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ABSTRACT

Learning measure-to-measure mappings is a crucial task in machine learning, fea-
tured prominently in generative modeling. Recent years have witnessed a surge of
techniques that draw inspiration from optimal transport (OT) theory. Combined
with neural network models, these methods collectively known as Neural OT use
optimal transport as an inductive bias: such mappings should be optimal w.r.t. a
given cost function, in the sense that they are able to move points in a thrifty way,
within (by minimizing displacements) or across spaces (by being isometric). This
principle, while intuitive, is often confronted with several practical challenges that
require adapting the OT toolbox: cost functions other than the squared-Euclidean
cost can be challenging to handle, the deterministic formulation of Monge maps
leaves little flexibility, mapping across incomparable spaces raises multiple chal-
lenges, while the mass conservation constraint inherent to OT can provide too
much credit to outliers. While each of these mismatches between practice and
theory has been addressed independently in various works, we propose in this
work an elegant framework to unify them, called generative entropic neural op-
timal transport (GENOT). GENOT can accommodate any cost function; handles
randomness using conditional generative models; can map points across incompa-
rable spaces, and can be used as an unbalanced solver. We evaluate our approach
through experiments conducted on various synthetic datasets and demonstrate its
practicality in single-cell biology. In this domain, GENOT proves to be valu-
able for tasks such as modeling cell development, predicting cellular responses to
drugs, and translating between different data modalities of cells.

1 INTRODUCTION

Mapping a probability distribution onto another is a ubiquitous challenge in machine learning, with
many implications in the field of generative modeling. Optimal transport (OT) has arisen in a few
years as a major purveyor of tools to better address these challenges, both in theory and practice.
The focus of OT lies on finding maps that can effectively transform a distribution of matter onto
another, by minimizing a certain notion of cost (Santambrogio, 2015). Originally rooted in physics,
the application of OT to large-dimensional problems arising in machine learning and sciences has
necessitated various modifications and adaptations. Starting with solvers that can solve approximate
matching problems at large scales (Cuturi, 2013; Peyré et al., 2016; Scetbon et al., 2021; 2022), a
recent plethora of OT-inspired training approaches for neural networks has emerged (Makkuva et al.,
2020; Korotin et al., 2020; Asadulaev et al., 2022; Fan et al., 2020; Uscidda & Cuturi, 2023; Lipman
et al., 2023; Tong et al., 2020; 2023b). As an illustration of this overall trend, the applications of OT
to single-cell genomics have evolved from advanced matching problems (Schiebinger et al., 2019;
Demetci et al., 2022), towards neural-based approaches that can, for instance, predict the response
of cells to various perturbations (Bunne et al., 2021; 2022). Our goal in this paper is to address the
various challenges that still stand in the way of applying OT to the most pressing scientific tasks.

From Linear to Quadratic Neural OT Maps. Optimal transport is primarily used through the
Kantorovich problem to put in correspondence distributions taking values in the same space X ,
pend the existence of a cost c(x, y) for any two points x, y ∈ X . Most of the theory is available
in that regime, notably for simpler costs such as the squared Euclidean distance (Santambrogio,
2015, §1.3). We refer to such problems as linear OT problems. Yet, more challenging applicative
scenarios sought by practitioners involve source and target distributions that do not live in the same
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space, e.g. X and Y have differing dimensions, as in (Demetci et al., 2022). The challenge in that
case is that no cost functions are known, requiring the use of quadratic losses (Mémoli, 2011; Sturm,
2020), yielding the so-called Gromov-Wasserstein (GW) problem. While theory is far more scarce
in these regimes, practitioners expressed major interest in that flexibility, going as far as proposing,
with the Fused Gromov-Wasserstein (FGW) distance, a tool that blends both linear and quadratic
approaches (Vayer et al., 2018), as in (Klein et al., 2023; Lange et al., 2023; Nitzan et al., 2019; Zeira
et al., 2022). There exists, however, to our knowledge, only one formulation of a neural quadratic
OT method, which is limited to learning deterministic maps for the inner product costs and whose
training procedure involves a min-max-min optimization procedure (Nekrashevich et al., 2023).

