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Abstract. Constructing joint representations from multimodal single-
cell datasets is crucial for understanding cellular heterogeneity and func-
tion. Traditional methods, such as factor analysis and kNN-based ap-
proaches, face computational limitations with scalability across large
datasets and multiple modalities. In this work, we demonstrate the product-
of-experts VAE-based model, which offers a flexible, scalable solution
for integrating multimodal data, allowing for the seamless mapping of
both unimodal and multimodal queries onto a reference atlas. We evalu-
ate how different strategies for combining modalities in the VAE frame-
work impact query-to-reference mapping across diverse datasets, includ-
ing CITE-seq and spatial metabolomics. Our benchmarks assess batch
effect correction, biological signal preservation, and imputation of miss-
ing modalities. We showcase our approach in a mosaic setting, integrat-
ing CITE-seq and multiome data to accurately map unimodal and mul-
timodal queries into the joint latent space. We extend this to spatial
data by integrating gene expression and metabolomics from paired Vi-
sium and MALDI-MSI slides, achieving a high correlation in metabo-
lite predictions from spatial gene expression. Our results demonstrate
that this VAE-based framework is scalable, robust, and easily applicable
across multiple modalities, providing a powerful tool for data imputation,
querying, and biological discovery.

Keywords: Single-cell · Multimodal integration · Multimodal query-to-
reference mapping · Imputation · VAE · Spatial transcriptomic ·
Metabolomics
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Integration and querying of multimodal single-cell data with PoE-VAE 1

1 Introduction

The rapid growth of single-cell technologies has dramatically expanded the avail-
ability of multimodal datasets [7]. New methods now enable simultaneous mea-
surement of paired modalities, such as gene expression with ATAC-seq (e.g., 10x
multiome [1]), gene expression with protein abundance (e.g., CITE-seq [33]), as
well as epigenomic [18] and spatial data [35]. As these technologies advance, the
challenge lies in efficiently leveraging these multimodal data in a scalable way.

The rise of multimodal datasets also necessitates foundation models to handle
multiple data types simultaneously [9]. This is important for single-cell atlases,
which already include millions of cells and will continue to grow [31,23]. These
atlases should allow for the mapping of new datasets—both unimodal and multi-
modal—onto existing references without requiring re-integration. Furthermore,
models must be capable of predicting missing modalities from these atlases, of-
fering a more comprehensive view of cellular states [9].

In this work, we introduce a scalable Product-of-Experts (PoE) Variational
Autoencoder (VAE)-based model called Multigrate for multimodal data inte-
gration (earlier version presented as a workshop paper at the 2021 ICML Work-
shop on Computational Biology [24]). Our model integrates datasets with vary-
ing numbers of modalities without requiring reimplementation, and it is easily
adaptable to new data types for rapid exploratory analysis. It supports the
construction of multimodal single-cell atlases, enables both unimodal and multi-
modal query-to-reference mapping, and can impute missing modalities. It allows
users to map unimodal data onto a multimodal reference and predict missing
modalities even when the reference consists entirely of paired multimodal data.

We show that PoE-based integration is more flexible than mixture-of-experts
(MoE) models in various query-to-reference settings. Our model outperforms
existing approaches on both paired and mosaic integration tasks and success-
fully predicts spatial metabolomics, measured via MALDI-MSI (matrix-assisted
laser desorption/ionization-mass spectrometry imaging) [35], from gene expres-
sion data on a query slide. These advancements make our model a robust tool
for building and querying multimodal single-cell atlases, offering both scalability
and flexibility for advancing biological research.

2 Methods

2.1 PoE-VAE model

Multigrate is a generative model based on conditional variational autoencoders
(cVAEs) [32] and the Product-of-Experts (PoE) approach to combine modalities
into a joint representation (Fig. 1A). The architecture consists of three main
parts: encoder modules, a PoE module and decoder modules. The input to the
model is multimodal single-cell data and the batch covariate (which can indicate,
e.g., different datasets, different technical batches or different technologies). The
input data is first fed into the encoders separately per modality, which output
parameters of unimodal marginal distributions. Then, a product-of-experts mod-
ule calculates the joint distribution parameters from the marginal distributions’

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2025. ; https://doi.org/10.1101/2022.03.16.484643doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484643
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A. Litinetskaya et al.

parameters. We sample from the joint distribution in the latent space and then
feed the latent embeddings to the decoders (concatenated with batch covariates).
Decoders learn the parameters of the distributions assumed for the input data
(e.g., negative binomial for RNA-seq counts).

Each encoder layer consists of a linear layer with dropout, layer normaliza-
tion and a non-linearity, which can be chosen by the user (with leaky ReLU as
default). The output of the encoders are the parameters of p(z|x1), . . . , p(z|xm),
respectively, which are assumed to be normal, and where x1, . . . , xm are unimodal
input matrices from m modalities. Hence, the output is the mean and variance
of each distribution: (µ1, σ1), . . . , (µm, σm), where µ1, σ1, . . . , µm, σm ∈ Rn×h, n
is the number of cells in the mini-batch and h is the number of latent dimen-
sions. Each parameter is learned independently for each latent dimension. The
decoders mirror the encoders’ architecture and consist of blocks of a linear layer
with dropout, layer normalization and non-linearity.

