2106.12430v2 [cs.LG] 30 Jan 2025

arxXiv

Beyond Predictions in Neural ODEs:
Identification and Interventions

Hananeh Aliee hananeh.aliee@helmholtz-muenchen.de
Helmholtz Munich

Fabian Theis fabian.theis@helmholtz-muenchen.de
Helmholtz Munich

Niki Kilbertus niki.kilbertus @helmholtz-muenchen. de
Technical University of Munich & Helmholtz Munich

Abstract

Spurred by tremendous success in pattern matching and prediction tasks, researchers in-
creasingly resort to machine learning to aid original scientific discovery. Given large amounts
of observational data about a system, can we uncover the rules that govern its evolution?
Solving this task holds the great promise of fully understanding the causal interactions and
being able to make reliable predictions about the system’s behavior under interventions. We
take a step towards such system identification for time-series data generated from systems
of ordinary differential equations (ODEs) using flexible neural ODEs. Neural ODEs have
proven successful in learning dynamical systems in terms of recovering observed trajectories.
However, their efficacy in learning ground truth dynamics and making predictions under
unseen interventions are still underexplored. We develop a simple regularization scheme for
neural ODEs that helps in recovering the dynamics and causal structure from time-series
data. Our results on a variety of (non)-linear first and second order systems as well as
real data validate our method. We conclude by showing that we can also make accurate
predictions under interventions on variables or the system itself.

1 Introduction

Many research areas increasingly embrace data-driven machine learning techniques not only for prediction,
but also with the hope of leveraging data for original scientific discoveries. We may formulate the core task of
an “automated scientist” as follows: Given observational data about a system, identify the underlying rules
governing it! A key part of this quest is to determine how variables depend on each other. Putting this
question at its center, causality is a natural candidate to surface scientific insights from data.

Great attention has been given to “static” settings, where each observable under consideration is a random
variable whose distribution is given as a deterministic function of other variables—its causal parents. The
structure of “which variables listen to what other variables” is typically encoded as a directed acyclic graph
(DAG), giving rise to graphical structural causal models (SCM) (Pearl| [2009). SCMs have been successfully
deployed both for inferring causal structure as well as estimating the strength of causal effects. However, in
numerous scientific fields, we are interested in systems that jointly evolve over time with dynamics governed
by differential equations, which cannot be easily captured in a standard SCM. In such interacting systems,
the instantaneous derivative of a variable is a function of other variables (and their derivatives). We can thus
interpret the variables (or derivatives) that enter this function as causal parents (Mooij et al., 2013). Unlike
static SCMs, this accommodates cyclic dependencies and temporal co-evolution (Bongers et al., [2016).

The hope is that machine learning may sometimes be able to deduce true laws of nature purely from
observational data, promising reliable predictions not only within the observed setting, but also under



interventionsEl In this work we take a step towards system identification and causal structure inference from
time-series data of a fully observed system that is assumed to jointly evolve according to an ODE. We use
scalable and flexible neural ODE estimators (Chen et al., 2018) that allow for a-priori unknown non-linear
interactions. We start with noise-free observations in continuous time, but also provide results for additive
observation noise, irregularly sampled time points, and real gene expression data. Generally, recovering the
ODE from a single observed solutions is an ill-posed problem. However, existing theory suggests (informally)
that for certain classes of ODEs “most systems” will be identifiable. Motivated by these findings, we make
the following contributions:

o We discuss potential regularizers to enforce sparsity in the number of causal interactions such that variables
depend on few other variables, a common assumption in modern causal modeling Scholkopf et al| (2021)).

o We develop a causal structure inference technique from time-series data called causal neural ODE (C-
NODE) combining flexible neural ODE estimators with suitable regularization techniques. C-NODE
works for non-linear ODEs with cyclic causal structure and identifies the full ODE in certain cases. Our
results suggest that the proposed regularizer improves identifiability of the governing dynamics.

o We demonstrate the efficacy of C-NODE on a variety of low-dimensional (non-)linear first and second order
systems, where it also makes accurate predictions under unseen interventions. On simulated autonomous,
linear, homogeneous systems we show that C-NODE scales to tens of variables.

¢ Finally, C-NODE yields promising results for gene regulatory network inference on real, noisy, irregularly
sampled single-cell RNA-seq data.

Related work. There is a large body of work on the discovery of causal DAGs within the static SCM
framework (Heinze-Deml et all 2018} |Glymour et all [2019} [Vowels et all, [2021). One key idea for causal
discovery on time-series data is based on Granger causality, where we attempt to forecast one time-series
based on past values of others . We review the basic ideas and contemporary methods in
Section [2.3] Typically, these methods also return an acyclic directed interaction model, though feedback
of the forms Xy — X141 or Xy — Yi41 and Yy — Xy is allowed. Inferring Granger causality often relies
on conditional independence tests (Malinsky & Spirtes, 2018) or score-based methods (Pamfil et al.l [2020)).
Certain extensions of SCMs to cyclic dependence structures that retain large parts of the causal interpretation
(Bongers et al., |2016) also allow for causal discovery of cyclic models (Lacerda et al., 2012; Hyttinen et al.,
[2012; |[Mooij et al. 2011)). The framing of our work differs from the above in that they cannot model evolutions
of instantaneously interacting systems and only aim at the causal structure instead of the system specifics.

Another line of research has explored connections between (asymptotic) equilibria of differential equations
and (extended) SCMs that preserve behavior under interventions (Mooij et al.l [2013; Bongers & Mooij, 2018;
Rubenstein et all [2018; Blom et al., 2020)). Pfister et al. (2019) focus on recovering the causal dependence of
a single target variable in a system of differential equations by leveraging data from multiple heterogeneous
environments. Following earlier work (Dondelinger et al.| 2013; [Raue et al.l 2015; [Benson), [1979; Ballnus,
[2019} |Champion et al., [2019)), they consider mass-action kinetics only taking into account linear combinations
of up to degree one interactions of the target variable’s parents. They enforce sparsity by only allowing a
fixed number of such terms to be non-zero. More broadly, parameter identifiability and estimation has been
thoroughly investigated for discrete dynamical systems (McGoff et al. |2015), when the entire solution space
is available (Grewal & Glover], [1976)), or time-lag is required with no instantaneous interactions
2015)). Building on [Takens| (1981)), the “convergent cross mapping method” (Sugihara et al., [2012)
overcomes separability assumptions of Granger causality and has successfully been extended to identify causal
structure (and sometimes systems) for chaotic, strongly non-linear, or time-lagged systems among others (Ye
let al., 2015; Runge et al., 2019; De Brouwer et al., 2020). Current methods for ODE parameter estimation
(with known parametric form) often deal with structural (Cobelli & Distefanol 1980)) and practical (e.g.,
partial observability (Raue et al. |2009)) non-identifiability via empirical uncertainty analysis
. For example, Sindy (Brunton et al., [2016]), a popular sparse regression method for identification of
nonlinear systems, explicitly assumes sparsity in a set of candidate basis functions. This poses a limitation on
the scalability of the method as the dictionary size grows combinatorially in the number of variables that are

