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ABSTRACT

Machine learning for molecules holds great potential for efficiently exploring the
vast chemical space and thus streamlining the drug discovery process by facilitating
the design of new therapeutic molecules. Deep generative models have shown
promising results for molecule generation, but the benefits of specific inductive
biases for learning distributions over small graphs are unclear. Our study aims to
investigate the impact of subgraph structures and vocabulary design on distribution
learning, using small drug molecules as a case study. To this end, we introduce
Subcover, a new subgraph-based fragmentation scheme, and evaluate it through
a two-step variational auto-encoder. Our results show that Subcover’s improved
identification of chemically meaningful subgraphs leads to a relative improvement
of the FCD score by 30%, outperforming previous methods. Our findings highlight
the potential of Subcover to enhance the performance and scalability of existing
methods, contributing to the advancement of drug discovery.

1 INTRODUCTION

Generative models for molecules offer a way to create new compounds with specific properties, which
can be useful in various fields, including drug discovery, material science, and chemistry (Bian &
Xie, 2021; Choudhary et al., 2022; Hetzel et al., 2022; Zhu et al., 2022; Du et al., 2022). The ability
to navigate and explore the vast chemical space more efficiently and generate novel molecules in an
automated fashion can save time and resources compared to traditional laboratory methods (Reymond
et al., 2012; Polishchuk et al., 2013). This way, generative models can help discover molecules with
unique properties that may not have been found otherwise. Additionally, generative models can assist
in optimising existing structures and provide candidate compounds with improved properties (Gao
et al., 2022).

To be useful for such applications, any model must be able to abstract molecules in a way that enables
it to generate new structures representative of the underlying distribution. A common approach is
to learn a continuous latent distribution that captures the discrete structure of molecules (Jin et al.,
2018; Liu et al., 2018; Kusner et al., 2017). This involves learning the present (i) patterns, such as
rings and functional groups, (ii) relationships, such as particular bond types, and (iii) structures, the
complex combinations of such geometries, and using that knowledge to generate new, diverse, and
yet meaningful molecular structures.

There are two predominant approaches for learning distributions of molecules and decoding latent
representations back to molecular graphs: atom-based and motif-based approaches (Yang et al., 2022).
Atom-based models utilise individual atoms as the building blocks of the molecular graph, allowing
them, in principle, to model any molecular structure and create highly diverse compounds. However,
these models struggle to generate complex and highly symmetric patterns, such as rings (Yang et al.,
2022). Motif-based models, on the other hand, extend the available building blocks with a vocabulary
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Principal Subgraph Mining 
cuts rings 

few single atoms

SubCover 
identifies rings 

few single atoms

Breaking Bridge Bonds 
identifies rings 

many single atoms

Figure 1: Example of a molecule’s decomposition according to different fragmentation schemes.
Subcover captures cyclic structures while using only few single atoms.

of common fragments or “motifs”, such as a carbon ring. While a fragment can refer to any molecular
substructure, motifs should represent complex geometries that affect molecular properties and provide
a chemically informed inductive bias for learning molecular distributions, see Figure 1.

Yet, the expressive power of motif-based models is determined by the size and quality of the motif
vocabulary, as well as the particular decomposition of molecules into motifs. We refer to the
combination of the two, vocabulary and decomposition, as a fragmentation scheme. Jin et al. (2018)
introduce a scheme that decomposes molecules exclusively into motifs, resulting in a vocabulary that
increases with the dataset size and requires the inclusion of many similar motifs. Other approaches
overcome the limitation of dataset-dependent vocabulary size by including single atoms in their
decomposition (Maziarz et al., 2022; Kong et al., 2022). These fragmentation schemes, however, fail
to provide chemically distinct motifs and low numbers of single atoms simultaneously. Note that
the latter is crucial, as a decomposition with too many single atoms hinders learning the molecules’
structure. We believe that a well-designed fragmentation scheme provides an inductive bias that
balances the ease of learning the molecules’ decompositions and their structural properties. As
a consequence, learning molecular distributions consists of two main challenges: Identifying the
building blocks of an individual compound, which are determined by the respective fragmentation
scheme, and learning the structure between those.