From Deterministic to Stochastic Maps. The classic (Monge) deterministic map can lack flex-
ibility in practice, both at estimation and inference time. In the quadratic case, that map may not
exist (Dumont et al., 2022). Practitioners may favor, instead, stochasticity, which would account
naturally for instance, for the non-determinism of cell evolutions (Elowitz et al., 2002). Stochastic
formulations can also produce a conditional distribution that can be used to quantify uncertainty. In
the discrete setting, this property is fulfilled by entropy-regularized OT (EOT) (Cuturi, 2013).

Flexibility in Mass Conservation. In numerous real-world applications, the data acquisition pro-
cess can be error-prone, resulting in outliers. To mitigate this, unbalanced OT (UOT) formulations
that can discard observations have been proposed (Frogner et al., 2015; Chizat et al., 2018; Séjourné
et al., 2021), with numerous applications to generative modeling (Balaji et al., 2020; Yang & Uhler,
2019) and single-cell genomics (Schiebinger et al., 2019; Eyring et al., 2022; Lübeck et al., 2022).

Contributions. We propose a flexible neural OT framework that satisfies all requirements above:

• We propose the first method to compute neural EOT couplings in both Kantorovich and GW
settings by fitting stochastic maps to their conditional distributions (Prop. 3.1) using conditional
flow matching (Lipman et al., 2023) as a building block. In particular, GENOT works with any
cost function between samples.

• By showing that solving an unbalanced EOT problem is equivalent to solving a balanced one
between re-weighted measures (Prop. 3.2) that can be estimated consistently (Prop. 3.3), we in-
troduce U-GENOT to solve unbalanced EOT problems.

• We extend (U-)GENOT to solve the (unbalanced) entropic Fused GW problem (§ 3.3). To our
knowledge, GENOT is the first neural OT method to solve a continuous Fused GW problem.

• We demonstrate the applicability of GENOT in various single-cell biology problems. In particu-
lar, we (i) quantify lineage branching events in the developing mouse pancreas, (ii) predict cellular
responses to drug perturbations along with a well-calibrated uncertainty estimation, and (iii) in-
troduce a novel method to translate ATAC-seq data to RNA-seq data.

2 BACKGROUND

Notations. We consider throughout this work two compact subsets X ⊂ Rp, Y ⊂ Rq , referred to as
the source and the target domain, respectively. In general, p ̸= q. The sets of positive measures and
probability measures on X are denoted byM+(X ) andM+

1 (X ), respectively. For π ∈ M+(X ×
Y), we denote its marginals by π1 := p1♯π and π2 := p2♯π. Then, for µ ∈ M+(X ), ν ∈ M+(Y),
Π(µ, ν) is the set of probability measures with respective marginals µ and ν, i.e. Π(µ, ν) = {π :

π1 = µ, π2 = ν} ⊂ P(X × Y). We define dµ
dν to be the relative density of µ w.r.t. ν and write

µ = dµ
dν · ν accordingly. For ρ, γ ∈M+(X ), KL(ρ|γ) =

∫
X log( dρdγ ) dρ−

∫
X dγ +

∫
X dρ.

2.1 ENTROPIC OPTIMAL TRANSPORT

The Entropic Kantorovich Problem. Let c : X × Y → R be a cost function, µ ∈ M+
1 (X ), ν ∈

M+
1 (Y) and ε ≥ 0. The entropy-regularized OT problem reads

min
π∈Π(µ,ν)

∫
X×Y

c(x,y) dπ(x,y) + εKL(π|µ⊗ ν) . EK

A solution π⋆
ε of (EK) always exists. With ε = 0, we recover the classical Kantorovich (1942)

problem. When ε > 0, the optimal coupling π⋆
ε is unique. If µ and ν are discrete, (EK) can be

solved with the Sinkhorn algorithm (Cuturi, 2013).
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The Entropic Gromov-Wasserstein Problem. As opposed to considering an inter-domain cost
defined on X × Y , the entropic Gromov-Wasserstein problem is concerned with seeking couplings
based on intra-domain cost functions cX : X × X → R and cY : Y × Y → R:

min
π∈Π(µ,ν)

∫
(X×Y)2

|cX (x,x′)− cY(y,y
′)|2 dπ(x,y) dπ(x′,y′) + εKL(π|µ⊗ ν). EGW

With ε = 0, we recover the Gromov-Wasserstein problem (Mémoli, 2011). As in the Kantorovich
setting, using ε > 0 comes with favorable computational properties, since for discrete µ,ν, we can
solve (EGW) with a mirror-descent scheme based on the Sinkhorn algorithm (Peyré et al., 2016).