We employ the product-of-experts (PoE) [16,22] technique to determine the
parameters of the joint distribution p(z|x1, . . . , xm) from p(z|x1), . . . , p(z|xm)
for cell j and latent dimension p as µj,p = (µ0σ

−1
0 +

∑m
i=1 Miµ

j,p
i (σj,p

i )−1)(σ−1
0 +∑m

i=1 Mi(σ
j,p
i )−1)−1 and σj,p = (σ−1

0 +
∑m

i=1 Mi(σ
j,p
i )−1)−1, where µ0 and σ0

are the parameters of the prior N (µ0, σ0), which in our case is standard normal,
so µ0 = 0 and σ0 = 1, and Mi is 1 if modality i is present in this particular
batch and 0 otherwise. We obtained the closed form above because we assumed
all the distributions to be normal [22].

Another approach to calculating the joint representation is with mixture-
of-experts (MoE) [29,12]. As we work in the VAEs framework and are inter-
ested in the parameters of the joint distribution, we cannot use the more stan-
dard formulation of MoE that assumes that p(z|x1, . . . , xm) = 1

m

∑m
i=1 p(z|xi),

as the resulting distribution is no longer normal, which violates the assump-
tions on the ELBO loss of the standard VAE. Instead, we assume that the
joint latent random variable is an average of unimodal latent variables zjoint =

1∑m
i=1 Mi

∑m
i=1 Mizi, where zi are drawn independently from p(z|xi). This formu-

lation ensures that the joint distribution is again normal with the parameters
µj,p = 1∑m

i=1 Mi
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i=1 Miµ

j,p
i and σj,p = 1

(
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i=1 Mi)2

∑m
i=1 M

2
i σ

j,p
i . Then, we sam-

ple the joint representation zjoint ∼ p(z|x1, . . . , xm) independently for each latent
dimension using the reparametrization trick [19].

Next, we briefly discuss the maximum mean discrepancy (MMD) loss [14,26].
We employ MMD loss for two purposes: to ensure that the batches are well inte-
grated, i.e., that joint distributions are similar between batches, and that the uni-
modal representations follow similar distributions. We are interested in the latter
if we want to map unimodal queries onto the multimodal reference. MMD loss
measures the distance between two distributions P and Q [14] as MMD(P,Q) =
Ea,a′∼P [K(a, a′)] + Eb,b′∼Q[K(b, b′)] − 2Ea∼P,b∼Q[K(a, b)], where a, a′ and b, b′

are samples drawn from the distributions P and Q, respectively, and K is a ker-
nel function. In the implementation, we use multi-scale radial basis kernels [26]
defined as K(a, b, γ) = 1

s

∑s
i=1 K̃(a, b, γi), where K̃(a, b, γi) = exp(−γi||a− b||22)

is a Gaussian kernel and s, γ = (γ1, . . . , γs) are hyperparameters.
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Integration and querying of multimodal single-cell data with PoE-VAE 3

In our case, the MMD loss is calculated either as the sum over all pairs
of batch distributions or as the sum over all pairs of unimodal distributions
we want to align. In the first case, MMD loss is calculated between pairs of
joint representations z1joint, . . . , z

k
joint coming from different batches c1, . . . , ck as

Llatent
MMD =

∑k
i=1,j>i K(zijoint, z

j
joint, γ). In the second case, we calculate the loss

between unimodal marginal representations zi ∼ p(z|xi) and zj ∼ p(z|xj) for
all i, j ∈ {1, . . . ,m}, i ̸= j as Lmarginal

MMD =
∑m

i=1,j>i K(zi, zj , γ). The final MMD
loss is calculated as LMMD = λlatent

MMDLlatent
MMD+λmarginal

MMD Lmarginal
MMD , where λlatent

MMD and
λmarginal

MMD are hyperparameters.

2.2 Paired integration

We benchmarked five methods for paired integration (Multigrate, totalVI [13],
multiVI [4], MOFA+ [2] and Seurat v4 [15]) on two CITE-seq datasets (NeurIPS
2021 CITE-seq [27], Hao et al. [15]) and two multiome datasets (NeurIPS 2021
multiome [27], 10x multiome [1]). All methods perform multimodal integration
of paired data but employ different approaches. MOFA+ is a linear factor model
that decomposes the input data into two low-rank matrices, one representing
latent factors (i.e., cell embeddings) and the other representing factor effects.
WNN is a graph-based method that outputs a nearest-neighbor graph learned
from both modalities. totalVI/multiVI are deep-learning VAE-based methods
that model and then fit protein-/chromatin-specific distributions. The output of
both models is a latent representation in low-dimensional space. We performed
hyperparameter optimization for Multigrate and then set Multigrate’s default
parameters for the integration task based on the best-performing values across
all datasets (Suppl. Methods). Other methods were run with their default pa-
rameters. We utilize metrics from [28] (scIB metrics) to evaluate the quality of
the integration for all methods. These metrics assess how well the technical noise
was corrected and how well the biological signal was preserved in the integrated
data. Note that for Seurat v4, we obtained the supervised PCA (sPCA) [6] em-
beddings from the gene expression and the weighted-nearest neighbor graph to
calculate the embedding-based metrics.