In this study, we propose Subcover, a new approach for fragmenting molecules, and examine its
benefits for learning distributions of small molecules. To this end, we rely on a two-step variational
auto-encoder (VAE), that extends the work by Kong et al. (2022), as this model type provides good
insights into the impact of the fragmentation schemes’ inductive biases.

Our main contributions can be summarised as follows:

• We investigate the impact of fragmentation methods on learning molecular graph distribu-
tions.

• We introduce Subcover, which consistently identifies large, chemically relevant motifs
within a molecular graph.

• We show that Subcover improves the learning of molecular graph distributions.

2 INDUCTIVE BIASES THROUGH MOTIF VOCABULARIES

Inductive biases are essential for distribution learning in high-dimensional discrete spaces as they help
to reduce their combinatorial complexity. In the case of molecules, identifying motifs—frequently
occurring patterns across a molecule dataset—has proven to be a strong prior facilitating the learning
of graph distributions. In the following, we introduce the formalities required for building motif
vocabularies. Based on this, we present two representative fragmentation schemes, Principled
Subgraph Mining (PSM) (Kong et al., 2022) and Breaking Bridge Bonds (BBB) (Maziarz et al.,
2022), and highlight their benefits and drawbacks. On this basis, we introduce a new fragmentation
scheme: Subcover.

Preliminaries A molecular graph G can be described by the tuple {A,B}, where A is the multiset
of atoms of size a = |A| and B ∈ {0, 1}a×a×3 the bonds tensor, indicating both the existence and
type of a bond: single-, double-, or triple-bond. Atoms and larger subgraphs can occur multiple times

2



Published at the MLDD workshop, ICLR 2023

Figure 2: Different fragmentation schemes lead to different decomposition sizes |F|. BBB leads to
larger decompositions due to the increased number of single atoms S, while PSM mostly decomposes
into small motifs. Subcover combines the strength of the two: large motifs and the lowest cardinality
among fragmentation schemes.

within one molecule and are consequently represented by a multiset. The goal of graph generation is
to learn the distribution P(G) over the set of graphs G = {Gi} and subsequently sample new graphs
Gnew ∼ P(G) (Zhu et al., 2022).

For any given molecule i, fragmentation schemes partition the multiset of atoms Ai and their
connectivity structure B into a multiset of fragments Fi whose union of elements f corresponds
again to A, A =

⋃
f∈F f . Here, a fragment f can be any substructure of Gi, i.e. a single atom s

or the elements of a connected subgraph that includes more than one atom. Together with a motif
vocabulary V , such a decomposition F can further be represented as F =M∪S, whereM and S
correspond to the multisets of motifs m—a motif m has to include more than one atom—and single
atoms s, respectively. Note that we refer to those fragments f that are contained in the vocabulary V
as motifs m := f ∈ V . Further, the size of the vocab |V|= k is often variable, and the decision about
which fragments fi to include is usually based on a heuristic, for example, the frequency of fi in the
dataset. Some fragmentation schemes achieve decompositions of Ai that are completely described by
motifs, Si = ∅ (Jin et al., 2018), while others use a combination of the two,Mi 6= ∅ and Si 6= ∅. We
associate a connectivity structure with each motif m, which allows to decompose the bond tensor
B of a molecule Gi into B = BMi

∪BMi
, where BMi

defines all intra-motif bonds and BMi
all

other bonds between motifs and single atoms.

On the spectrum of fragmentation schemes, we choose two representative approaches to investigate
the inductive bias they provide. While Kong et al. (2022) identify motifs in a bottom-up manner
by starting from single atoms and building up larger structures through merging, the approach by
Maziarz et al. (2022) is top-down and leaves all cyclic structures intact. Both methods decompose
molecules G into single atoms S and motifsM.

Principled Subgraph Mining Kong et al. (2022) initialise the vocabulary generation process from
the multiset of single atoms. Using these as initial fragments, the vocabulary V is built up one motif
at a time. During each generation step, the current vocabulary is used to decompose all molecules
into fragments. The resulting fragments are combined with their neighbours to form new candidate
motifs and, among those, the most frequent one is added as a motif to the vocabulary. This way, the
vocabulary V also includes small motifs, such as a CC chain, which reduces the number of single
atoms Si within a molecule’s fragmentation. To identify theM and S multisets of a molecule given a
fixed motif vocabulary, the same steps of iterative merging of adjacent fragments must be performed.
Starting from single atoms, two fragments are merged only if the resulting fragment is part of the
vocabulary V and its frequency is the highest among all merged fragments. This process is repeated
until no merged fragment is included in the vocabulary anymore.