Unbalanced Extensions. The EOT formulations presented above can only handle measures with
the same total mass. Unbalanced optimal transport (UOT) (Liero et al., 2018; Chizat et al., 2018)
lifts this constraint by penalizing the deviation of p1♯π to µ and p2♯π to ν with a divergence. Using
the KL divergence and introducing λ1, λ2 > 0 controlling how much mass variations are penalized
as opposed to transportation, the unbalanced extension of (EK) seeks a measure π ∈M+(X × Y):

min
π∈M+(X×Y)

∫
X×Y

c(x,y) dπ(x,y) + εKL(π|µ⊗ ν) + λ1KL(π1|µ) + λ2KL(π2|ν). UEK

This problem can be solved efficiently in a discrete setting using a variant of the Sinkhorn algorithm
(Frogner et al., 2015; Séjourné et al., 2023a). Analogously, the GW formulation (EGW) also admits
an unbalanced generalization, which reads

min
π∈M+(X×Y)

∫
(X×Y)2

|cX (x,x′)− cY(y,y
′)|2 dπ(x,y) dπ(x′,y′)

+ εKL⊗(π|µ⊗ ν) + λ1KL⊗(π1|µ) + λ2KL⊗(π2|ν),
UEGW

where KL⊗(ρ|γ) = KL(ρ ⊗ ρ|γ ⊗ γ). This can also be solved using an extension of Peyré
et al. (2016)’s scheme introduced by Séjourné et al. (2023b). For both unbalanced problems (EK)
and (UEGW), instead of directly selecting λi, we introduce τi = λi

λi+ε s.t. we recover the hard
marginal constraint for τi = 1, when λi → +∞. We write τ = (τ1, τ2) accordingly.

2.2 CONDITIONAL FLOW MATCHING

Provided a prior distribution ρ0 ∈ M+
1 (Rd) and a time-dependent vector field vt, one can define a

probability path (pt)t∈[0,1] starting from ρ0 using the flow (ϕt)t∈[0,1] induced by the ODE

d

dt
ϕt(z) = vt(ϕt(z)), ϕ0(z) = z, (1)

by setting pt = ϕt♯ρ0. In that case, we say that vt generates the path pt through the flow ϕt.
Continuous Normalizing Flows (Chen et al., 2018) model the vector field with a neural network
vt,θ, leading to a deep parametric model of the flow, which is trained to match a terminal condition
defined by a target distribution p1 = ρ1 ∈M+

1 (Rd). (Conditional) Flow Matching (CFM) (Lipman
et al., 2023) is a simulation-free technique to train CNFs by constructing probability paths between
individual data samples z0 ∼ ρ0, z1 ∼ ρ1, and minimizing the loss

LCFM(θ) = Et∼U([0,1]),Z0∼ρ0,Z1∼ρ1
[∥vt,θ (tZ0 + (1− t)Z1)− (Z1 − Z0)∥22]. (2)

If this loss is 0, then vt,θ generates a probability path between ρ0 and ρ1, i.e. the induced flow
satisfies ϕ1♯ρ0 = ρ1 (Lipman et al., 2023)[Theorem 1]. To sample from ρ1, we solve the ODE (1)
with z0 sampled from ρ0, and therefore ϕ1(z0) is a sample from ρ1

3 GENERATIVE ENTROPIC NEURAL OPTIMAL TRANSPORT

In this section, we introduce GENOT, a method to learn EOT couplings by learning their conditional
distributions. In § (3.1), we first focus on the balanced OT case, when the source and the target
measures have the same mass, and show that GENOT can solve (EK) or (EGW). Second, in § (3.2),
we extend GENOT to the unbalanced setting by loosening the conservation of mass constraint and
defining U-GENOT, which can be used to solve problems (UEK) and (UEGW). Finally, in § 3.3,
we highlight that GENOT also adresses a fused problem, combining (EK) and (EGW).
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3.1 LEARNING ENTROPIC OPTIMAL COUPLINGS WITH GENOT