2.3 Query-to-reference mapping of unimodal data onto the
multimodal reference and imputation of missing modalities

We benchmarked how well PoE and MoE approaches impute missing modalities
in two different settings (Suppl. Fig. 3A). In the first setting (we call it "query-in-
train"), the train set consists of paired data as well as unimodal (usually RNA-
seq) data. Then, the model is trained to integrate multimodal and unimodal
data in the latent space. To obtain the imputed measurements, the unimodal
data is fed through the model to reconstruct the missing modality. The second
setting ("no-query-in-train") does not require unimodal data to be present in
the reference. Instead, the model learns to align unimodal representations of the
paired data during training. Then, the query data is mapped onto the reference
with transfer learning, where only the new weights corresponding to the query
data are fine-tuned [25]. After fine-tuning, the query data is passed through the
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4 A. Litinetskaya et al.

network to reconstruct missing modalities as above. We use the NeurIPS 2021
CITE-seq dataset to predict the protein abundance for the query site and Vicari
et al. [35] dataset to predict MALDI-MSI measurements for the query slide. To
find the optimal hyperparameters for all the models, we performed a random
grid search (Suppl. Methods) and selected the best-performing model based on
integration (assessed with scIB metrics) and imputation (Pearson and Spearman
correlation).

2.4 Mosaic integration and query-to-reference mapping

Mosaic integration refers to the task of integrating datasets that have more
than two modalities in total and where some modalities are missing for some of
the datasets [3]. For instance, the combined (CITE-seq and multiome) NeurIPS
dataset is a mosaic dataset: protein measurements are only available for the
CITE-seq batches, ATAC measurements–only for multiome batches, but gene
expression is available for all (Fig. 2A).

We benchmarked Multigrate against GLUE [10], multiMAP [17] and scMo-
Mat [39] on this integration task. We subset the combined NeurIPS dataset to
Site1 and Site2 and integrated the two batches. We ran GLUE using paired and
unpaired models. GLUE offers two different models to train, one that considers
the pairedness of the data points and one that does not (Methods); we included
both models in our benchmark. Multigrate and scMoMaT output one embed-
ding per cell, while other methods output an embedding per cell per modality.
To be able to fairly compare the methods, we additionally computed a "joint"
representation for each cell as the average of the modality representations for
both of the GLUE models and MultiMAP (denoted "avrg.").

We mapped unimodal queries, namely scRNA-seq, snRNA-seq and scATAC-
seq, and multimodal queries, namely CITE-seq and multiome, on top of the
built CITE-multiome reference with Multigrate. We performed a hyperparame-
ter search to report the best-performing model (Suppl. Methods).

2.5 Datasets

NeurIPS 2021 NeurIPS datasets consist of bone marrow mononuclear cells
from healthy donors. The CITE-seq (paired scRNA-seq and surface protein
counts) dataset contains 90,261 cells from four sites and 12 batches. The multi-
ome (paired snRNA-seq and scATAC-seq) has 69249 cells from four sites and 13
batches. Both datasets were annotated by the authors and assigned in 30 and
22 cell types, respectively. ’Samplename’ was used as the batch covariate in the
paired and mosaic integration experiments. ’Site’ was used as the batch covariate
in the paired query-to-reference experiments as one of the sites was used as the
query.

10x multiome The data contains 10,000 healthy peripheral blood mononuclear
cells (PBMCs) from a multiome experiment. The data does not contain any
batches, and the cells are assigned to 11 cell types.

Hao et al. The CITE-seq data contains 149,926 PBMCs from eight donors
enrolled in an HIV vaccine trial, split into two batches. We used the second-level
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cell type annotations provided by the authors to calculate the scIB metrics. All
228 proteins were used in the analyses.
Vicari et al. This dataset contains slides from coronal sections of a mouse brain.
Each slide was processed with MALSI-MSI measuring metabolites (mass/charge)
and then processed with Visium to measure spatial transcriptomics (STR).
Lipids, neurotransmitters and metabolites were captured using different MALDI
matrices, allowing a more diverse description of metabolic processes in the mouse
brain but limiting our ability to train one model on all slides due to different fea-
ture sets for different slides. We subset the data to 2 slides where the norharmane
MALDI matrix was used to measure lipids, namely ’V11L12-038_A1’ (used as
the train set) and ’V11L12-038_B1’ (used as the query set). We used ’slide’
as the batch covariate to calculate the quality of the query mapping with scIB
metrics as one of the slides was used as the query. We used Leiden clusters [34]
calculated on gene expression as ’label’ for scIB metrics.
Data preprocessing For the paired integration experiments, we subset the gene
expression datasets with scanpy to the top 4000 highly variable genes, taking
the batch covariate into account for datasets with batch effects. If the methods
required normalized counts as input, we followed standard scanpy workflow and
applied log-normalization to the raw counts. Gene expression counts from the Vi-
sium experiment were preprocessed the same. We normalized the MALDI-MSI
measurements similarly to the gene expression counts and subset the feature
space to the top 500 highly variable lipids. We hypothesize that new preprocess-
ing methods will be developed for MALDI-MSI as this data does not contain raw
discrete counts but intensities. Protein counts were central-log-ratio normalized.
We selected the top 40,000 highly variable peaks for ATAC data with episcanpy
[11]. To normalize ATAC measurements, we used log-normalization following the
episcanpy and muon tutorials. In the mosaic experiments, we performed the
same preprocessing but subsetting to 20,000 highly variable peaks. In the paired
query-to-reference mapping experiments, we used 2,000 highly variable genes.