Breaking Bridge Bonds Unlike Principled Subgraph Mining, which is a data-driven approach, the
idea of breaking bridge bonds (Jin et al., 2020; Maziarz et al., 2022) relies on chemical knowledge.
During vocabulary construction, a molecule is fragmented by breaking all acyclic bonds adjacent
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Vocabulary 
Principal Subgraph Mining 
Breaking Bridge Bonds/Subcover 
Ringstructure 
False 
True

Figure 3: First three principal components for motif fingerprints for PSM and BBB / Subcover
vocabularies of size k = 128. PSM identifies fewer rings but many chain-like structures instead.
These show little variety in the first three principle components. The size of the markers indicates the
frequency of a particular motif, for the BBB / Subcover vocabulary we show the counts of Subcover.
In total, the vocabulary of PSM consists of 36% ring-based motifs, while BBB / Subcover has 55%
of ring-like structures.

to cyclic structures. For example, the connecting bond between two ring structures will be cut, and
likewise, any dangling atom attached to a ring. The final set of k motifs is selected according to
their frequency after applying this fragmentation to all molecules in the dataset. Following Maziarz
et al. (2022), only motifs with a size of at least three atoms are considered. Once the vocabulary V is
fixed, the fragmentation procedure is applied to a graph Gi and those fragments included in V are
represented as motifsMi. The remaining fragments are represented as single atoms Si.
Both methods, PSM and BBB, reduce the number of single atoms S through the construction of V ,
which by itself provides a good inductive bias as it decreases the degrees of freedom required to
represent molecules. Yet, simply reducing |S| is insufficient. While the bottom-up PSM approach

Algorithm 1 Subcover

Require: Molecule G, vocabulary V
{fi}ji=0 ← BreakBridgeBonds(G)
F ← {}
for i ∈ {0, . . . , j} do

if fi ∈ V then
F ← F ∪ fi

else
F ← F ∪ FindMInF(fi, {})

end if
end for
procedure FINDMINF(f,F)

m∗ ← None
for m in V do

if m ⊂ f and |m|≥ |m∗| then
if and c(m) > c(m∗) then

m∗ ← m
end if

end if
end for
if m∗ is not None then

f ← DeleteMotifFromFrag(f,m∗)
F ← F ∪m∗
F ← FindMInF(f, F)

end if
return F

end procedure

leads to many molecule decompositions that
are completely described by motifs, Gi =
Mi and Si = ∅, the identified motifs often
contain few atoms, cf. Figure 2. In addi-
tion, Figure 3 shows the qualitative differ-
ence between identified motifs revealing an
additional drawback of PSM: The motifs in
a PSM vocabulary are often chain-like and
chemically indistinct. This implies that rings
are cut and defining properties of Gi are
not reflected by its motif set Mi. In con-
trast, the top-down BBB approach focuses
on leaving cyclic structures intact and con-
siders everything else, i.e. chain-like struc-
tures, as “remainder” fragments. While this
maintains chemical integrity, it also leads to
many fragments f /∈ V being represented as
single atoms. This happens even though a
motif m ∈ V exists which is contained in f,
m ⊂ f.

Subcover To combine the strengths of both
approaches, we use the same fragmentation
as BBB to construct the motif vocabulary
V . For the decomposition, however, we go
beyond the initial comparison of fragments f
and motifs m ∈ V . If f /∈ V , we recursively
search for matching subgraphs m ⊂ f. By
identifying substructures, we aim to reduce
the number of single atoms as PSM does. Should multiple motifs mj be contained in the fragment f,
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which is often the case, the largest and most frequent motif m∗ is selected and the fragment further
decomposed, f = m∗ ∪ f̂. This process is repeated with f̂ until no more motifs can be identified and
the resulting decomposition f =Mf ∪ Sf is added to the multisetsMi and Si of the molecule Gi.
This reduces the number of single atoms Si significantly and achieves a more concise, yet chemically
meaningful fragmentation, see Figure 2. Note that our way of subgraph identification in Subcover
allows mapping structures that are identical up to a charge. While we are not explicitly decoding ions
with our model yet, this facilitates the capturing of the molecule’s geometry and topology, even for
small vocabularies. A formalisation of Subcover is presented in Algorithm 1.