1 An automated scientist would undoubtedly be more powerful if it can interact with the system and perform experiments.
By focusing on the purely observational setting, we avoid an ad-hoc specification of which experiments can be conducted and
adhere to current settings, where algorithms are not granted direct access to real-world interventions.



allowed to interact and nested non-linearities have to be added explicitly to the dictionary. Hence, Brunton
et al.| (2016)) acknowledge that Sindy fails to recover the dynamics already for a system of seven variables and
that allowing for “a broader function search space is an important area of current and future work”.

In contrast to the works above, we assume neither a semantically meaningful pre-specified parametric form of
the ODEs with a small set of parameters, nor the existence of equilibria. We consider fully observed, non-delay
ODEs (no time-lag, only instantaneous interactions) with observations from a single environment. Our focus
is on scalability to many variables with unknown non-linearities and leverage neural networks as flexible,
yet efficiently learnable, function approximatorsﬂ Finally, we aim at fully identifying the ODE system, not
only the causal structure, to be able to make predictions under interventions with a special focus on the
multivariate case, i.e., systems of ODEs with sparse dependency structures. Note that the causal structure is
implied by the ODE system, hence ODE identification is strictly harder than causal structure identification
in our setting. In most applications, we consider the causal structure as an informative byproduct of our
attempt at ODE system identification.

Vorbach et al.[ (2021); Massaroli et al.| (2021)); Bellot et al.| (2021) aim at interpreting the inner workings of
NODEs. Our main difference to |Vorbach et al.| (2021); Massaroli et al.| (2021) is that they do not go beyond
predictive performance and disregard whether the true system has been learned. [Vorbach et al.| (2021); [Bellot
et al.| (2021]) do not discuss the behavior of the system under interventions.

This research has potential applications in diverse fields including biology (Pfister et al.; [2019) (e.g., gene-
regulatory network inference (Matsumoto et al., 2017 |Qiu et al.l |2020)), robotics (Murray et al., [1994; |Kipf
et al.| [2018)), and economics (Zhang 2005)).

2 Setup and Background

Assume we observe the temporal evolution of n real-valued variables X* : [a,b] — R™ on a continuous time
interval a < b, such that X* solves the system of ODESE|

X = f*(X,t), for f* € F where (1)
F:={f:R" x [a,b] = R"| f uniformly Lipschitz-continuous in X and continuous in ¢} .

That is, we observe a single solution trajectory of some ODE (determined by) f* € F.

Our main goal is the following identification task: Given X*, identify f* € F. (2)

This is the inverse problem of “solving an ODE”, for which the celebrated Picard-Lindel6f theorem guarantees
the existence and uniqueness of a solution of the initial value problem (IVP) X = f(X,t), X (a) = o for all
f € Fand xg € R™ on an interval ¢ € (a — ¢,a + €) for some € > 0. We remark that higher-order ODEs, in
particular second-order ODEs X = f(X, X,t), can be reduced to first-order systems via U := (X, X) € R?",
U=(X,X)= (U, f(U, t) Hence, it suffices to continue our analysis for first-order systems.

2.1 Causal Interpretation

In SCMs causal relationships are typically described by directed parent-child relationships in a DAG, where
the causes (parents) of a variable X; are denoted by pa(X;) C X. For ODEs an analogous relationship can
be described by which variables “enter into f;”. Formally, we define the causal parents of X; in system f,
denoted by pas(X;), as follows: X; € pas(X;) if and only if there exist x1,...,2;-1,2;41,...,2n € Rsuch
that fi(z1,...,2j-1,9,2j11,...,2,) : R = R is not constant. This notion analogously extends to second

2Local minima are always a concern in high-dimensional non-convex optimization (training), but orthogonal to our work.

3We use X* for the real observed function and X for a generic function. We refer to components X; as the observed variables
of interest. Similarly, f* is the ground truth system and f a generic one. Lower case letters denote observations at a fixed time,
e.g., xo = X(t =0).

4Second order systems require X (a) and X (a) as initial values for a unique solution. In practice, when only X* is observed,
we assume that we can infer X*(a), either from forward finite differences or during NODE training, see Section Any
higher-order ODE can iteratively be reduced to a first order system.



and higher order equations by defining pay(X;) as the variables X; for which any (higher order) derivative
of X; enters f;. Thereby, identifying f* in eq. (2) also yields the causal structure—it is an immediate yet
informative byproduct.

One of the key advantages of causal models compared to merely predictive ones is that they enable us to
make predictions about hypothetical interventions not in the training data. In the ODE setting, different
types of interventions can be conceived of. We will focus on the following types of interventions.

e Variable interventions: For one or multiple i € {1,...,n}, we fix X; := ¢;, f; := 0 and replace every
occurrence of X; in the remaining f; with ¢; (for some constant(s) ¢; € R). We interpret these interventions
as externally clamping certain variables to a fixed value.

e System interventions: We replace one or multiple f; with fz Here we can further distinguish
between causality preserving system interventions in which the causal parents remain unchanged, that is
paf(Xi) = paj(X;) for all 4, and others.

As an illustration, consider an ODE describing the positions of masses in a spring-mass system. A variable
intervention could amount to externally keeping one mass at a fixed point in space. A system intervention
could describe changing the stiffness of some of the springs. We will analyze variable interventions in
(non-linear) ODEs and system interventions primarily in linear settings with interpretable system parameters
like in the chemical reaction example.

2.2 (Neural) Ordinary Differential Equations

In neural ODEs (NODE) a machine learning model (often a neural network with parameters 6) is used to learn
the function fy = f from data (Chen et all [2018). Starting from the initial observation X*(a), an explicit
iterative ODE solver is applied to predict X*(t) for t € (a, b] using the current derivative estimates from fjy.
The parameters 6 are then updated via backpropagation on the mean squared error between predictions and
observations. We mostly build on an augmented variant called SONODE that also works for second order
systems and estimates the initial values X*(a) in an end-to-end fashion (Norcliffe et al., [2020)).