Even though Visium and MALDI-MSI experiments were run on the same
slide, we had to align the output of both technologies to obtain the matching
between spots to use this data as paired data. We performed the alignment with
Moscot [20] using the spatial coordinates as input. After alignment, we obtained
2681 matched spots for slide ’V11L12-038_A1’ and 2937 matched spots for slide
’V11L12-038_B1’.

3 Results

3.1 PoE-VAE model for multimodal single-cell data

Multigrate is a deep-learning model based on conditional variational autoen-
coders (cVAEs) and allows the integration of multimodal single-cell data, query
mapping on new datasets (unimodal and multimodal) and imputation of missing
modalities (Fig. 1A,B).

The autoencoder module is implemented as encoder-decoder pairs, where
each pair corresponds to a modality present in the data (Fig. 1A). The encoders
output the parameters of the corresponding unimodal marginal distribution, and
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Fig. 1. Multigrate enables multimodal integration, query mapping and im-
putation of missing modalities. (A) The Multigrate model accepts paired or par-
tially overlapping single-cell multimodal data as input and consists of pairs of encoders
and decoders, where each pair corresponds to a modality. Each encoder outputs a
unimodal representation for each cell, and the joint cell representation is calculated
from the unimodal representations with Product-of-Experts (PoE). The joint latent
representations are then fed into the decoders to reconstruct the input data. (B) The
key applications for Multigrate are the integration of paired and partially overlapping
data into reference atlases (top), mapping of query batches (middle), and prediction of
missing modalities (bottom).

the joint distribution in the latent space is modeled using the Product-of-Experts
(PoE) [16,22]. The PoE distribution preserves unique and shared information
from the unimodal marginal distributions [22]. The PoE approach also allows
Multigrate to integrate paired as well as partially overlapping data (i.e., where
the measurements are missing for one or more modalities in part of the data).
Additionally, categorical and continuous sample covariates, e.g., technical batch,
can be incorporated into the model to obtain the latent representation disentan-
gled from the specified covariates (Methods).

Equipped with scArches transfer-learning approach [25], Multigrate enables
query mapping of new datasets onto the multimodal references. The model can
accommodate both references trained only on multimodal data or both uni-
modal and multimodal data, making Multigrate an adaptable tool for multi-
modal single-cell analysis.

3.2 Multigrate integrates paired multimodal single-cell data

We benchmarked Multigrate’s performance on paired integration against three
state-of-the-art methods on two CITE-seq datasets (NeurIPS 2021 CITE-seq
[27], Hao et al. [15]) and two paired RNA-ATAC datasets (NeurIPS 2021 mul-
tiome [27], 10x public multiome [1]). We compared Multigrate to MOFA+ [2],
Seurat v4 WNN [15] on all four datasets, totalVI [13] on CITE-seq datasets and
multiVI [4] on the multiome datasets.
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To quantitatively evaluate the results, we calculated a subset of the scIB met-
rics [28] suitable for multimodal integration (Suppl. Methods). The metrics ad-
dress both the conservation of biological signal and batch effect removal. Overall,
Multigrate achieved the highest total score on both paired RNA-ATAC datasets
while scoring first and second on the CITE-seq datasets (Suppl. Fig. 3B). To-
talVI and Seurat WNN obtained high scores on all datasets, while the score for
MultiVI was dataset-dependent (Suppl. Fig. 1). MOFA+ failed to remove batch
effects present in the original data, resulting in a low batch correction score
(Suppl. Fig. 1, Suppl. Fig. 2).

Fig. 2. Multigrate enables mosaic integration and query mapping. (A) The
reference consists of a paired RNA-ATAC and a paired RNA-protein data. The queries
are multimodal RNA-ATAC and RNA-protein and unimodal RNA and ATAC data.
(B) UMAPs of the reference latent space obtained from the two top-performing mod-
els (Multigrate on the left and paired GLUE, averaged representation on the right),
colored by cell type and modality. (C) A table with integration metrics with all the
benchmarked methods, showing individual metric scores, averaged bio-conservation
and batch-correction scores, and overall scores. (D) A confusion matrix between true
and predicted (with a random forest model) cell types for the full query mapped with
Multigrate. (E) UMAPs of different queries mapped onto the trimodal reference with
Multigrate.