Let µ ∈ M+
1 (X ), ν ∈ M

+
1 (Y) and π⋆

ε be an EOT coupling between µ and ν, which can be a
solution of problem (EK) or (EGW). The measure disintegration theorem yields

dπ⋆
ε (x,y) = dπ⋆

ε,1(x) dπ
⋆
ε (y|x) = dµ(x) dπ⋆

ε (y|x) . (3)

Knowing µ, we can hence fully describe π⋆
ε via the conditional distributions (π⋆

ε (·|x))x∈X . The
latter are also of great practical interest, as they provide a way to transport a source sample x ∼ µ
to the target domain Y; either stochastically by sampling y1, ...,yn ∼ π⋆

ε (·|x), or deterministically
by averaging over conditional samples:

Tε(x) := EY∼π⋆
ε (·|x)[Y ] = E(X,Y )∼π⋆

ε
[Y |X = x] . (4)

Moreover, we can compute any statistic of π⋆
ε (·|x) to assess the uncertainty surrounding this predic-

tion. In the following, we elaborate on our approach for calculating these conditional distributions.

Noise Outsourcing. Let ρ ∈ M+
1 (Z) be an atomless distribution on an arbitrary Borel space

Z , refer to as the noise. The noise outsourcing lemma (Kallenberg, 2002) states that there exists
a collection of maps {T ⋆(·|x)}x∈X with T ⋆(·|x) : Z → Y s.t. for each x in the support of µ,
π⋆
ε (·|x) = T ⋆(·|x)♯ρ, i.e. if Z ∼ ρ, then Y = T ⋆(Z|x) ∼ π⋆

ε (·|x). Each T ⋆(·|x) generates a
distribution from a point x, by ”outsourcing” the noise vectors Z ∼ ρ. We refer to {T ⋆(·|x)}x∈X
as a collection of optimal conditional generators since they generate the conditional distributions of
π⋆
ε . Conversely, noise outsourcing provides a way to define neural couplings πθ by parameterizing

their conditional generators {Tθ(·|x)}x∈X with neural networks. To obtain πθ ≈ π⋆
ε , we then need

Tθ(·|x) to generate π⋆
ε (·|x) by outsourcing the noise ρ, for any source sample x in the support of µ.

Learning the Conditional Generators. In the following, we learn a collection of maps
{Tθ(·|x)}x∈X fitting the constraint Tθ(·|x)♯ρ ≈ π⋆

ε (·|x) for any x in the support of µ. Instead
of directly modeling Tθ(·|x) with a neural network, we employ the CFM framework discussed in
§ 2.2. To that end, we first set Z = Rq and the noise ρ = N (0, Iq). Recall that q is the dimension of
the target domain Y . Then, we parameterize each Tθ(·|x) implicitly as the flow induced by a neural
vector field vt,θ(·|x) : Rq → Rq . Namely Tθ(·|x) = ϕ1(·|x) where ϕt(·|x) solves

d

dt
ϕt(z|x) = vt,θ(ϕt(z|x)|x), ϕ0(z|x) = z. (5)

We stress that while x ∈ X ⊂ Rd, the flow from ρ to π⋆
ε (·|x) is defined on Rq ⊃ Y . Hence, we can

map samples within the same space when p = q, but also across incomparable spaces when p ̸= q.
In particular, this allows us to solve the Gromov-Wasserstein problem (EGW). Thus, for each x, we
optimize vt,θ(·|x) by minimizing the CFM loss (2) with source ρ and target π⋆

ε (·|x), i.e.