3 TWO-STEP VAE

Fully autoregressive approaches are common for learning distributions of molecules. Yet, the learnt
distribution can be difficult to interpret and evaluate independently of the applied corrections and
postprocessing. We introduce a two-step VAE approach, which first predicts the multiset of atoms and
motifs in a recurrent fashion and subsequently infers their bonds. We build on top of the architecture
of (Kong et al., 2022) and equip our model with multiplicity and motif features to fully harness
the provided vocabulary. Our generative model follows a variational encoder-decoder architecture
(Kingma & Welling, 2013). In doing so, we train an encoder to map the structural graph Gi of
a molecule i to a d-dimensional latent representation zi. In a subsequent step, the molecule is
reconstructed by applying a two-step decoder, that separates the reconstruction of molecule fragments
and structure.

Encoder The encoder learns the variational posterior qθ(zi | Gi) that defines the latent represen-
tation of each molecule i through zi|Gi ∼ N

(
µθ(Gi), σ

2
θ(Gi)I

)
. We parameterise the mean and

variance of the approximate posterior as:(
µθ(Gi), σ

2
θ(Gi)

)
= hθ

(
[gθ(Xi,Ei), fi]

)
, (1)

where gθ(·, ·) is a multi-layer graph neural network (GNN), whose message-passing operation acts
on the original molecular graph with the node and edge features Xi and Ei, respectively, and returns
a graph representation. The initial node and edge features are learned. Each node v ∈ V in Gi
is represented by a node feature vector xv;i ∈ Xi, that is given by a concatenation of learned
embeddings of the corresponding motif and atom identifiers and multiplicity information, as well as
its motif fingerprint information. The connectivity of the molecular graph is encoded by a learned
edge embedding that indicates the bond type. For gθ(·, ·), we leverage a multi-layer transformer
convolution backbone (Shi et al., 2021) and attain the graph representation of each molecule by
a learned aggregation of the transformed node features, see A.1 for more details. This graph
representation is concatenated with a learned embedding of a molecule’s fingerprint information fi
before it is mapped to the mean and variance by a multilayer perceptron (MLP) hθ.

Decoder The decoder is trained to reconstruct the molecule given the latent representation zi
sampled from the approximate posterior qθ. In a first step, we autoregressively predict the multiset
of a molecule’s fragments. We leverage a simple one-layer recurrent neural network (RNN) for the
multiset prediction by casting it as a fragment classification task. Formally, the RNN is trained to
minimise the negative log-likelihood:

LM = −
N∑
j=1

logPφ(fj | fj−1, . . . , f0, z), (2)

where Pφ(fj |fj−1, · · · , f0, z) is trained to decode the sequence of molecule fragments fj starting
from a start token f0 and ending with a stop token.

In a second step, we use the multiset of molecule fragments Fi and latent representation zi to infer
the structure of the molecule, i.e. the existence of bonds and their types. To predict the molecule’s
structure, we train two MLPs to parameterise P(bu,v | z,xu,xv), where the node features are
attained by a multi-layer GNN on the graph of atoms, see A.2 for more details. This graph is fully
connected except for the known intra-motif connections. We leverage the node embeddings from
the encoder and contextualise them further with zi and the multiset of molecule fragments, which
is only possible due to our canonical representation of molecules. Finally, we concatenate the node
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Figure 4: FCD achieved with different fragmentation schemes over increasing vocabulary size with
cycle breaking postprocessing (left) and only valency correction (right).

representations across all GNN layers and predict the adjacencies and bond types to minimise the
log-likelihood:

LS = −
∑
v,u∈V
u 6=v

logP(bu,v | z,xu,xv).

The VAE is trained to minimise the following loss function:

L = β(λSLS + λMLM + λV LV ) + (1− β)DKL, (3)

where DKL is the KL-Divergence between the variational posterior qθ and a standard normal prior,
and LV is a valency regularization loss on the generated molecule.