Recently, NODEs have been extended to irregularly-sampled timesteps (Rubanova et al., [2019)), stochastic
DEs (Li et al} 2020; |Oganesyan et al., [2020), partial DEs (Sun et al., [2019)), Bayesian NODEs (Dandekar
et al., [2020), and delay ODEs (Zhu et al., 2021)). While these extensions could benefit our method, we use
vanilla SONODE to disentangle the performance of our method from tuning the underlying NODE method.
As discussed extensively in the literature, NODEs can outperform traditional ODE parameter inference
techniques in terms of reconstruction error, especially for non-linear f (Chen et al.l |2018; Dupont et al.,
2019). A subsequent advantage over previous methods is that we need not pre-suppose a parameterization of
f in terms of a small set of semantically meaningful parameters.

Recently, a number of regularization techniques has been proposed for NODEs, where NODEs are viewed
as infinite depth limits of residual neural networks (typically for classification) and there is no single
true underlying dynamic law (Finlay et al., 2020; Kelly et al.l [2020; |Ghosh et al., 2020; Pal et al., 2021;
Grathwohl et al., |2019). We emphasize that these existing techniques regularize the number of model
evaluations to improve efficiency in learning one out of many possible dynamics yielding good performance
on a downstream predictive task. They are unrelated to our regularizer, which aims at identifying a single
true underlying dynamical system from time series data. Our regularizer targets neither the number of
function evaluations, nor sparsity in the weights of the neural network directly (like pruning), but the number
of causal dependencies. Finally, another alternative to train neural networks that depend on few inputs,
regularizing input gradients (Ross et al., [2017b; Ross & Doshi-Velez, [2017; [Ross et al., 2017a)) does not scale
to high-dimensional regression tasks.

2.3 Granger Causality

Granger causality is a classic method for causal discovery in time series data that primarily exploits the
directionality of time (Granger, [1988). Informally, a time series X; Granger causes another time series X; if
predicting X; becomes harder when excluding the values of X; from a universe of all time series. Assuming



that X is stationary, multivariate Granger causality analysis usually fits a vector autoregressive model

k
X(t)y=>Y WXt —7)+E(), (3)
=0

where E(t) € R™ is a Gaussian random vector and k is a pre-selected maximum time lag. We seek to infer
the W() € R™ ™ from X (t). In this setting, we call X; a Granger cause of X; if |Wz(§)| > 0 for some

7€ {0,...,k}. We need to ensure that W(® encodes an acyclic dependence structure to avoid circular
dependencies at the current time. Pamfil et al| (2020) then estimate the parameters in eq. via

k
min[X(t) - > WO ||, + W Ol + oW s (4)

where W = (W()k_ W\ = (W()k_| "and || - ||;.1 is the element-wise £; norm, which is used to encourage
sparsity in the system. In addition, to ensure that the graph corresponding to W(® interpreted as an
adjacency matrix is acyclic, a smooth score encoding “DAG-ness” proposed by [Zheng et al.| (2018) is added
with a separate regularization parameter. While extensions to nonlinear cases exist (Diks & Wolski, [2016]),
we primarily compare to Dynotears by Pamfil et al.| (2020)—a choice motivated further in Appendix

3 Theoretical Considerations

First, we note that our main goal in eq. is ill-posed. A solution exists by assumption, but it may not
be uniqueﬂ We provide a simple example of two different autonomous, linear, homogeneous systems that
have at least one solution in common in Appendix [B| (where we provide all proofs)ﬁ This means that the
underlying system is unidentifiable from observational data.

Autonomous, linear, homogeneous systems are worthy a closer look:
Fin ={f(X)=AX |AeR""} C F. (5)

First, they are common models for chemical reactions or oscillating physical systems. Second, unlike for larger
classes of ODEs, identifiability is reasonably well understood. Within Fy;,, we can use A and f interchangeably.
For such systems, [Stanhope et al.| (2014) developed beautiful graphical criteria for the identifiability of the
system A given X* namely that the trajectory X* is not confined to a proper subspace of R™. |Qiu et al.| (2022)
recently showed that an equivalent characterization is that A has n distinct eigenvalues, which implies that
almost all A € R™ " are uniquely identifiable from X* for almost all initial values zo € R™["] In this sense, all
unidentifiable systems are non-generic and likely require some “fine-tuning” like our example in Appendix [B]
indicating that non-identifiability may not be a prevalent issue for the average case in practice. While these
results largely extend to affine linear systems (Duan et al., 2020)), little is known about identifiability in
general non-linear systems (Miao et al.l[2011). One may suspect non-identifiability to be a greater issue there,
but highly non-linear or even chaotic systems are sometimes known to be identifiable (Takens, [1981} |Sugihara,
et al., |2012; De Brouwer et al.| [2020)).

While these results are encouraging, we are particularly interested in “simple” interactions, which we capture
by sparsity. That is, we assume that in natural systems each variable depends on only few other variables as
causal parents (Scholkopf et al.l 2021). Counting the number of parent-child relationships in a system f as
| fllcausal :== iy [pas(X;)|, we are thus interested only in possible ground truths f* with small || f*||causal
(compared to n?). For Fjy, this amounts to matrices A € R"*™ with at most k non-zero entries. To the best

5This violates one of the three Hadamard properties for well-posed problems. We use the word ‘solution’ somewhat ambiguously
and care must be taken not to confuse solutions to a given ODE or IVP (find X given f € F) and a solution of our main goal
(finding f* € F given X*).

6 Autonomy means that f does not explicitly depend on time f(X,t) = f(X). Linear systems are ones where f is linear in X,
ie., f=A(t)X + b(t). Homogeneous systems are linear systems in which b(t) = 0.

7Specifically, this holds with respect to the Lebesgue measure on R”*™ and R™. The result still holds for probability measures
from most common random matrix ensembles such as the Gaussian orthogonal, the Wishart, or the Ginibre ensembles.



of our knowledge, it remains an open problem whether among such sparse matrices still almost all of them
are identifiable from X™* (for almost all initial conditions z(). Since sparse matrices are more likely to have
repeated eigenvalues, the existing theory for dense matrices does not carry over to our setting. Hence, there is
a gap between predictive performance (reconstruction error of X) and identifying the governing system, which
is required to make predictions under interventions. NODEs perform well in terms of predictive performance,
but theoretically they may do so by learning the “false” system. This is a key motivation for our empirical
analysis in this work. In the following, we develop a method to identify such sparse systems from a single
observed solution trajectory via regularization and assess identifiability empirically not only in the linear, but
also non-linear case.