3.3 Multigrate maps unimodal data onto the multimodal reference
and imputes missing modalities

We benchmarked the performance of PoE-VAE model against the MoE-VAE
model on two datasets: NeurIPS 2021 CITE-seq data [27] and Vicari et al.
MALDI-MSI data [35]. We compared how each model performs in each of the
query-to-reference mapping scenarios, i.e., ’query-in-train’ and ’no-query-in-train’
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(see Methods and Suppl. Fig. 3A) and evaluated the mapping with scIB metrics.
We also assessed the missing modality prediction with Pearson and Spearman
correlation coefficients. Both models achieved very similar correlation on the
MALDI-MSI dataset, but the PoE model performed better for the CITE-seq
dataset and scored higher on scIB metrics in three out of 4 settings (Suppl.
Fig. 3C,D). We, therefore, proceed with PoE as the default for Multigrate and
suggest PoE to be the default approach for learning joint representations from
multimodal single-cell data.

3.4 Multigrate allows mosaic integration and unimodal and
multimodal query-to-reference mapping

To demonstrate Multigrate’s ability to perform mosaic integration, we integrated
Sites 1 and 2 from the NeurIPS 2021 CITE and Neurips 2021 multiome datasets
[27]. We compared Multigrate with GLUE [10], MultiMAP [17] and scMoMaT
[39] on this task. We calculated the scIB score on the latent space after per-
forming minimal cell type harmonization between the datasets. We included
two Adjusted Silhouette Width (ASW) scores for batch correction: Batch ASW
and Modality ASW. This dual-level evaluation of batch and modality mixing
allows us to measure the removal of technical biases at a finer scale of individual
batches and a coarser scale of modalities simultaneously, aligning with the ap-
proach outlined in [21]. For the methods that output one representation per cell
per modality, we calculated the metrics once on the original output and once on
the averaged representations (denoted "avrg." in Fig. 2C).

Multigrate scored first, and GLUE (paired model, avrg.) scored second on this
task. UMAPs of the learned representations are relatively similar for these two
methods (Fig. 2B). Multigrate obtained a slightly higher Modality ASW score
than GLUE, which is caused, for instance, by better integrated Natural Killer
(NK) cells across modalities (Fig. 2B,C). Overall, we noted that the models that
do take into account the information about which cells are paired (Multigrate,
GLUE paired) performed better than the methods that do not (Fig. 2C, Suppl.
Fig. 4).

When Multigrate’s reference model is trained on multimodal data, our model
enables unimodal and multimodal query mapping, where unimodal query modal-
ities can be any of the individual modalities from the multimodal reference. After
we build the atlas described above, we map unimodal (i.e., scRNA-seq, snRNA-
seq and scATAC-seq) and multimodal (CITE-seq and multiome) queries onto the
reference. We calculated scIB metrics using reference and query as two batches
to assess the mapping quality. Multigrate successfully mapped all the queries,
obtaining very similar scIB scores for all of them (Fig. 2E, Suppl. Fig. 5C).
Multimodal queries obtained the highest Batch ASW scores, indicating that the
mapping works best for the data modalities present in the reference. We also
trained a random forest classifier to transfer the cell types from the reference to
the queries and calculated the prediction accuracy. Label transfer worked best
for CITE-seq and scRNA data while mapping scATAC-seq seems to be most
challenging (Suppl. Fig. 5C,D).
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To assess the robustness of our model, we performed several experiments
benchmarking the model’s sensitivity towards the number of shared features,
the strength of the integration parameter, the size of the reference and the type
of the MMD loss (Suppl. Methods and Suppl. Fig. 6). When the number of shared
genes is more than 1,000, Multigrate can successfully build the reference, but the
quality of query mapping increases with the number of shared features. We also
observed that the quality of the query mapping slightly increases with bigger
references and that the ’marginal’ formulation of the MMD loss (see Methods)
performed best for unimodal queries.

3.5 Multigrate predicts the distribution of spatial metabolites for a
query slide

MALDI-MSI is a recent technology that allows users to obtain metabolomic
measurements with MSI, H&E (hematoxylin and eosin) staining and STR for the
same slide [35]. If we can reliably predict metabolomic intensities from STR, not
only can we save time and cost for such experiments but also obtain metabolomic
measurements for dozens of existing STR datasets [37,38].

First, we spatially aligned STR and MALDI-MSI slide (Fig. 3A). Then, we
matched the aligned spots and fed them as paired data to Multigrate. Our model
successfully integrated the paired train slide and the STR query slide, achieving
0.943 Pearson and 0.866 Spearman correlation on the top 500 highly variable
lipids. Multigrate learns a joint latent space for spots that captures structure
from both RNA and MSI modalities (Fig. 3B). Multigrate can successfully pre-
dict different spatial patterns of distribution of metabolites (Fig. 3C).