In addition to incorporating a valency regularisation into the training process, we employ two forms
of post-processing during inference. Specifically, we perform a valency correction that enforces
adherence to the valid valency of each atom by restricting the number of bonds accordingly. Further
correction can be done via a “Cycle Breaking” procedure, which limits cyclic structures outside of
motifs to a size of either five or six (Kong et al., 2022). When applying this procedure, we allow no
more than two shared atoms between such cycles. The decision on which bonds to include is based
on the model’s confidence about its prediction.

4 EXPERIMENTS

Data We conduct all experiments on the ZINC molecule dataset (Kusner et al., 2017), which
contains a total of 249,457 molecules from the ZINC database (Gómez-Bombarelli et al., 2018).
The dataset is randomly split into training, validation, and test sets with a ratio of 0.8 / 0.1/ 0.1. All
vocabularies are extracted from the entire dataset and the specified vocabulary size does not include
single atoms. We train all models for 20 epochs and the hyperparameters used for the baselines are
taken from their respective publications. Meanwhile, the hyperparameters for our model are described
in Appendix B. For every model-vocabulary pair, we report the mean and standard deviation over
three random model initialisations. Results for sampling new molecules from the learnt distribution
are reported for a sample set of 10,000 molecules.

Comparison of Fragmentation Schemes The Fréchet Chemnet Distance (FCD) (Preuer et al.,
2018) is a metric to determine the distance between two sets of molecular graphs. It takes into
account both chemical and biological information, as well as the diversity within each set. The
comparison of the fragmentation schemes Subcover (SC), Principled Subgraph Mining (PSM), and
Breaking Bridge Bonds (BBB), combined with heavy postprocessing (Valency & Cycle Break), as
well as postprocessing only to ensure chemical validity of bonds (Valency), is depicted in Figure 4.
To generate new molecules, we sample latent embeddings zi ∼ N

(
0, 1) and apply our decoder.

Experiments beyond sampling from a standard Gaussian distribution can be found in Appendix D,
where Subcover achieves FCD scores over 0.35. Our results show that SC outperforms the other
fragmentation methods. Although the motifs found by BBB may have chemical significance, the
high rate of single atoms hinders learning of the distribution over the multiset and, consequently, the
molecular structure. The fact that PSM achieves a worse FCD score than SC, even though its single
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Table 1: Performance metrics for several graph generation models. Best results overall are bold and
underlined for two-step approaches. Vocabulary sizes are 256, except for JTVAE, which has a fixed
vocabulary size of ∼ 780. Results for varying vocabulary size are in Appendix C.

FCD ↑ KL ↑ Int. Div ↑ SA ↓ QED ↑
JT-VAE 0.70 ± 0.006 0.95 ± 0.004 0.86 ± 0.001 0.89 ± 0.006 0.07 ± 0.003
MoLer 0.80 ± 0.016 0.98 ± 0.002 0.87 ± 0.001 0.56 ± 0.032 0.10 ± 0.002

PS-VAE (CB) 0.23 ± 0.001 0.83 ± 0.001 0.89 ± 0.001 1.86 ± 0.001 0.14 ± 0.001
PS-VAE (V) 0.08 ± 0.001 0.67 ± 0.001 0.89 ± 0.001 2.85 ± 0.010 0.17 ± 0.002
Ours (CB) 0.30 ± 0.009 0.82 ± 0.010 0.86 ± 0.002 0.52 ± 0.029 0.04 ± 0.009
Ours (V) 0.15 ± 0.004 0.70 ± 0.007 0.88 ± 0.002 1.94 ± 0.028 0.09 ± 0.007

atom rate is the lowest across approaches, indicates that only reducing the number of single atoms
in a molecule fragmentation is not sufficient. This is further supported by the FCD scores that the
fragmentation schemes achieve without major postprocessing. These findings also suggest that due to
the indistinctiveness of the PSM motifs, they are difficult to connect correctly. The fact that PSM
can only achieve reasonable FCD scores with cycle correction is likely a result of breaking apart
rings, as the model must then learn to create rings and does so excessively during inference. This
finding is further substantiated by comparing the frequency of rings of different sizes per molecule
as reported in Appendix E. As the vocabulary size increases, both Subcover and PSM stagnate in
performance. Overall, the results indicate superior performance of Subcover in the small-vocabulary
settings compared to all fragmentation scheme baselines.