We first formulate our regularized goal: Given X*, find f € F such that X* solves X = f(X,t) and
[ € argmin ¢z ||g|| for some measure of complexity || - [| : F — Rx>q. Without knowing f* a priori, || - [|causal
is difficult to enforce as a complexity measure in practice. Instead, we approximate the requirement of “not
being constant w.r.t. to an argument” in our definition of causal parents via the following regularizer

n

e := Z 1{]|9; fil|]2 > €}  for some € > 0, (6)

i,j=1

where ||-||2 is the L? norm on the Hilbert space of square-integrable real functions (with respect to the Lebesgue
measure). For A € Fij, this captures sparsity in the common sense || Al =0 = >_7 ;= 1{Ai; # 0} = ||A||Causa1ﬂ
There are still two hurdles to implementing || f||. in practice. (a) For the full non-linear case f € F the
L2?-norms of partial derivatives are difficult to evaluate efficiently and accurately. (b) Even for A € Fip,
||A]l¢ is not differentiable. For the linear case, non-differentiability of ||A||c is typically overcome by enforcing
sparsity via an entry-wise £; norm ||Alj11 = szzl |A;j| as a penalty term, like in eq. (4). While this covers
the linear case, in section {4 we develop a technique to partially overcome problem (a) in the non-linear case,
by reformulating || f|| as an entry-wise ¢; norm for a matrix derived from the parameters 6 of the neural

network fy approximating f.

Remarks. In the realm of neural ODEs one may be tempted to enforce sparsity in the neural network
parameters 6 directly. While this can be a sensible regularization scheme to improve generalization (Liebenwein
et al.| |2021)), it does not directly translate into interpretable properties of the ODE fy. For fully connected

neural networks even a sparse 6 typically leads to dense input-output connections such that || f||. = n>.

Alternatively, one may train a separate neural network f; o, : R x R" — R with parameters 6; for each
component f;. Stacking the outputs of all f; g, we can then train each network separately from the same
training signal. For such a parallel setup we can enforce sparsity via || f;||5inele .= Z?=1 1{||0; fill2 > €} in
the first layer parameters of each component neural network separately to “zero out” certain inputs entirely
(Bellot et all, [2021). However, this differs from our sparsity measure || f||c in eq. (6). The latter allows large
|| fi|l$8!e for some components f; as long as the entire system is sparse. The parallel approach did not
perform better in empirical experiments, but is computationally more expensive.

4 Method

Practical regularization. Let us write out fy explicitly as a fully connected neural network with L hidden

layers parameterized by 6 := (W, bl)f:‘ql, with [-th layer weights W' and biases b!

fo(Y)=WEHo(  .o(W2a(WY +b1) +b%)...), (7)

with element-wise non-linear activations ¢. With this parameterization we now approximate our desired
regularization || fyl|causal in terms of 6. A major drawback of the natural candidate || fy|. from eq. @ is that
it is piece-wise constant in f#—an obstacle to gradient-based optimization. Instead, we aim at replacing || f||
with a differentiable surrogate. Ideally, we would like to use ¢; regularization on the strengths of all input to
output connections j — 7 in fy.

8||Alle=0 and therefore also ||Al|causal is N0t a norm; it violates the triangle-inequality.
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Figure 1: Exemplary second-order linear system.

o The linear case. Recall that for Fi;y, it suffices to choose linear activation functions (specifically, o(z) = z)
and b = 0, such that fy(Y) = AY for some A = WE+l. . W1E| Hence, for fy € Fiin, we can directly
implement a continuous ¢; surrogate of the desired regularizer in terms of

.
6]l simple == [l A4

simple

L= WE W (8)

We then have X; € pay,(X;) if and only if A;; # 0. When restricting ourselves to Fiy, using o(z) = z,b' =0
together with the above sparsity constraint is thus a viable and theoretically sound method. In this case
we infer A directly from 6, i.e., we identify f, from which the causal structure follows.

¢ The non-linear case. In practice, we do not know whether f* € Fy;, a priori. Thus we remain open to
the possibility of non-linear f* via non-linear activation functions o. Then ||6] éli’fnple is not equivalent to
|| follcausal anymore, because we may have X; & pay, (X;) despite A;; # 0. In this case, we use the absolute

weights for the regularizer:

101%™ = MW EF - W [l 9)
While we can still have [[WEFL|. .. - |W1|]; ; # 0 even though 1Xj ¢ pag, (X;), [WEH ... [W1];; =0
always implies X; ¢ pay, (X;) for b' = 0. Hence, using ||0 [smple . as a regularizer aims at minimizing an

upper bound of || fgl|causa1- We show empirically that enforcing this upper bound of the desired regularizer
serves as an effective inductive bias to enforce sparsity in the causal connections.

From now on, we will drop the superscript of ||0||simple When it is clear from context.

Causal structure inference. While we could read off the causal structure directly from 6 via A in the
linear case, for non-linear fy we can validate our results via partial derivatives 0;(fg); over time, showing how
each X; depends on each X ;. Following the reasoning of the regularizer || fy||c in eq. @, we then reconstruct
the causal relationships via X; € pay,(X;) if and only if fo:l |0; fo,i(tx)| > € for the N observations at
times a = 1 < ... < ty = b and some threshold ¢ > OE Thus we can still infer the causal structure in
non-linear cases where evaluating whether our method identified the correct f* is challenging (as we cannot
compare parameters directly, but would have to compare a neural network to an analytically known function
in symbolic form). The choice of € is sensitive to the scale of the data, which we account for by normalizing
data before training. Empirically we did not observe strong dependence of the inferred causal structure on the
choice of € for normalized data. A simpler method is available to determine the absence of causal dependencies
in the non-linear setting: if the entry [|[WE+L|. ... |[W?1|];; is (close to) zero, then X; ¢ pay,(X;).

Summary. C-NODE adds a practical, differentiable regularizer A||0||simple With a tuneable regularization
parameter A to the NODE loss to recover sparse dynamics corresponding to our regularized goal. Our
regularizer captures || f||causal perfectly in the linear case and enforces minimization of an upper bound in the

9When biases are non-zero, we are in the realm of inhomogeneous, linear, autonomous systems.