4 Discussion
In this work, we introduced Multigrate, a scalable deep-learning model de-
signed to integrate and query multimodal single-cell data. Our model utilized
the product-of-experts approach and supports the integration of paired, partially
overlapping, enabling query-to-reference mapping. One key advantage of Multi-
grate is its flexibility: new data modalities can be easily incorporated without
the need for new model implementations, allowing for rapid exploratory analysis
through a plug-and-play approach.

As a deep-learning method, Multigrate is subject to variability in downstream
results due to the stochastic nature of the training process. Additionally, opti-
mization of hyperparameters is necessary when new modalities or combinations
of modalities are introduced.

We note that new metrics tailored specifically for multimodal integration are
required to better assess the quality of the integrated latent space [30]. While
some papers on multimodal integration use scIB metrics [8,36], others provide
overviews of metrics explicitly introduced for the multimodal case [5]. Developing
and standardizing such metrics will be crucial for future research.

Future work could explore using Jeffreys divergence, a symmetric version of
KL divergence, to align distributions, as suggested in the MultiVI framework [4].
Additionally, as spatial metabolomics is still emerging, improvements in feature
selection and data processing will enhance the prediction of metabolites, further
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Fig. 3. Integration and prediction on the MALDI-MSI data. (A) Spatial repre-
sentation of the aligned spots from STR and MALDI-MSI. (B) UMAP of Multigrate’s
integrated latent space colored by Leiden clusters; UMAP of the RNA measurements
colored by Leiden clusters calculated on Multigrate’s latent space; spatial representa-
tion of MALDI-MSI spots colored by Leiden clusters calculated on Multigrate’s latent
space. (C) True and predicted values for two metabolomic features exhibiting different
spatial expression patterns.

expanding Multigrate’s capabilities for biological discovery. The implementation
of the model is available at https://github.com/theislab/multigrate. The code
necessary to reproduce the results is available at https://github.com/theislab/
multigrate_reproducibility.
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Supplementary Methods

PoE-VAE model

We assume there are several single-cell multimodal datasets. Single-cell datasets
are often confounded by the technical batch effect, but to simplify the notation,
we will treat each dataset as one technical batch. In this section, we will refer to
the experimental batches in an experiment or a dataset as "technical batches"
or "batch covariates". In contrast, the computational batches, i.e., mini-batches
on which machine-learning models are trained, are referred to as "batches" or
"training batches".

We denote single-cell datasets as {D1, . . . , Dk} with corresponding batch
covariate labels {c1, . . . , ck} and assume that the datasets consist of patients
{p1, . . . , pd} with corresponding disease labels {l1, . . . , ld}. We also assume that
the datasets are multimodal and have m modalities in total.

We will now focus on a single mini-batch and describe one forward pass
of the model. Each training batch consists of single-cell data {X1, . . . , Xm},
the technical batch label {c}. The dataset information c is represented as a
learnable embedding in a low-dimensional space. Hence, the batch input data
matrices {X1, . . . , Xm} correspond to multimodal data from one mini-batch from
m modalities, where some matrices may be all zeros if measurements for the
corresponding modality are missing. The number of rows in each matrix Xi

equals n, which is the number of cells in the mini-batch, and the number of
columns equals the number of features in the original input data of modality
i. Note that since the data is paired, the rows in different matrices within one
batch always correspond to the same cells.

Integration metrics

To assess the quality of the integration, we used several metrics from the scIB
package [28]. Note that scIB metrics were designed for unimodal integration, and
not all of them can be easily applied in the multimodal case; hence, we chose
the metrics that only require the integrated embedding space as input (and not,
e.g., the original unintegrated space). In the following, we briefly discuss two
metrics for batch removal and four for biological variance conservation. As in
scIB, the overall score was calculated as 0.4*batch correction + 0.6*biological
conservation. For more details on the metrics and the implementation, see [28].
Batch correction Graph connectivity measures how well cells from each cell
type are connected in a k-nearest neighbor graph. If the connectivity is high, the
batch effect was removed sufficiently. Average silhouette width (ASW) compares
average distances within a cluster with distances to other clusters. The resulting
score reflects how compact the clustering is. For ASW batch, we expect the batch
clusters to be well-mixed together for a high batch correction score.
Biological variance conservation Adjusted Rand Index (ARI) and Normal-
ized Mutual Information (NMI) evaluate how well the clustering is aligned with
the ground truth labels, i.e., cell type annotations. ASW label is a modification
of the ASW batch, where we expect the cell type clusters to be compact and
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separate from other cell type clusters for a high biological conservation score.
Isolated label ASW assesses how well rare cell types are distinguishable from the
rest of the data.

Benchmarks

Paired integration To find the optimal hyperparameters for Multigrate, we
performed a random grid search for the following parameters and values (with
a maximum number of 100 iterations):

Table 1. Hyperparameter grid search for Multigrate’s paired integration.