Et∼U([0,1]),Z∼ρ,Y∼π⋆
ε (·|x)[∥vt,θ ((1− t)Z + tY |x)− (Y − Z)∥22] . (6)

Averaging for all x in the support of µ and using Fubini’s Theorem, we arrive at the GENOT loss

LGENOT(θ) = Et∼U([0,1]),Z∼ρ,X∼µ,Y∼π⋆
ε (·|X)[∥vt,θ ((1− t)Z + tY |X)− (Y − Z)∥22] . (7)

GENOT is a well-posed loss in the sense that, in the idealized asymptotic, infinite sample setting,
assuming neural network architectures that are expressive enough, one could provably recover the
original entropic coupling (and its conditional distributions), as shown in the Proposition below.
Proposition 3.1 (Well-posedness of GENOT Loss). Suppose that LGENOT(θ) = 0. Then the flows
{ϕ1(·|x)}∈X , induced by the velocity fields {vt,θ(·|x)}∈X , are a collection of optimal conditional
generators. Namely, for x in the support of µ, Z ∼ ρ and Y = ϕ1(Z|x) denoting the solution of the
ODE (5), then Y ∼ π⋆

ε (·|x), therefore this ideal conditional vector field vt,θ recovers π⋆
ε .

We optimize the sample-based GENOT loss, using mini-batches. This involves (i) estimating a
discrete coupling π̂ε from samples x1, . . . ,xn from µ and y1, . . . ,yn from ν, and (ii) sampling
its discrete conditional distributions, to recover paired samples. Algorithm 1 details the overall
procedure, using noise and time samples. GENOT can be thought of as a conditional CFM model:
For each x, using CFM, train a conditional vector field vt,θ(·|x) to generate π⋆

ε (·|x) from noise ρ.

Bias and Mini-batches. Quantifying non-asymptotically the bias resulting from minimizing a
sample-based GENOT loss, and not its population value, is a challenging task. The OT-inspired
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generative modeling literature (Genevay et al., 2019a; Salimans et al., 2018; Uscidda & Cuturi,
2023; Tong et al., 2023b) mentions recurrently this aspect, see also (Fatras et al., 2021). Analyz-
ing these non-asymptotic properties becomes even harder when considering conditional mappings
across spaces, in a GW setting, as we do here since discrete solvers do not return, in general, a
globally optimal sample-based coupling. Yet, our goal in this paper is not to estimate a deterministic
Monge map or vector field (Benamou & Brenier, 2000), we target explicitly the entropic coupling. In
that sense, using a large ε does help, because of two qualitative factors: In the Kantorovich problem,
all statistical recovery rates that relate to entropic costs (Genevay et al., 2019b; Mena & Niles-Weed,
2019) or maps (Rigollet & Stromme, 2022), for a fixed ε > 0, have a far more favorable regime,
with a parametric rate that dodges the curse of dimensionality. While these statistics are less studied
for the GW case, Rioux et al. (2023) have recently shown that for sufficiently large ε, GW becomes
a convex problem, making optimization more stable. Qualitatively, large ε will be therefore useful
on both statistical and computational fronts. The simpler alternative of independent sampling boils
down effectively to an infinite ε.

GENOT Addresses Any Cost. Thanks to Prop. 3.1, we can use GENOT to solve (EK) and (EGW)
problems. In both cases, we make no assumptions on the cost functions, and only need to evaluate
these costs to estimate π⋆

ε . In particular, we can use costs that are implicitly defined and whose
evaluation requires a non-differentiable sub-routine. For instance, recent works have proposed using
the geodesic distance on the data manifold as cost, which can be approximated from samples by
considering the shortest path distance on the k-nn graph induced by the Euclidean distance (Demetci
et al., 2022). Using data-driven cost functions is crucial for many applications as in some single-cell
genomic tasks (Huguet et al., 2022; Klein et al., 2023).