10This is but one simple approach to estimate practically whether |9} fg ;||2 # 0, i.e., whether the i-th output of the neural
network fy depends on the j-th input. While a host of more sophisticated methods may be used here, we found this simple
approach sufficient in our experiments.
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Figure 2: Dependence on the sparsity parameter A\. Dashed lines labeled A = 0 refer to vanilla NODE.

Table 1: Experimental results using synthetic datasets with n € {10,20,50}, varying noise level o, and
sampling irregularity (irr). SHD is the structural Hamming distance and SHD = 1 - SHD.

irr = 0.0 irr = 0.2 irr = 0.5 irr = 0.7

o dim SHD TPR TNR SHD TPR TNR SHD TPR TNR SHD TPR TNR

10 0.97 0.95 0.98 0.98 0.97 0.98 0.93 0.97 0.91 0.92 0.93 0.91
0.0 20 0.92 0.82 0.97 0.84 0.72 0.88 0.85 0.74 0.88 0.86 0.75 0.89
50 0.90 0.71 0.92 0.85 0.67 0.87 0.92 0.69 0.96 0.93 0.70 0.96

10 0.88 0.81 0.92 0.87 0.80 0.92 0.86 0.84 0.88 0.67 0.48 0.87
0.05 20 0.86 0.78 0.89 0.84 0.72 0.88 0.72 0.59 0.75 0.69 0.53 0.73
50 0.91 0.64 0.94 0.90 0.69 0.93 0.90 0.67 0.93 0.89 0.65 0.93

10 0.78 0.68 0.74 0.71 0.68 0.71 0.65 0.77 0.58 0.50 0.60 0.51
0.1 20 0.82 0.79 0.82 0.79 0.74 0.80 0.68 0.53 0.74 0.61 0.48 0.65
50 0.86 0.65 0.90 0.89 0.59 0.93 0.87 0.61 0.91 0.86 0.68 0.89

non-linear case. We also devised a method to recover the causal structure from linear and non-linear fy. In
Section [f] we show empirically that potentially remaining theoretical unidentifiability does not practically
impede C-NODE from recovering f*, allowing for accurate predictions under variable and system interventions.
In Appendix [D] we discuss extensions for latent dynamics and data from heterogeneous environments.

5 Experiments

We now illustrate the robustness of our method in several case studies. The general principles readily extend
to more complex model classes. Among several methods developed for causal inference from time-series data
based on Granger causality (Tank et al., 2021} [Hyvérinen et al., 2010; Runge et al.l |2019; |/Amornbunchornvej|
2019)), we compare to Dynotears (Pamfil et al., 2020), because it outperforms most competing methods
in their evaluation. For system identification, we also compare to GroupLasso (Bellot et all [2021)) and
PySINDy (Brunton et al., 2016 de Silva et al., [2020). Details on all parameter settings, evaluation, and
implementation choices are provided in Appendix [C]

Linear ODEs. We first study second-order, homogeneous, autonomous, linear ODEs
X =W X +WyX. (10)

We begin with n = 3 and randomly chosen true weight matrices Wi, W3 from which we generate X™* using a
standard ODE solver, see Appendix [C] Figure [I] shows that our method not only accurately predicts X*,
but it also identifies W7, W3 within a maximum absolute difference of 0.018. Thus the causal graph is also
inferred correctly. The poor performance of Dynotears may be due to cyclic dependencies in Wi, W3

We extend these results to study the scalability of our method and its performance when the observations
are irreqularly sampled (a fixed fraction of observations is dropped uniformly at random) with measurement
noise (additive zero-mean Gaussian noise with standard deviation o). The data generation specifics for
three synthetic datasets with 10, 20, and 50 variables are described in Appendix [C} We evaluate the inferred
causal graph using the structural hamming distance (SHD) (Lachapelle et al., |2019)) for the fraction of
wrongly predicted edges, the true positive rate (TPR), and the true negative rate (TNR). The results in
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Figure 3: Results for the spiral ODE.

Table [1| show that C-NODE performs well for non-noisy data (¢ = 0) and is robust to randomly removing
samples from the observation. Accuracy drops with increasing noise levels, which is further exacerbated by
sampling irregularities, suggesting improved robustness to observation noise as an interesting direction for
future work. In Figure 2| we show the dependence of SHD = 1 — SHD on the regularization parameter A for
high-dimensional systems following eq. . C-NODE clearly outperforms vanilla NODE for causal structure
inference with only moderate sensitivity to A even though they achieve similar predictive accuracy. This
indicates that for sparse systems unidentifiability may indeed be a problem (as hypothesized in section
in that the solution trajectory can be perfectly reconstructed also by “false” dense systems. This provides
evidence that regularization is indeed crucial for recovering the correct sparse ground truth dynamics. In
Figures[8land [0} we provide further results and show that C-NODE also outperforms both vanilla NODE
(2018), GroupLasso (Bellot et all, [2021) and PySINDy (de Silva et al., [2020).

A concrete application example for a common (synthetic) chemical reaction network of transcriptional gene
dynamics is also provided in Appendix [E.2]

Spiral ODEs. The spiral ODE model is given by

Xo = —aXo® + 8X:3, X1 =-8X>+ aX:® (11)

and features cyclic dependencies and self-loops. We follow the parameterization in (Chen et al. (2018]).
While Dynotears fails to estimate the cyclic causal graph, Figure [ shows that C-NODE infers the actual
ODE parameters «, 8 and thus the causal structure correctly. Again, Figure [3] illustrates that predictive
performance slowly degrades as observation noise levels increase raising the mean-squared error (MSE) of the
inferred adjacency matrix substantially for higher variance noise. However, the deduced causal structure
remains correct.

Lotka-Volterra ODEs. The Lotka-Volterra predator-prey model is given by the non-linear system

X() = —0¢X0 - ﬁX()Xl, Xl = —6X1 + ")/X()Xl. (12)

We use the same parameters as [Dandekar et al] (2020) and ReLU activations for non-linearity. Figure [4]
shows the excellent predictive performance of C-NODE (left). Because of the non-linearity, we resort to
our non-linear causal structure inference method and show the partial derivatives 0; fp; for the learned
fo in Figure Ié—_ll (right). For example, from eq. we know that 9X,/0X; = —BX; and indeed 9, fg ¢ in
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Figure 5: Predictions under interventions.

Figure [4] (right) resembles X in Figure |4 (left) up to rescaling and a constant offset. Similarly, the remaining
dependencies estimated from fy strongly correlate with the true dependencies encoded in eq. , giving us
confidence that fy has indeed correctly identified f*.