Hyperparameter Description Default Range
Batch size size of the training mini-batch 256 {128, 256, 512}
Learning rate learning rate parameter 1e-3 {1e− 6, 1e− 5, 1e− 4, 1e− 3}
KL coefficient weight of KL loss in the overall loss 1e-5 {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}
Latent dimension dimensionality of the latent space 16 {8, 16, 32}
Conditional dimension dimensionality of the covariate embedding space 16 {8, 16, 32}
Number of layers number of hidden layers in encoders and decoders 1 {0, 1, 2}
Activation function non-linearity in the network LeakyReLU {LeakyReLU, Tanh}

Integration for query-to-reference mapping and prediction of missing
modalities We performed a hyperparameter search for PoE and MoE models
for the following parameters and values:

Table 2. Hyperparameter search for Multigrate’s PoE vs MoE.

Hyperparameter Description Range
Learning rate learning rate parameter {1e− 4, 1e− 3}
KL coefficient weight of KL loss in the overall loss {1e− 5, 1e− 4}
Integration coefficient weight of integration MMD loss in the overall loss {1, 10, 100, 1e3, 1e4, 1e5}
Modality 1 loss weight for the modality 1 loss {0.1, 1, 10}
Modality 2 loss weight for the modality 2 loss {0.1, 1, 10}
MMD loss type of the MMD loss {’latent’, ’marginal’}

The rest of the parameters were set to the default values from Table 1.
Mosaic query-to-reference mapping Seurat v5 and Multigrate allow query-
to-reference mapping onto the atlases. For Seurat’s bridge integration, we first
build an RNA-seq-only reference atlas from scRNA-seq measurements from the
CITE-seq dataset and snRNA-seq measurements from the multiome dataset us-
ing data from Site 1 and Site 2. Then we used one donor (donor 7) from Site 3
as a CITE-seq bridge to map protein data from Site 4 (donor 9) on top of the
RNA-seq reference and the same donor from Site 3 as a multiome bridge to map
scATAC-seq data from Site 4 (donor 9) onto the same reference.
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For Seurat’s Bridge, the reference is a scRNA-seq-only reference (i.e., not
multimodal), so we could not directly compare the reference building with the
other methods for the mosaic reference building. Additionally, Bridge allows
visualization of the reference and query on a joint UMAP and label transfer but
does not explicitly provide low-dimensional embeddings in the joint reference-
query space. Hence, we did not calculate scIB metrics for Seurat Bridge, but
we included UMAPs of the reference and the mapped scATAC-seq query in the
supplementary figures for visual inspection (Suppl. Fig. 5A,B)

We performed a hyperparameter search for Multigrate for the following pa-
rameters and values:

Table 3. Hyperparameter search for Multigrate’s mosaic integration and query-to-
reference mapping.

Hyperparameter Description Default Range
KL coefficient weight of KL loss in the overall loss 1e-2 {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1}
Integration coefficient weight of integration MMD loss in the overall loss 4000 {1000, 2000, 3000, 4000, 5000, 6000}
MMD loss type of the MMD loss ’marginal’ {’latent’, ’marginal’}

MMD loss type refers to how we calculate the MMD loss: ’latent’ means
that Llatent

MMD = 1 and Lmarginal
MMD = 0; ’marginal’ means that Llatent

MMD = 0 and
Lmarginal

MMD = 1.
Other hyperparameters were set to their defaults from Table 1. To choose

the default parameters, we calculated the scIB metrics on the reference and the
mapped queries (with the batch covariate indicating whether the cell came from
the reference or the query) to assess the mapping quality.

To assess the accuracy of cell-type transfer, we trained random forest classi-
fiers for each of the query types with
sklearn.ensemble.RandomForestClassifier() specifying the parameter
class_weight as "balanced_subsample".
Robustness of the integration module To assess the robustness of the in-
tegration, we performed several experiments on the mosaic dataset. We tested
several parameters: integration coefficient (i.e., MMD coefficient λMMD), num-
ber of shared features between datasets from different technologies, selection of
integration covariates, reference/query ratio and different ways of calculating
the MMD loss. Unless the parameter was tested in the experiment, the default
parameters used throughout this benchmark were taken from Table 1, and the
rest is shown in Table 4.

Default architecture

The integration module consists of encoder-decoder pairs, and below we provide
the specifications of each pair. Mu and Sigma modules output the µ and σ
parameters of the unimodal distributions. Unless specified, the parameters have
their default values from PyTorch.
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Table 4. Parameters tested in the robustness benchmark.

Hyperparameter Description Default Range
Integration coefficient weight of the MMD loss in the overall loss 1e4 {1e-3, 1e-2, 1e-1, 1, 10, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7}
Number of shared features number of shared features between scRNA and snRNA 4000 {100, 500, 1000, 2000, 3000, 4000}
Integration covariate covariate used for the calculation of MMD modality {none, modality, donor}
Batch covariate covariate(s) used as batch covariate(s) modality & donor {modality, donor, modality & donor}
Reference/query split which sites were used as reference and which as query Sites 1-3/Site 4 {Sites 1-3/Site 4, Sites 1-2/Sites 3-4, Site 1/Sites 2-4}
MMD type how MMD loss was calculated marginal {marginal, latent}

Table 5.

