a can inhibit NFKBIZ expression, while
miR-376b and Nfkbiz have an impact on liver regeneration,
tubular damage, and intrarenal inflammation in acute kidney
injury [61–63].

IκΒΝS protein expression and Nfkbid transcription are induced
by several stimuli including antigen receptors, TLRs, or cytokine
receptors (Table 1), but the Nfkbid mRNA is also placed under
profound posttranscriptional control. The 3’-UTR of the Nfkbid
mRNA harbors several stem–loop structures that form a cis-
element [64], very similar to the one defined in Nfkbiz [52]
(Figure 2B). Both cis-elements contain one or two constitutive
decay elements (CDEs), which are known to be recognized by
the Roquin family of RNA-binding proteins, namely Roquin-1
and its redundantly functioning paralog Roquin-2 [52, 64-68].
Nfkbid/IκΒΝS mRNA and protein expression are regulated by
Roquin-1 via induced mRNA decay that involves deadenylation
and decapping as well as inhibition of translation [64]. Very
similar to IκBζ, IκΒΝS is strongly derepressed upon activation of
theMALT1 protease, which is explained by Roquin-1 and Roquin-
2 being MALT1 substrates [59, 69]. In fact, IκΒΝS induction
upon TCR signaling closely follows the proteolytic cleavage
of Roquin proteins and is prevented by MALT1 inhibition or
mutations of the MALT1-specific cleavage sites in Roquin-1
[59, 70]. NFKBID is also regulated by microRNA. It has been
shown that miR-492 binds NFKBID and leads to the downreg-
ulation of NFKBID mRNA levels in the context of Zika virus
replication [71].
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FIGURE 2 Gene structure, transcriptional and posttranscriptional regulation, and posttranslational modifications of Bcl-3, IκBNS, and IκBζ. (A)
Gene structure. IκBζ is encoded by twodifferent variants ofNfkbiz, resulting fromalternative splicing, and thus generates two different proteins consisting
of 728 and 629 amino acids. Of note, both variants contain unique promoter regions which can be occupied by canonical NF-κB, STAT1-3 or CEBP [126–
128]. Besides 7 ankyrin repeats, it contains a nuclear localization signal (NLS), a potential TAD, and an OCA domain [19, 129]. Direct interaction and
mapping of the interaction sites have already been identified for POU transcription factors [129], STAT3 [130], and NF-κB p50, p52, and p65 [10, 131].
The smallest member of atypical IκBs is IκBNS, encoded by Nfkbid, which exists in three different isoforms through splicing events at the 5’-UTR,
leading to the generation of a 327 amino acid long protein. Our schematic omits a putative isoform of IκBNS (470 aa) since this isoform has not been
experimentally verified. It consists of 6 ankyrin repeats which mediate the interaction with NF-κB p50, p52, and c-Rel. Of note, no reporter promoter
studies of Nfkbid have been published so far. Bcl-3 (encoded by Bcl3) consists of 448 amino acids, and contains two transactivation domains (TAD)
and 7 ankyrin (ANK) repeats [4, 132]. Moreover, several promoter studies revealed that Bcl-3 expression is induced by binding of either canonical or
noncanonical NF-κB signaling [133], as well as STAT1 [134] and STAT3 [135]. Direct interactions of Bcl-3 with AP1 [76] and p50/p52 have been reported
[136–138]. (B) Posttranscriptional regulation. Nfkbiz and Nfkbid, but not Bcl3, are posttranscriptionally regulated by Regnase-1 and 3 and Roquin-1 and
2. Regnase and Roquin proteins can bind at the 3’-UTR, thus inducing mRNA decay and inhibiting translation of IκBζ and IκBNS at steady state [52, 59,
64]. (C) Posttranslational modifications. Apart from transcription and posttranscriptional regulation, posttranslational modifications of Bcl-3 and IκBζ
have been described, that modify their activity, binding to interaction partners, and overall function. Of note, no posttranslational modifications have
been described for IκBNS so far.
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TABLE 1 Expression stimuli, target genes, and interaction partners of atypical IκBs.