Interventions. To back up this claim, we assess whether we can predict the behavior of systems under
interventions. We consider C-NODEs trained on observational data (without interventions) from Figures
(simple linear system) and [4| (Lotka-Volterra). We apply two types of interventions: (1) a system intervention
replacing one entry of A* via Ay = 8Af, (for example, a temperature change that increases some reaction
rate eightfold) in the linear setting, and (2) variable interventions Xy := 0.4 in the linear as well as Xy :=1
and X7 := 1 in the non-linear Lotka-Volterra setting (for example, keeping the number of predators fixed via
culling quotas and reintroduction). Figure [5| (top left) shows that C-NODE successfully predicts the linear
system’s evolution under the system intervention. For the variable intervention in the linear setting (top
right), X3 correctly remains unaffected, while the new behavior of X5 is predicted accurately.

In the Lotka-Volterra example, both variable interventions impact the other variable. Fixing either the
predator or prey population should lead to an exponential increase or decay of the other, depending on
whether the fixed levels can support higher reproduction than mortality. Figure [5| (bottom row) shows
that our method correctly predicts an exponential decay (increase) of Xy (X7) for fixed X; :=1 (Xo:=1)
respectively. The quantitative differences between predicted and true values stem from small inaccuracies in
the predicted parameters which amplify exponentially to seemingly large quantitative differences.

Real single-cell RN A-seq data. Finally, we apply C-NODE to learn gene-gene interactions. Gene
(feature) interactions, also known as causal dependencies between genes, are often represented as a gene
regulatory network (GRN) where nodes correspond to genes and directed edges indicate regulatory (or
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Figure 6: Gene regulatory network inference results using human bone marrow data with 7 genes.

causal) interactions between genes. GRN inference from observations is known to be an exceptionally difficult
task |Perkel (2022)). The inferred GRN is expected to be sparse as regulatory genes known as transcription
factors do not individually target all genes. Therefore, sparsity in the number of interactions is essential.

In this experiment, we first explore how pruning improves GRN inference from human hematopoiesis single-cell
multiomics data Luecken et al|(2021) (GEO accession code: GSE194122). We select a branch of data in which
hematopoiesis stem cells (HSCs) differentiate into Erythroid cells with a total of 280 cells (or samples). The
count matrix is normalized to one million counts per cell. Figure [6] (top row) shows a UMAP representation
(McInnes et al., 2018]) of the data where each point corresponds to a cell colored by cell type (left) and an
inferred continuous pseudotime (right). This pseudotime aims at identifying how far a cell has advanced
in the differentiation process and is inferred via a diffusion map based manifold learning technique called
dpt (Haghverdi et al.l 2016]) on 2,000 highly variable genes (Wolf et al.| 2018} Bergen et al., [2020). We take
measured gene expression levels over pseudotime ¢ as our observations X*(¢).

In this setting, domain knowledge asserts that GATA genes (GATA1, GATAZ2) regulate the expression of
hemoglobin subunits (HBB, HBA1, HBA2, HBD, HBQ1) (Ding et al., [2010; |Johnson et al., [2002; |Suzuki
et al.l 2013} [Shearstone et al. |2016)). The normalized expression of genes related to these subunits over
pseudotime is presented in Figure |§| (middle row). The expressions are scaled between 0 and 1 for each gene
before training. We first apply C-NODE to these 7 genes with known ground truth. The bottom row of
Figure [6] shows the row-wise normalized absolute values of the adjacency matrix inferred by C-NODE. Our
approach properly assigns hemoglobin subunit changes to GATA genes, even though visually the hemoglobin
target genes appear to be more correlated among themselves than with the GATA drivers.

We expect the regulatory elements and their target genes to be similar across species. To show that the previous
results are stable across species, we next apply C-NODE to mouse single-cell RNA-seq data from (Pijuan-
Sala et al., [2019) (GEO accession number: GSE87038) where blood progenitors similarly differentiate into
Erythroid cells. Consistent with previous results, we also observe in Figure [IT] that hemoglobin genes depend
on GATA genes in Erythroid lineage (more details are discussed in Appendix .

Finally to study the scalability of the proposed method and the effectiveness of the sparsity regularizer, we
select 529 highly-variable genes from the whole human hematopoiesis data [Luecken et al.| (2021)) and apply
C-NODE on cells from the Erythroid lineage. Many of those genes are spurious for the Erythroid lineage
as their expression does not change along the lineage. After training, the model selects 141 key genes as
important with at least one interaction to other genes. Our first observation is that the important genes
are ranked as highly variable only for the Erythroid lineage (Figure which shows that C-NODE avoids
using spurious features for prediction (Figure [7)). Using the chromatin accessibility features available in the
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Figure 7: Prediction performance using human bone marrow data with 529 genes. Shown are the predictions
for 141 important features (on left), and selected transcription factors (on right).

human immune cells datasets as reference, we also observe 22 regulatory genes known as transcription factors
among those important genes. Assessed by the literature, all the 22 transcription factors are important for
the differentiation of the Erythroid lineage. The expression and the prediction of four transcription factors
are shown in Figure[7] left. Other transcription factors are listed in Table

Since ground truth dynamics are not known for GRNs, validating the inferred interactions is challenging. In
order to assess the biological relevance of the learned interactions, we perform Gene Set Enrichment Analysis
(GSEA) via the enrichr method [Chen et al| (2013) (discussed in Appendix [E.3). The enrichment test also
captures many relevant processes including hematopoietic stem cell differentiation, Erythrocyte differentiation,
and some immune related signaling pathways. This provides evidence that indeed key regulatory processes
for the differentiation have been captured by our model.

6 Conclusion

We proposed C-NODE, an approach to identification and causal structure learning of (sparse) ODE-based
dynamical systems using Neural ODEs. First, we observe that even if a method achieves perfect predictive
accuracy, it may not be able to predict the system’s behavior under interventions, as ODE identification is
generally ill-posed. Therefore, a key focus of our work lies on the predominantly neglected issue of restricting
the search space in meaningful ways to recover the underlying sparse system and causal structure.

We devised a simple and practical method to extract causal dependencies (including cyclic relationships)
from a learned neural ODE derivative network. We then demonstrated that C-NODE performs well on
causal structure identification for a wide variety of settings and further corroborated our findings by correctly
predicting the effect of different forms of interventions targeting both the evolving variables as well as
parameters of the governing ODE itself.