3.2 U-GENOT: EXTENSION TO THE UNBALANCED SETTING

Re-Balancing the UOT Problems. In its standard form, GENOT respects marginal constraints, so it
cannot directly tackle unbalanced formulations (UEK) or (UEGW). We show that such unbalanced
problems can be re-balanced. (Lübeck et al., 2022; Yang & Uhler, 2019) introduced previously
these ideas in the Monge map estimation setting, namely, in a static and deterministic setup. Besides
this important conceptual difference, various aspects differentiate further our approach: (Lübeck
et al., 2022) define unbalanced couplings between mapped instances of the source measure using an
ICNN (significantly closer to the target), and vice-versa, whereas we directly target the unbalanced
coupling between source and target for any cost; (Yang & Uhler, 2019) provide an asymmetric
formulation that only considers modulations of the source distribution to the target distribution. Our
method stems from the fact that, for Kantorovich and GW cases, we can show that the unbalanced
EOT coupling π⋆

ε,τ between µ ∈M+(X ) and ν ∈M+(Y) solves a balanced EOT problem between
its marginals, which are re-weighted versions of µ and ν that have the same mass.
Proposition 3.2 (Re-Balancing the unbalanced problems.). Let π⋆

ε,τ be an unbalanced EOT cou-
pling, solution of (UEK) or (UEGW) between µ ∈M+(X ) and ν ∈M+(Y). We note µ̃ = p1♯π

⋆
ε,τ

and ν̃ = p2♯π
⋆
ε,τ its marginals. Then, in both cases, µ̃ (resp. ν̃) has a density w.r.t µ (resp. ν) i.e. it

exists η, ξ : Rd → R+ s.t. µ̃ = η · µ and ν̃ = ξ · ν. Moreover, µ̃ and ν̃ have the same mass and

1. (Kantorovich) π⋆
ε,τ solves the balanced problem (EK) between µ̃ and ν̃ with the same ε.

2. (Gromov-Wasserstein) Provided that cX and cY are conditionally positive (or conditionally neg-
ative) kernels (see Def. B.1), π⋆

ε,τ solves the balanced problem (EGW) between µ̃ and ν̃ with
ε′ = m(π⋆

ε,τ ) ε, where m(π⋆
ε,τ ) = π⋆

ε,τ (X × Y) is the total mass of π⋆
ε,τ .

Remark. In various experimental settings, µ and ν have mass 1 and we impose one of the two hard
marginal constraints, for instance on µ, by setting τ1 = 1. Then ν̃ has also mass 1 and m(π⋆

ε,τ ) = 1,
so we keep the same regularization strength ε by re-balancing (UEGW).

Learning the Coupling and the Re-Weightings Simultaneously. Thanks to Prop. 3.2, we aim to (i)
learn a balanced EOT coupling between µ̃ and ν̃ along with (ii) the re-weighting functions η, ξ. The
latter are crucial since they model the creation and destruction of mass. We do both simultaneously
by adapting the GENOT procedure. More formally, we seek to optimize the U-GENOT loss

LU-GENOT(θ) = Et∼U([0,1]),Z∼ρ,X∼µ̃,Y∼π⋆
ε,τ (·|X)[∥vt,θ (tZ + (1− t)Y |X)− (Y − Z)∥22] (i)

+ EX∼µ[(η(X)− ηθ(X))2] + EY∼ν [(ξ(Y )− ξθ(Y ))2] . (ii)
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As with GENOT, we simply need to estimate the unbalanced OT coupling π̂ε,τ from samples
X1, . . .xn from µ and y1, . . .yn from ν to estimate that loss. We build upon theoretical insights
from the Kantorovich case, which we extend in practice to the Gromov-Wasserstein case.
Proposition 3.3 (Estimation of the re-weightings.). Let π̂ε,τ the solution of (UEK) computed on
samples. Let a = π̂ε,τ1n and b = π̂⊤

ε,τ1n be its marginal weights and let η̂n(xi) := nai and
ξ̂n(yi) := n bi. Then, almost surely, η̂n(xi)→ η(xi) and ξ̂n(xi)→ ξ(yi).

Using Prop. 3.2, π̂ε,τ is a balanced EOT coupling between its marginals, which are empirical ap-
proximations of µ̃ and ν̃. We hence estimate the term (i) of the loss as we do in the balanced case
by sampling from the discrete conditional distribution. Furthermore, Prop.3.3 highlights that the es-
timation of π̂ε,τ also provides a consistent estimate of the re-weighting function evaluations at each
xi and yi. This enables the estimation of the term (ii). Therefore, as with GENOT, each U-GENOT
iteration only requires a call to a discrete solver. We detail our training procedure in algorithm 2.