IκBζ IκΒΝS Bcl-3

Stimulus and
receptor leading
to expression

B-cell: BCR [35] B-cell: Tlr1/2 (Pam3CSK4)
[108]Tlr4 (LPS) [108] Tlr6/2 (FSC-1)
[108] Tlr7 (Imiquimod) [108] Tlr9
(ODN1826) [108] BCR [100, 103]

T-cell: Il6r (IL-6) [36] Tgfbr (TGF-β) [36] T-cell: TCR (IL-2, CD3, and CD28)
[9, 59, 70]

Target genes B-cell: Il10 [35], Ctla4 [35], Cd86 [35],
Tnfa [35, 99]

B-cell: Pax5 [106], Blimp1 [106, 107]

T-cell: Il17a [36], Il17f [36], Il21 [36], Il22
[36], Il23r [36]
Treg: Foxp3 [82]

T-cell: Bcl6 [85], Il2 [18, 83], Il10
[83], Ccl3 [83], Csf2 [18, 83], Il17f

[84], Ccr6 [84]
Treg: Foxp3 [9]

T-cell: Gata3 [93] Rorc
[94] Bim [90]

Treg: Ctla4 [92], Foxp3
[92], Il2r [92], Il10 [92]

Interaction
partner

p50, p65 [26]—in macrophages Akirin2
[139]—in macrophages
POU transcription factors

[129]—HEK293T C/EBPβ, STAT3,
STAT1 [127]—in HaCaT

AP1, KLF4 [126]—in HaCaT PDLIM2
[51]—in macrophages RORγt and RORα

[36]—in CD4+-T-cells (some
experiments Th17 condition) Foxp3

[82]—in EL-4/LAF

p50 [7]—in macrophages p65, Rel,
Relb [6]—in thymic extracts from

N15 TCRtg mice
cRel, p50 [9]—in CD4+CD25- Tcon

p50 [92]—in Tregs p52
[140]—in macrophages

HDAC1 [48]—in
macrophages

Bcl-3 protein levels are regulated via posttranslational modifica-
tions, especially phosphorylation and ubiquitination (Figure 2C).
Under resting conditions, Bcl-3 degradation and oncogenicity
are regulated by protein kinaseGSK3β-mediated phosphorylation
[72, 73]. However, the proteasomal degradation in the cytoplasm
was shown to be independent of GSK3 [74]. The ability of Bcl-
3 to affect gene transcription depends on its phosphorylation by
AKT, ERK2, and IKK1/2, which enable the regulation of NF-κB
p52 and p50 homodimer transcriptional activity [73]. Translo-
cation from the cytoplasm to the nucleus requires K-63-linked
polyubiquitination [73]. The deubiquitinating enzyme CYLD
has been shown to control Bcl-3 localization in keratinocytes
by removing polyubiquitin chains upon UV irradiation. This
prevents nuclear accumulation and consequently Bcl-3-mediated
regulation of gene transcription [75]. Bcl-3 can suppress tran-
scription by recruiting transcriptional co-repressors. This was
specifically demonstrated by the recruitment of HDAC1 and
the subsequent suppression of TNF production in macrophages
upon LPS stimulation [48]. The recruitment of the co-repressor
CtBP by Bcl-3 was associated with increased Bcl-3 stability and
enhancement of its suppressive capacity [74]. Bcl-3 can also
activate gene transcription by forming a ternary complex with
p50 homodimers, inducing transcription through its TADs [4].
The interaction of Bcl-3 with proteins such as histone acetyl-
transferases (e.g., p300 and Tip60) suggests, among others, a
putative role of Bcl-3 in chromatin remodeling [76, 77]. Lastly,
Bcl-3 expression may also be repressed by the microRNAs miR-
125b and miR-19a [78, 79] but functional investigations for the
relevance of these observations in noncancerous cells are still
lacking.