In our experiments we analyze C-NODE on synthetic and real-world gene regulatory data with varying
numbers of variables, noise levels, and irregular sampling intervals. While unidentifiability indeed affects
vanilla NODE, C-NODE still reliably infers sparse causal structures. Going forward, our results suggest
an in-depth analysis of the conditions under which unidentifiability manifests itself in practice as a fruitful
direction for future work. At the same time, extending C-NODE for successful hypotheses generation in high-
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dimensional real datasets with stochasticity, delay, unobserved confounding, or heterogeneous environments
is an exciting challenge for further research.

Given these limitations, we highlight that caution must be taken when informing consequential decisions, e.g.,
in healthcare, based on causal structures learned purely from observational data. At the same time, we hope
that causal modelling of dynamical systems broadly and C-NODE in particular can be valuable tools for
hypothesis-generation in various scientific domains to suggest promising experiments for in-depth follow up.
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A Discretization of ODE Systems

The choice to compare primarily to Dynotears is motivated by the fact that the autoregressive model in
eq. can be viewed as a finite difference approximation to linear systems of ODEs that also incorporates
sparsity. Since this recent method by [Pamfil et al.| (2020) demonstrates superior performance to most other
competing methods for inferring causality from time series data, we chose it as a strong competitor to our
method. For numerical treatment of derivatives in ODEs we often employ finite differences, where the
derivative at time step ¢ is approximated via differences of function values at slightly different time steps.
For example, the backward finite difference for the first derivative is given by (f(¢) — f(t — h))/h for some
h > 0. For time series data, we often use (without loss of generality) h = 1 and can thus approximate
the derivative via f(t) — f(t — 1). Similar approximations of higher order derivatives require more terms.
Generally, to approximate the k-th derivative, information from k + 1 different time points is needed. Hence,
finite combinations of the form

k
S Woft—1), (13)
=0

which is also used by Dynotears, can in principle encode (linear combinations of) derivatives of f at time ¢
up to order k — 1. Hence, time-series based methods such as Dynotears could in principle be expected to be
able to model ODE systems correctly.

B Proofs

Here, we provide the example of unidentifiability mentioned in the main text. We start with some notation
and known results. The space of general solutions of X = AX forms an n-dimensional sub vector space
L of all continuously differentiable functions from R to R"H For a basis ¢1,...,¢, of L, we call &4 =
(1, 0n) : R = R™™ a fundamental system of the differential equation, which in this setting is simply
given by ®4(t) = et*. The solution to the IVP with X (¢y) = 7o € R™ is then X (t) = ®4(t)h for an h such
that xg = ®4(tg)h, which exists since ® 4(t) has full rank for all ¢. Hence, our main goal restricted to Fiy
reads: Assuming f*(X,t) = A*X and w.l.o.g. a = 0, can we uniquely identify A* given X*? In other words,
does etz = etz imply A = A’? This is not the case generally as we show with the following example.
Non-uniqueness of A amounts to the existence of B € R™*" different from A such that ®,h = &g for some

g,h € R™ with ®4(0)h = ®5(0)g = X(0). For n =2, X(0) :=(1,1) and

(0 (1)) )

we have X (t) = e'h = eBtg = (¢!, e!) for all t € R.

Remarks. First, we note that this result appears intuitive when writing out the two systems, showing
that we can choose any constant initial value X (0) = (o, ). Another way to understand unidentifiability
intuitively for autonomous systems is to consider the flow vector field f(X) of the ODE in which a particular
solution is a single one-dimensional trajectory X (¢) € R™ following the vector field f(X) at every point. An
alternative system f” also solved by X (¢) only needs to preserve the vector field f(X) along its trajectory
(f'lxt) = flx@) for all t € [a,b]), but could arbitrarily differ (without violating continuity assumptions) from
f(X) outside of {X (¢)|t € [a,b]}.

Finally, most results discussed here also hold for inhomogeneous, autonomous, linear systems (f(X) = AX +b
for b € R™). In this case, the n-dimensional solution vector space is an affine subspace £ + X, where £ is the
solution vector space of the homogeneous system and X is any specific solution of the inhomogeneous one.

Ill-posedness despite regularization. Here we show that our main goal is still ill-posed even under
sensible sparsity regularizations. We begin again with the example from eq. , where the matrices A and
B have equal values for || - ||lcausal, [|A]l1, and ||A]|1,1. Let C € R?*2 be any system that has X (t) = (e!, ') as
a solution for the initial value X (0) = (1,1) on all of R. Since X; = X» = X; = X5 on R the coefficients in

HThe statements in this paragraph are proven in most textbooks on ODEs, e.g., see (Hirsch & Smale, [1974).
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each row of C' must sum up to 1. Hence, the minimum achievable value for |C|11 = Z?,j:l |Cs;] is 2, which
is achieved by both A and B. Similarly, the minimum achievable value for ||C||; = max;—1 > Zle |Cij| =
max{|Cy1| + |C21|, |Ci2| + |Caz|} under the row-unit-sum constraint is 1, which is also achieved by both A
and B. Finally, in the linear case the minimum achievable ||C/||causal = ||C|le=0 = Zij:l 1{C;; # 0} is also 1,
again achieved by both A and B. Therefore, the systems A and B in eq. are indeed among the minimum
complexity solutions under all considered regularization schemes.

While other types of regularization may yield unique solutions (Tikhonov regularization for ill-posed problems),
these typically clash with the explicit demand for sparsity in the system, with many relationships not just
being weak, but desired to be non-existent. Our focus lies on sparsity enforcing regularization motivated
by || + |causar throughout. We also remark the close resemblance of our arguments to the fact that Ridge
regularization yields unique solutions in linear regression whereas Lasso may not. In our example, consider
[l - 1l2 or || - ||2,2 instead. In this case the minimum complexity system is uniquely given by C;; = 0.5 for
i,j € {1,2}. Tt is important to recognize though that this argument does not suffice to prove that our
statement does not hold for these regularizers. It merely illustrates that our examples and proof techniques
fail for these regularizers. Refining these unidentifiability results is an interesting direction for future work.

C Implementation Details

C.1 Synthetic Data Generation

We generate random datasets with 10, 20, and 50 variables and at most 200 observations. For each dataset,
we first start with a random ground truth adjacency matrix and generate the discrete observations using
off-the-shelf explicit numerical Runge-Kutta style ODE solvers (Jones et al., |2001). We then add zero-mean,
fixed-variance Gaussian noise to each variable and observation independently. Finally, a percentage of samples
(denoted by ‘irr’) is randomly dropped from the dataset to simulate irregular observation times.