Molecular Distribution Learning Finally, to contextualise the results of this study, we provide a
comparison of our model with the best-performing fragmentation scheme, Subcover, to three state-of-
the-art molecule generation methods: Junction Tree VAE (JTVAE) (Jin et al., 2018), MoLer Maziarz
et al. (2022) and PS-VAE Kong et al. (2022). We defer an overview of related work for molecule
generation methods to Appendix F. As per (Brown et al., 2019; Polykovskiy et al., 2020), the Fréchet
Chemnet Distance, the Kullback-Leibler Divergence, and Internal Diversity are normalised to a scale
of [0, 1], with higher values indicating superior performance. Besides FCD, the KL metric measures
the Kullback-Leibler Divergence of two sets of properties with respect to physiochemical properties
and the Internal Diversity specifies distances of molecules within the generated set based on Tanimoto
similarity (Benhenda, 2017). Additionally, we report results on the quantitative estimate of drug-
likeness (QED) (Bickerton et al., 2012) as well as the synthetic accessability of drug-like molecules
(SA) (Ertl & Schuffenhauer, 2009). Our model trained with Subcover shows improved results on the
FCD metric compared to the two-step PS-VAE approach, especially without correction. All evaluated
models perform consistent w.r.t. diversity of the generated molecules. Specifically, both MoLer and
our method generate synthetically accessible molecules, emphasising the significance of chemical
rules for molecule fragmentation and vocabulary construction. Among the autoregressive models,
MoLer demonstrates strong performance across all metrics. The findings of this study regarding
the impact of inductive biases are also relevant to autoregressive models. Although they possess a
more effective approach to handling individual atoms, they, too, can benefit from a consistent and
meaningful fragmentation scheme.

5 CONCLUSION

We present Subcover, a novel fragmentation scheme that combines the benefits of both data-driven
and rule-based techniques to provide an effective inductive bias for learning molecular distributions.
Subcover outperforms existing fragmentation methods by producing more meaningful motifs and
utilising the vocabulary more efficiently, thus reducing single atoms. These attributes are shown to
be crucial for accurately learning distributions over molecular graphs. Subcover has the potential
to improve the performance of various other graph generation models, including autoregressive
models. We believe that the findings of this work will not only be useful for the advancement
of molecular graph generation but also have broader implications for related fields, such as drug
discovery, materials science, and computational biology.
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A METHOD DETAILS

A.1 ENCODER GNN

Our encoder GNN leverages a transformer convolution backbone and computes the transformed node
features at layer k as follows:

x
(k+1)
i = W1x

(k)
i +

∑
j∈N (i)

α
(k)
i,j

(
W2x

(k)
j + W6eij

)
, (4)

where Wn are learned matrices and the attention coefficients α(k)
i,j are computed via multi-head dot

product attention:

α
(k)
i,j = softmax

(
(W3x

(k)
i )>(W4x

(k)
j + W6eij)√

h

)
. (5)

To attain graph features gi ∈ R(H+1)·denc we aggregate the transformed node features by applying a
sum aggregation and a learned weighted aggregation:

gi = [
∑
v∈Vi

x(k)
v ;

∑
v∈Vi

MLPθ1(x
(k)
1 )MLPσ1

(x
(k)
1 ); . . . ;

∑
v∈Vi

MLPθH (x(k)
v )MLPσH

(x(k)
v )], (6)

where MLPθh and MLPσh
are two-layer MLPs of feature head h.

A.2 DECODER GNN

The decoder GNN is based on an MLP-based edgeweighter for which we employ residual connection
between the layers:

m
(l+1)
i =

∑
j∈N (i)

MLPφedge
l

(z,h
(l)
i ) ·Θ · h(l)

j

h
(l+1)
i = MLPφnode

l
(m

(l+1)
i ,h

(l)
i ),

(7)

where Θ is a weight matrix, and MLPφedge
l

and MLPφnode
l

are a two- and three-layer MLP, respec-
tively.

B MODEL HYPERPARAMETERS

Table 2 details all model and training hyperparameters used to obtain the results for our two-step
VAE. These parameters are fixed for training across vocabulary sizes and types.