4 Function in T Cells

IκBζ is highly expressed in Th17 cells compared with other
T helper cell subsets. Combined IL-6 and TGF-β stimulation
triggers its induction in Th17 cells, which depends on STAT3 [36].
While CD4+ T cells isolated from global Nfkbiz knockout mice
exhibit normal Th17 differentiation, they completely lose IL-17A
expression in a RORγt and RORα-dependent manner (Table 1).
Consequently, no experimental autoimmune encephalomyelitis
(EAE) was induced when CD4+ T cells from global Nfkbiz
knockout mice were transferred into Rag2 knockout mice [36].
Furthermore, MaruYama et al. [80] explored the role of IκBζ in T
cells using Lck-Cre Nfkbiz knockout mice. These mice developed
lymphadenopathy, splenomegaly, and leukocyte infiltration in
various tissues and organs between 6-18 months of age. In
youngermice, deletion ofNfkbiz resulted in increased numbers of
Treg cells and effector/memory CD4+ T cells as well as increased
serum levels of IFN-γ and IL-2. These effects may be partly due to
the use of the Lck-Cre, as a report implied adverse and off-target
effects in the Lck-Cre line, and wild-type mice without Lck-Cre
were used as controls [81]. Opposingly, a Treg-specific knockout
of Nfkbiz did not show significant differences in the numbers of
effector T cells, thymic-derived Treg cells, or expression levels of
key cytokines [80]. In contrast, Treg cells from Lck-Cre Nfkbiz
knockout mice exhibited reduced immunoregulatory function in
a T-cell transfer colitis model. Further studies suggested that IκBζ
can bind to the Foxp3 promoter in the presence of TGF-β in
Treg cells and can inhibit Foxp3 expression by interfering with
p65 transactivation [82], thereby possibly interfering with Treg
differentiation or function (Table 1).
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IκΒNS is expressed in both effector and regulatory T cells [9, 18,
83]. Although globalNfkbid knockout mice did not show changes
in immune cell populations within the thymus or peripheral
lymphoid organs, conditional inactivation reveals a proliferation
defect of IκΒΝS-deficient CD4+ and CD8+ T cells in vitro, which
can be rescued by exogenous IL-2 and IL-7 supplementation
[13, 18]. IκΒΝS-deficient T cells expressed lower levels of IL-2
and IFN-γ [18]. They also showed a specific impairment in the
induction of RORγt in response to TGFβ and IL-6 and were
less capable of differentiating into the Th17 subset, exhibiting
reduced expression of IL-17A and Th17-related genes as compared
with wild-type counterparts [84] (Table 1). Citrobacter roden-
tium infections revealed that the absence of IκΒΝS significantly
reduced the infiltration of IL-17A+ T-cells into the gut lamina
propria [83]. IκΒΝS does not directly regulate Il17a transcription,
but instead interacts with the Il10 gene locus, as shown by
chromatin immunoprecipitation (ChIP) [83, 84] (Table 1). In
Listeria monocytogenes (L.m.) infections IκΒΝS was required for
the induction of L.m.–Ova-specific Th1 cells and effector cytokine
production. Although IκΒΝS expression was necessary during the
early stages of Th1 priming, it did not affect T-bet expression [39].
Additional roles for IκΒΝS in promoting Tfh cell differentiation
were described and direct regulation of the Tfh signature genes,
Bcl6 and Il21, was confirmed in ChIP experiments [85]. IκΒΝS
also plays a critical role in thymic Treg development. In ChIP
experiments IκΒΝS bound to the conserved noncoding region 3
(CNS3) in the Foxp3 promoter via p50 and c-Rel, and IκΒΝS was
required for the induction of Foxp3 but dispensable for CD25
expression [86] (Table 1).Nfkbid-deficient Treg cells accumulated
in the GITR+ CD25+ Foxp3– precursor stage, failing to progress
into mature thymic Treg cells, which caused a 50% reduction in
mature peripheral Treg cells [9]. Functionally, Nfkbid-deficient
Treg cells were unable to protect from T-cell transfer-induced
colitis [9]. In mature Treg cells, Nfkbid is suppressed by Foxp3
and is not required for the maintenance or suppressive function
of Treg cells [9, 87].

Bcl-3 was shown early on to be highly expressed in tolerogenic
T cells and to directly control the formation of NF-κB dimers
and IL-2 production [88]. Bcl-3 was proposed to slow down T cell
activation early after stimulation by a T cell-intrinsic mechanism
[89]. Like its function in other cell types, Bcl-3 controls survival
and apoptosis following activation of T cells: overexpression of
Bcl-3 increases survival, while Bcl-3 deficiency accelerates cell
death. The anti-apoptotic activity of Bcl-3 is partially based on the
inhibition of the proapoptotic molecule Bim, since Bim was over-
activated in Bcl-3-deficient T cells, and forced Bcl-3 expression
kept T cells alive but failed to promote the survival of Bim-
deficient T cells [90] (Table 1). In line with these results, mixed
bone marrow chimeras showed that Bcl-3-deficient thymocytes
were outcompeted by wild-type cells; however, this effect was
completely reversed in the intestinal lamina propria, presumably
due to high amounts of Th17 and Treg cells at this site, and the
strong effects of Bcl-3 in restraining these cells [91]. Importantly,
CD4+ T cells overexpressing Bcl-3 fail to induce colitis in a T cell
transfer-induced colitis experiment, presumably due to impaired
proliferation of these cells in vivo, which is a prerequisite for
inducing colitis in this model [92]. Bcl-3 has unique roles in
different T helper cell subsets. For example, in vitro differenti-
ation of Th2, but not Th1 cells, is impaired in Bcl-3-deficient T
cells [93], as Bcl-3 together with p50 transactivates the GATA3