Module Layer
Encoder Linear(n_input_features, 128)

LayerNorm
LeakyReLU
Dropout(0.2)
Linear(128, 16)
LayerNorm
LeakyReLU
Dropout(0.2)

Mu Linear(16, 16)
Sigma Linear(16, 16)
Decoder Linear(16 + 16*n_of_covariates, 128)

LayerNorm
LeakyReLU
Dropout(0.2)
Linear(128, n_input_features)
LayerNorm
LeakyReLU
Dropout(0.2)

Reconstruction decoder Linear(128, n_input_features) x k,
where k depends on the distribution of the input data

bug fix
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Supplementary Figure 1. Paired integration of multiome datasets. (A)
UMAPs of the latent spaces of the 10x multiome dataset, integrated with Multi-
grate, Seurat WNN, MOFA+ and multiVI, colored by cell type. (B) UMAPs of the
latent spaces of the NeurIPS 2021 multiome dataset, integrated with Multigrate, Seu-
rat WNN, MOFA+ and multiVI, colored by cell type and sample. (C) A table showing
scIB metric scores for 10x multiome dataset. (D) A table showing scIB metric scores
for NeurIPS 2021 multiome dataset.
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Supplementary Figure 2. Paired integration of CITE-seq datasets. (A)
UMAPs of the latent spaces of the Hao el at. dataset, integrated with Multigrate,
Seurat WNN, MOFA+ and totalVI, colored by cell type and batch. (B) UMAPs of
the latent spaces of the NeurIPS 2021 CITE-seq dataset, integrated with Multigrate,
Seurat WNN, MOFA+ and totalVI, colored by cell type and sample. (C) A table
showing scIB metric scores for Hao et al. CITE-seq dataset. (D) A table showing scIB
metric scores for NeurIPS 2021 CITE-seq dataset.
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Supplementary Figure 3. Overall scores for paired integration and query-
to-reference mapping (A) Paired integration was performed for CITE-seq (RNA-
protein) and multiome (RNA-ATAC) datasets, where observations, i.e., cells, are
matched. For the imputation experiments, the reference was either a paired dataset
with another RNA-only batch or only the paired dataset. In the former case, the miss-
ing modality was predicted directly after training for the RNA-only batch. In the latter
case, a new RNA-only batch was mapped onto the reference with scArches and then
the missing modality was predicted. (B) Overall scIB scores for 2 CITE-seq datasets
and 2 multiome datasets reported for Multigrate, Seurat WNN, MOFA+, totalVI for
CITE-seq data and multiVI for multiome data. (C) Spearman correlation between
true and predicted values for the missing modality imputation experiments. Values in
(C-E) are reported for NeurIPS 2021 CITE-seq and Vicari et al. datasets for PoE and
MoE models in both query-mapping settings. (D) Pearson correlation between true
and predicted values for the missing modality imputation experiments. (D) Overall
scIB score the missing modality imputation experiments. The metrics assess the qual-
ity of the query mapping.
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Supplementary Figure 4. Trimodal reference building. (a) UMAPs of the la-
tent spaces of NeurIPS 2021 multiome and NeurIPS 2021 CITE-seq datasets, inte-
grated with methods that output a representation per cell, i.e., Multigrate, scMoMaT,
GLUE paired (averaged representation), GLUE unpaired (averaged representation) and
MultiMAP (averaged representation), colored by cell type, sample and modality. (b)
UMAPs of the latent spaces of NeurIPS 2021 multiome and NeurIPS 2021 CITE-seq
datasets, integrated with methods that output a representation per cell per modality,
i.e., GLUE unpaired, GLUE paired and MultiMAP, colored by cell type, sample and
modality.
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Supplementary Figure 5. Trimodal query mapping. (a) UMAPs of the in-
tegrated scRNA-seq and snRNA-seq from NeurIPS 2021 CITE-seq and NeurIPS 2021
multiome, respectively, with Seurat, colored by sample, cell type and modality/dataset.
(b) UMAPs of the mapped ATAC query onto the RNA-seq reference with Bridge col-
ored by reference/query and ATAC query only colored by cell type. (c) A table with
scIB scores calculated for different queries mapped with Multigrate. (d) Confusion
matrices between true and predicted (with a random forest model) cell types for the
full query and individual queries mapped with Multigrate.
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Supplementary Figure 6. Robustness of trimodal integration with Multi-
grate. (a) A bar plot showing the effect of batch covariates and integration covariates
selection on the scIB overall integration score and query mapping scores. (b) A bar plot
showing the effect of MMD loss type on the scIB overall integration score and query
mapping scores. (c) A bar plot showing the effect of the reference and query sizes on
the scIB overall integration score and query mapping scores. (d) A line plot showing
the effect of the number of the common features in the scRNA/snRNA modality on
the scIB overall integration score and query mapping scores. (e) A line plot showing
the effect of the integration coefficient (i.e., the weight of the MMD loss) on the scIB
overall integration score and query mapping scores.
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