C.2 Architecture and Training Procedure

All neural networks used in this work are fully connected, feed-forward neural networks. The initial velocities
are predicted using a neural network with two hidden layers with 20 neurons each and tanh activations. The
main architecture to infer velocities (or accelerations) also contains two hidden layers of sizes 20, 50, or 100
depending on the size of the input and ELU (or for some experiments linear) activation function. ELU and
tanh were used because they allow for negative values in the ODE (Norcliffe et al. 2020). As an ODE solver,
we use an explicit 5-th order Dormand-Prince solver commonly denoted by dopris.

All models are optimized using Adam (Kingma & Bal [2017) with an initial learning rate of 0.01. We use
PyTorch’s default weight initialization scheme for the weights and set the regularization parameter X\ for the
L1 penalty to 0.01 in the 10, and 20-dimensional examples and to 0.1 for the 50-dimensional example. All
models can be trained entirely on CPUs on consumer grade Laptop machines within minutes or hours. To
compute the MSE uncertainty, the experiments in Figures and [f] are run 10 times with random seeds.
Finally, the presence of edges in the weight matrices was determined by thresholding absolute values at 0.05
for the synthetic datasets and 0.001 for the real dataset.

D Extensions

D.1 Measurement noise

Considering a deterministic version of dynamical systems with measurement noise, we have:

X(@t)=X(t)+ E(t). (15)
Where, X (¢) is assumed to be governed by the ODE system and the noises E; are assumed to be jointly

independent with zero mean. We show that our causal inference model based on NODESs can be relatively
resistant to measurement noise (see the example in Figure [3|). However, we can still extend our approach
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to latent-variable models for more complicated systems. In a general form, consider a (generative) model e
which encodes the initial position X into the latent variable Z; as follows:

Zo = e(X,0,). (16)

This is then used by the ODE function f and the ODE solver consequently:

Z:f<Zut79) (17)
Zoy ..., Zn = ODESolver(f, Zo, (to, ..., tn))
The latent variables are then decoded as follows:
Xo,..., Xy =d(Z,0,). (18)

Such a latent-variable model is causally interpretable and can be integrated into our method, if we can learn
X as a function of Z naturally from the model. While most of the extensions to NODEs for noisy and
irregularly-sampled observations perform well with respect to the reconstruction accuracy, they are hardly
interpretable due to their model complexity (Rubanova et al., [2019; [Norcliffe et al., [2021)).

D.2 Data from Heterogeneous Systems

Our algorithm could potentially also be extended to (noisy) observations generated from heterogeneous
experiments. Following Pfister et al.| (2019), in this case we treat the observations from each experiments as
a time-series sample. Training the model with heterogeneous samples, we may hope to identify the causal
model that is invariant across the experiments (Pfister et al., [2019). It is an interesting direction for future
work to determine whether heterogeneous experiments allow us to overcome the unidentifiability results in
Section [3l

E Extended Results

E.1 Synthetic Linear ODEs

The learned adjacency matrices using vanilla NODE |Chen et al.| (2018), GroupLasso (Bellot et al., 2021)) and
PySINDy (de Silva et al, 2020) are illustrated in Figure

The SHD matrices using C-NODe are presented in Figure @ S;; in an SHD matrix represents the presence or
absence of an edge between X; and X; including the sign of the effect (e.g., S;; = —1 means X; — X, with
a negative coefficient).

E.2 Chemical reaction networks

Here, we study a model of transcriptional dynamics which captures transcriptional induction and repression of
unspliced precursor mRNAs u(t) splicing into mature mRNAs s(¢) at rate 5. The mature mRNAs eventually
degrade with rate ~.

u =« — Pu, s = fu— s, (19)

where « is the reaction rate of the transcription. We assume § and -y to be constant and the transcription
rate a to vary over time. The results in Figure [I0] show that our method can successfully learn the structural
graph as well as the ODE parameters while Dynotears fails on the same task. Note that in this case we add
« as a variable in the system with a fixed, pre-specified time-dependence in such a way that it satisfies an
ODE separately from u, s. Our method successfully identifies this structure where the evolution of @ does not
depend on u and s, but conversely, the derivatives of v and s depend on «. Encouraged by these synthetic
results, we also tested our method on real single-cell gene expression data, described in Section
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Figure 8: The synthetic datasets and the inferred adjacency matrices using C-NODE, GroupLasso (Bellot,
2021)) and PySINDy (de Silva et al] [2020)). Shown are the absolute values for the adjacency matrices
referred to the regularly sampled (irr = 0.0) and non-noisy (o = 0) setting.
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Figure 10: Example of a chemical reaction network modeling the transcriptional dynamics of a gene.

E.3 Gene Regulatory Network Inference

We apply C-NODE to real mouse single-cell RNA-seq data from (Pijuan-Sala et al.| [2019) (GEO accession
number: GSE87038). We select a branch of data in which blood progenitors differentiate into Erythroid cells
with a total of 9,192 cells (or samples). The count matrix is normalized to one million counts per cell. We
randomly subset 300 cells from all 9,192 as training data for C-NODE. We observe in Figure [T1] that the
inferred GRN using GATA and hemoglobin genes resembles the one in Figure [6]

In Figure [I2] and Figure [I3] we show additional results for GRN inference of single-cell mouse data. Figure
shows the predictions of C-NODE. The partial derivatives in Figure [I3] indicate that despite non-linear
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Figure 11: Gene regulatory network inference results using mouse dataset with 7 genes.

Table 2: The inferred TFs for Erythroids using C-NODE.

CTCF, E2F1, E2F3, E2F8, ETV6, GATA1, GFI1B, KLF1,
KLF13, MAFG, MAZ, MXI1, MYBL2, NFE2L2, NFIA, SP4,
RREB1,RUNX1, SOX4, SOX6, SREBF1, TAL1

activations, the associations are mostly linear for the target genes except for Hbb-y. This suggests that linear
f* € Fin may indeed be a decent approximation for certain gene regulatory networks.

For the large dataset shown in Figure[I2] the gene set enrichment analysis uses a priori gene sets that involve
in known biological pathways. For each list of dependent genes inferred using C-NODE, we then analyze
whether the majority of genes in each pathway fall in the extremes of this list.
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Figure 13: Gradients for the target genes, related to Figure
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Figure 14: The important genes extracted using C-NODE are Erythroid specific and have negligible overlap
with spurious genes.
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