promoter [93] (Table 1). In Th1 cells, Bcl-3 expression suppresses
trans-differentiation toward less pathogenic Th17-like cells [94].
Mechanistically, Bcl-3 prevents the binding of c-Rel and p50 at
the RORC locus and Bcl-3-deficient Th1 cells already show higher
Rorc expression [94] (Table 1). Similarly, Bcl-3-deficient animals
harbor elevated frequencies of (nonpathogenic) Th17 cells in the
lamina propria of the small intestine, while overexpression of Bcl-
3 in T cells results in impaired Th17 differentiation in vitro and
reduced frequencies of Th17 cells in the lamina propria of the
small intestine [91, 95]. Pathogenicity of Th17 cells, indicated by
co-expression of IFN-γ and GM-CSF, may be regulated by Bcl-
3 at the metabolic level because enhanced glycolysis and lower
respiration are observed in Bcl-3-deficient Th17 cells [96]. Bcl-3
directly interacts with Raptor, one of the mTORC1 components,
to control cell metabolism of Th17 cells [96]. Noteworthy, Bcl-
3-deficient animals harbor elevated numbers of Treg cells in
various compartments whereas T-cell-specific overexpression of
Bcl-3 results in impaired Treg cell differentiation and function
[91, 92]. This is not only true for thymic-derived Treg cells, but
also for microbiome-induced Treg cells co-expressing RORγt [91,
97]. Additionally, there is also some evidence that Bcl-3 affects the
differentiation of CD8+ T cells, thereby limiting terminal effector
cell differentiation and promoting memory cell formation [98].

5 Function in B cells

IκBζ expression is induced in B cells by activation of the
BCR and/or by co-stimulation with TLR9/TLR7 [35, 99]. IκBζ-
deficientmice showed impaired proliferation of B cells after TLR9
stimulation compared with wild-type mice, but not after BCR
stimulation. There were no differences in the number of mature
B cells, follicular B cells, and the expression of surface markers
such as IgM, FcγRIIB, and TLR9 in Nfkbiz-deficient mice. In
contrast, a slightly reduced number of transitional B cells and a
slightly increased number of marginal zone B cells were present
in these mice. Likewise, no difference in NF-κB activation of
IκBζ-deficient B cells could be detected after TLR9 stimulation
[35].

However, individual genes showdifferences in expression in IκBζ-
deficient B cells, including Il10, Ctla4, Tnf, and Cd86 expression,
although some of these effects were stimulus-dependent (Table 1)
[35].

IκBNS expression is rapidly induced in B cells at the mRNA
and protein level in response to LPS, anti-CD40, and anti-IgM
stimulation [38, 100]. IκΒΝS-deficient mice, or mice that harbor
a premature stop codon in the Nfkbid gene, also known as
bumble mice, completely lack B1 cells, show a delayed IgG
response, and fail to differentiate toward plasma cells [38, 101-
103]. Additionally, bumble mice have severely reduced marginal
zone (MZ) B cells and reduced IgM levels in the circulation.
The MZ B cell compartment was restored to normal levels in
aged bumblemice; however, these cells were not functional [104].
Interestingly, mice carrying a heterozygous bumble mutation
also showed reduced IgM production despite having normal B
cell development, which suggests a requirement for full IκΒΝS
expression from two Nfkbid alleles [105]. Furthermore, IκΒΝS
was shown to be required for the generation of plasma blasts
and plasma cells in response to LPS stimulation. In bumble B
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cells, expression of Pax5 and Blimp1 which regulate plasma cell
differentiation is increased (Table 1). This is accompanied by an
excessive metabolic activity observed in bumble B cells that leads
to impaired T-cell-independent antibody responses [106, 107].
Similar to T cells, IκΒΝS was required for IL-10 production by B
cells following TLR stimulation, at least during the initial phases
of induction, with IL-10 expression normalizing over time [108].