C BASELINE RESULTS OVER VARYING VOCABULARY SIZES

In addition to Table 1, we expand on these result by reporting the Fréchet Chemnet Distance, the
Kullback-Leibler divergence, the Internal Diversity I, the synthetic accessability (SA) as well as the
druglikeness (QED) across vocabulary sizes in Table 3. For calculation of these metrics we rely on
the open-source implementations RDKit Landrum (2010), the GuacaMol benchmark (Brown et al.,
2019) and the MOSES benchmark (Polykovskiy et al., 2020).
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Table 2: Hyperparameters for our two-step VAE.

Optimizer Adam
Learning rate 0.000874

Learning rate decay 0.99
Batch size 64

Gradient clipping magnitude 3

Loss weights λS , λM , λv 1
β initalization 0
β maximum 0.2

β annealing start 0
β annealing frequency 100
β annealing step size 1.4347e-05

Valency penalty initalization 0
Valency penalty maximum 0.001

Valency penalty annealing start 0
Valency penalty annealing frequency 1000
Valency penalty annealing step size 0.00025

Encoder layers 4
Decoder layers 1

Latent representation size 128
Atom identity embedding size 50
Motif identity embedding size 75

Atom multiplicity embedding size 30
Motif multiplicity embedding size 30

Global graph feature size 115
Motif feature size 100

Edge decoder connection weight 0.3

Table 3: Results for learning distributions over molecular graphs across several graph generation
models and increasing vocabulary size.

k FCD KL Int. Div. SA QED
JTVAE 780 0.70 ± 0.01 0.95 ± 0.01 0.86 ± 0.01 0.89 ± 0.01 0.07 ± 0.01

Moler 32 0.71 ± 0.01 0.98 ± 0.01 0.87 ± 0.01 0.49 ± 0.03 0.09 ± 0.00
64 0.74 ± 0.01 0.99 ± 0.01 0.87 ± 0.01 0.52 ± 0.03 0.09 ± 0.01

128 0.76 ± 0.01 0.98 ± 0.01 0.87 ± 0.01 0.52 ± 0.01 0.09 ± 0.01
256 0.79 ± 0.02 0.98 ± 0.01 0.87 ± 0.01 0.56 ± 0.03 0.10 ± 0.01
512 0.82 ± 0.01 0.98 ± 0.01 0.87 ± 0.01 0.59 ± 0.04 0.09 ± 0.01

PS-VAE 32 0.09 ± 0.01 0.78 ± 0.01 0.90 ± 0.01 2.34 ± 0.00 0.16 ± 0.00
64 0.14 ± 0.01 0.81 ± 0.01 0.90 ± 0.01 2.08 ± 0.02 0.16 ± 0.01

128 0.18 ± 0.01 0.81 ± 0.01 0.89 ± 0.01 2.02 ± 0.00 0.15 ± 0.01
256 0.23 ± 0.01 0.83 ± 0.01 0.89 ± 0.01 1.88 ± 0.01 0.14 ± 0.01
512 0.30 ± 0.01 0.84 ± 0.01 0.89 ± 0.01 1.74 ± 0.00 0.13 ± 0.01

Ours 32 0.16 ± 0.01 0.73 ± 0.03 0.86 ± 0.01 0.93 ± 0.07 0.05 ± 0.02
64 0.23 ± 0.01 0.79 ± 0.01 0.87 ± 0.01 0.81 ± 0.02 0.04 ± 0.01

128 0.26 ± 0.01 0.82 ± 0.03 0.86 ± 0.01 0.69 ± 0.04 0.04 ± 0.01
256 0.30 ± 0.01 0.82 ± 0.01 0.86 ± 0.01 0.52 ± 0.03 0.04 ± 0.01
512 0.28 ± 0.03 0.83 ± 0.01 0.87 ± 0.01 0.48 ± 0.01 0.04 ± 0.01

D SAMPLING FROM THE TRAINING LATENT DISTRIBUTION

While a Variational Autoencoder is trained to structure its latent space according to zi ∼ N
(
0, 1),

the latent space may be structured slightly differently even for a fully trained model. Specifically, a
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Figure 5: FCD achieved with different fragmentation schemes over increasing vocabulary size when
sampling from a modified latent distribution.
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Figure 6: Frequency of ring structures with different ring sizes per molecule for samples from SC,
PSM, and BBB compared to the frequencies observed in the training data.