Bcl-3-deficientmice show a requirement for Bcl-3 in the germinal
center reaction and immunization-induced antibody responses
[15, 109]. The diminished humoral immune responses may
explain why Bcl-3-deficient mice show impaired clearance of
Listeria monocytogenes, Streptococcus pneumoniae, and Toxo-
plasma infections [14, 15, 109]. In contrast, the Eμ-Bcl3 transgenic
mice, in which Bcl-3 is overexpressed in B and T cells, display
splenomegaly and an accumulation of mature B-cells in sec-
ondary lymphoid organs [110]. Transgenic mice that overexpress
or lack Bcl-3 specifically in B cells show that Bcl-3 is a pivotal
regulator of B cell fate determination. Loss of Bcl-3 leads to an
increase in marginal zone B cells and a reduction in follicular
B cells, whereas overexpression of Bcl-3 causes the opposite
phenotype [111, 112]. Furthermore, Bcl-3 promotes the survival
and proliferation of B cell receptor-stimulated B cells while
impairing responses to LPS [112]. Bcl-3 modulates the growth
capacity of B cells, where its overexpression is linked to reduced
proliferation upon activation, likely due to decreased cell death
rather than increased growth [111, 112]. Taken together, Bcl-3 pos-
sesses antiapoptotic properties that are critical for safeguarding B
cells from programmed cell death.

6 Atypical IκBs in Autoimmunity and
Autoinflammation

Given their importance in B and T cells, it is plausible that
atypical IκBs play pivotal roles in spontaneous autoimmunity
or experimental models of brain or gut autoimmunity and
autoinflammation.

6.1 Spontaneous Disease

Global Nfkbiz-deficient mice show 90% lethality during embryo-
genesis. 4–8-week-old mice develop lesions resembling atopic
dermatitis that affect the face and neck and are characterized
by strong infiltration of leukocytes [16, 113]. This phenotype
has been related to Sjögren’s syndrome and is associated with
enhanced apoptosis due to IκBζ deficiency in epithelial cells of
the lacrimal gland as well as the formation of Sjögren’s syndrome-
associated autoantibodies in the serum of Nfkbiz knockout mice
[28]. Interestingly, the salivary glands are also affected, since
female Nfkbiz-deficient mice show a reduced salivary flow rate,
which was associated with dysbiotic oral microbiota and focal
lymphocytic sialadenitis [114].

Global Nfkbid-deficient mice or mice deficient in both IκΒΝS and
c-Rel do not show any signs of autoimmunity or severe abnormal-
ities in the development of the immune system, despite having a
reduced Treg cell compartment [18]. The lack of autoimmunity
has been attributed to the impaired activation of conventional T-
cells, which may balance the loss of Treg cells [115]. Interestingly,

NOD mice express a hypermorphic Nfkbid allele which leads to
a reduction in negative selection of diabetogenic CD8+ cells and
may therefore contribute to autoimmune diabetes [116].

Global Bcl3 knockout mice also do not show signs of autoimmu-
nity, whereas the combined absence of Bcl3 and Nfkb2 results in
the loss of central tolerance and autoimmunity [117]. This pheno-
type manifests despite the presence of elevated numbers of Treg
cells in the context of Bcl-3 deficiency. Although Bcl3-deficient
mice do not suffer from spontaneous autoimmunity, they are
more susceptible to streptozotocin-induced type 1 diabetes [118].
Also, in the context of systemic lupus erythematosus (SLE)–like
disease, Bcl-3 was shown to play a protective role, since Bcl3-
deficient mice carrying the lprmutation developed a more severe
SLE–like inflammatory phenotype than control lprmice [119]. In
line with this observation, forced overexpression of Bcl-3 in T
cells impaired Treg cell development and function, resulting in
a spontaneous colitis phenotype [92]. Even though not related
to autoimmunity, Bcl3 deficiency also resulted in resistance to
skeletal muscle atrophy, a phenomenon that is phenotypically
mimicked in p105/p50 (Nfkb1) knockout mice [120].

6.2 Experimental Autoimmune
Encephalomyelitis

Resistance to EAE has been reported for Nfkbid and Nfkbiz
knockout mice; in both cases, the phenotype is T-cell-intrinsic
and can be explained by reduced Th17 differentiation [36, 84].
Surprisingly, both Bcl-3 deficiency in T cells and conditional
overexpression of Bcl-3 in CD4+ T cells protect mice from the
development of EAE [94, 95]. This protection is associated with a
strong reduction of immune cells infiltrating the central nervous
system of both models. Resistance to EAE can be explained by
the trans-differentiation of Th1 cells to nonpathogenic Th17 cells
in Bcl-3-deficient mice, whereas T cells overexpressing Bcl-3 fail
to differentiate into pathogenic Th17 cells [94, 95].

6.3 Gut-Related inflammation

Global Nfkbiz knockout mice exhibit greater weight loss after
dextran sulfate sodium (DSS) treatment and develop more severe
colitis as determined by histopathological analysis [121]. How-
ever, mice with epithelial-specific deletion of Nfkbiz (Vil1-Cre)
show similar levels of DSS-induced inflammation as control
mice, which suggests that the observed phenotype is driven by
immune rather than epithelial cells [122]. Consistently, it has
been shown that in patients with ulcerative colitis, the inflamed
gut is remodeled by pervasive clones. Many of these clones are
positively selected by the acquisition of mutations, often affecting
the NFKBIZ gene. Consequently, these mutations are involved
in the downregulation of IL-17 signaling, and proinflammatory
signaling [122–124]. In contrast, global Bcl3-knockout mice are
less susceptible than wild-type mice to DSS-induced colitis. The
absence of Bcl-3 was associated in one study with enhanced
epithelial cell turnover and regeneration, despite similar levels
of inflammation compared with wild-type counterparts [125],
whereas in another study, protection from DSS-induced colitis
was associated with elevated frequencies of RORγt-expressing
Treg cells [97]. Mice with a T-cell-specific overexpression of Bcl-3
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developmore severe colitis that can be attributed to defective Treg
cell development and function [92].

In a transfer-induced colitis model, Rag1–/– mice receiving Nfk-
bid knockout T cells developed a more severe form of colitis,
characterized by an increase in IFN-γ+ T cells and a complete
loss of IL-17A-producing cells [83]. In contrast, Rag1–/– mice that
received Bcl-3-deficient T cells were protected from transfer-
induced colitis. Upon transfer of naïve T cells into Rag1–/–
recipients, Bcl-3 deficiency resulted in a preferential differenti-
ation to nonpathogenic Th17 cells and a reduced differentiation
toward pathogenic Th1 cells and/or further trans-differentiation
of Th1 cells into nonpathogenic Th17 cells [94]. Additionally,
Bcl-3-deficient T cells may preferentially differentiate toward
RORγt+ Treg cells, with increased frequencies of both thymic and
microbiome-induced RORγt+ Treg cells potentially contributing
to protection against colitis [91, 97].

In summary, all these observations suggest an important con-
tribution of all three atypical IκBs, Bcl-3, IκBNS, and IκBζ, in
the differentiation and functionality of T and B cells. The
impact of these molecules is controlled and finetuned at the
transcriptional, posttranscriptional, and posttranslational levels
all together enabling the time- and context-dependent regulation
of adaptive immune cells. Thus, we propose that atypical IκBs
serve to enhance flexibility for the use of NF-κB-dependent gene
regulation and harmonize this functionality with other pathways
such as control of chromatin accessibility or cell metabolism
with—if disturbed—important consequences for autoimmune
disorders and intestinal inflammation.

7 Conclusion and Outlook

The investigation of atypical IκBs began with gene identification,
followed by characterization of the gene products, examination of
their regulation, and generation of mouse models with global or
conditional knockouts or overexpression. The various approaches
have generated numerous indications that implicate these factors
in the control of T and B cell activation, differentiation, and
survival and the development of autoimmune diseases. However,
despite the use of similar approaches and models, in many
cases, differing experimental setups preclude direct comparisons.
Consequently, fundamental questions remain unanswered. For
example, is the involvement of IκBNS, and IκBζ in the same
cell types and phenotypes and in the same molecular processes
explained by redundant or cooperative functions? Which target
genes are bound by individual atypical IκBs in a specific cell type?
Which NF-κB homo- or heterodimers are bound by these atypical
IκBs in cells? Throughwhich of the proposedmechanisms do they
regulate the expression of specific target genes?

In future research, it will be crucial to reassess specific functions
in parallel using conditional inactivation of floxed alleles with the
same Cre lines and to generate double knockout models that can
answer questions about redundancy. The studies of atypical IκBs
inT cells have focusedmore onThelper cells, therefore additional
studies will now be required to describe their role in cytotoxic T
cells during infections to provide information for amore balanced
view.We propose that biochemical and bioinformatic approaches
to determine genome-wide interactions will be essential for

advancing our understanding. Specifically, developing compre-
hensive and comparative genome-wide binding maps for Bcl-3,
IκBNS, and IκBζ in the same cell type, using Cut&Run or Cut&Tag
technologies would be an invaluable resource to uncover the
function of atypical IκBs, especially in lymphocytes and in the
setting of autoimmunity and autoinflammatory diseases.
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