VAE faces a tradeoff between reconstruction performance on the training data and the KL Divergence
between the approximate posterior and the prior distribution. This tradeoff is controlled via the β
parameter during training. In a further evaluation, we modify the sampling procedure of our method
slightly by first encoding D = 10.000 molecules, calculating their mean and standard deviation and
then sampling new molecules according to:

z ∼
( 1
D

D∑
j=0

µθ(Gj),
1

D

D∑
j=0

σ2
θ(Gj)

)
(8)

The results of this evaluation are shown in Figure 5. The findings reveal that with a modified
distribution, PSM and BBB exhibit comparable FCD results. The results indicate that PSM does not
gain significant improvements in FCD scores as a result of modifying the latent distribution compared
to Figure 4. BBB on the other hand improves significantly over its performance on a standard Gaussian
distribution, suggesting that the latent representations derived from BBB fragmentation make the
concise structuring of the latent space more challenging. In this context, Subcover demonstrates FCD
scores exceeding 0.35 with a moderately-sized vocabulary.

E FREQUENCY OF RING STRUCTURES

As an additional experiment, we evaluated the frequency of ring structures per sampled molecules
from SC, PSM and BBB compared to the training data and report the results in Figure 6. While all
three methods tend to produce more rings per molecule than what was present in the training data, SC
shows the closest overall match to the distribution. BBB produces slightly fewer rings for the higher
ring sizes but generates more small rings. On the other hand, PSM produces an excessive number of
rings per molecule, with some extreme cases of up to 20 rings of size four.

F RELATED WORK

Methods for molecule generation differ primarily in the chosen molecular representation. While
first attempts characterise molecules through their SMILES or SELFIES strings Gómez-Bombarelli
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et al. (2018); Nigam et al. (2019); Kusner et al. (2017), focus soon shifted towards a 2D graph
representation of molecules due to desirable properties such as permutation invariance. In a parallel
line of work, 3D graph generation is concerned with predicting the geometry of a molecule from its
2D representation, called conformer. We refer the reader to (Du et al., 2022) for an overview of 1D,
2D, and 3D generation methods.

Yang et al. (2022) separate the 2D molecule generation literature into three subcate-
gories: all-at-once, node-based and fragment-based. Many methods, both node-based
(Khemchandani et al., 2020; Shi et al., 2020; Popova et al., 2019; Mercado et al., 2021; Luo et al.,
2021; Liu et al., 2018; Li et al., 2018; Assouel et al., 2018; Ahn et al., 2021) and fragment-based
(Yu & Gao, 2022; You et al., 2019; Yang et al., 2021; Lim et al., 2020; Kajino, 2019; Jin et al.,
2020; Bengio et al., 2021), rely on the autoregressive decoding of the molecular representation,
either by attaching single atoms or larger fragments, such as motifs or scaffolds. In Table 3, we
compare to MoLer, a molecular graph generation model trained to extend structural scaffolds using
the BBB fragmentation scheme Maziarz et al. (2022). Additionally, we report results for Junction
Tree Variational Autoencoder (JTVAE) (Jin et al., 2018), a model that autoregressively builds a
junction tree of a molecule and extracts a molecular graph based purely on fragments.

Within the all-at-once category, Simonovsky & Komodakis (2018) and Ma et al. (2018) predict the
graph adjacency, as well as the node and edge features in one step. Here, the number of considered
nodes usually is fixed manually before inference. Liu et al. (2021) follow the same approach, but
replace the VAE-based architecture with an energy-based learning technique. Similarly, De Cao &
Kipf (2018) predict the entire molecular graph at once and train within a GAN framework including
a permuation invariant discriminator. In contrast, Zang & Wang (2020) first generate a bond tensor
through normalizing flows and subsequently assign node features to the graph whose computatiton is
conditioned on the same bond tensor. Lastly, Bresson & Laurent (2019) as well as Flam-Shepherd
et al. (2020) first predict the set of atoms present in the molecular graph, and in a second step
compute the connection among these. Samanta et al. (2019) has a similar generation procedure,
while additionally learning the 3D coordinates of the resulting molecular graph. Lastly, (Kong et al.,
2022) first decode the set of nodes and fragments autoregressively via an RNN and then predict
attachements of nodes and fragments.
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