3.3 COMBINING KANTOROVICH AND GROMOV-WASSERSTEIN TO THE FUSED SETTING

We show in § 3.1 and § 3.2 how to use our method to map samples within the same space, or
across incomparable spaces, by solving (EK) or (EGW) and their unbalanced extensions. On the
other hand, there are cases where the source and the target domains are only partially incomparable,
leading to a problem that combines both OT formulations (Vayer et al., 2018). Suppose that the
source and target space can be decomposed as X = Ω×X̃ and Y = Ω×Ỹ , respectively. Moreover,
assume we are given an inter-domain cost c : Ω×Ω→ R along with the intra-domain costs cX̃ , cỸ .
The entropic fused-Gromov-Wassertein (FGW) problem can then be defined as

min
π∈Π(µ,ν)

∫
((Ω×X̃ )×(Ω×Ỹ))2

L ((u,x), (v,y),x′,y′) dπ ((u,x), (v,y)) dπ(x′,y′)+εKL(π|µ⊗ν) ,

EFGW
where L ((u,x), (v,y),x′,y′) := (1 − α) c(u,v) + α |cX̃ (x,x′) − cỸ(y,y

′)|2 and α ∈ [0, 1]
determines the influence of the components of the space decompositions. When α = 1, we recover
the pure GW setting. The above fused problem admits an unbalanced extension, which can be
derived exactly in the same way as (UEGW) using the quadratic KL⊗ (Thual et al., 2023).

(U-)GENOT Addresses the Fused Setting. Whether in the balanced or unbalanced setting, we
can use our method to learn a specific coupling as soon as it can be estimated from samples. We
stress that the discrete solvers we use for problems (EGW) and (UEGW) are still applicable in the
fused setting. As a result, we can compute discrete fused couplings and then solve (EFGW) and its
unbalanced counterpart with (U-)GENOT. To illustrate this idea more precisely, take a solution π⋆

α
of (EFGW). Learning π⋆

α with our method amounts to training vector fields that are conditioned on
pairs of modality from the source domain vt,θ(·, |u,x), to sample pairs of modality from the target
domain via the induced flow: z ∼ ρ, ϕ1(z|u,x) = (v,y) ∼ π⋆

α(·|u,x). Given each term of the
fused problem (EFGW), the sampled modalities (v,y) minimize transport cost quantified by c along
the first modality, while being ”isometric” w.r.t. cX̃ and cỸ on the second modality.

4 RELATED WORK

Neural EOT. While GENOT is the first model to learn neural EOT couplings in the (Fused)
Gromov-Wasserstein or the unbalanced setting, various methods have been proposed in the (bal-
anced) Kantorovich setting. The first class of methods solves the (EK) dual problem. While some
of them (Genevay et al., 2019a) do not allow direct sampling according to π⋆

ε , Daniels et al. (2021)
model the conditional distribution π⋆

ε (·|x). However, this method is (i) costly as it employs Langevin
sampling at inference and (ii) numerically unstable as it requires the exponentiation of large num-
bers. Mokrov et al. (2023) proposed another approach modeling π⋆

ε (·|x) leveraging energy-based
models, but is computationally expensive since it relies on Langevin sampling in each training itera-
tion. Other Kantorovich EOT solvers build upon the link between (EK) and the Schrödinger bridge
(SB) problem. They model the EOT plan as a time-evolving stochastic process with fixed marginal
constraints, endowed with learnable drift and diffusion terms (De Bortoli et al., 2021; Chen et al.,
2021; Vargas et al., 2021; Gushchin et al., 2022). Although these methods have shown good perfor-
mance on image data, they are very costly since they require simulation-based training. A recent line
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Figure 1: Prediction by UGENOT-K and ground truth of the unbalanced entropy-regularized trans-
port plan between mixtures of Gaussians. The first column shows the source (top) and target (bot-
tom) distribution. The second and third column show the marginal distributions of the true and the
learnt transport plan, respectively. The fourth column compares the learnt (top) with the true (bot-
tom) transport plan, while the fifth column plots conditional distributions. Here, ε = 0.05.

of work proposed to train such models in a completely simulation-free manner (Tong et al., 2023a;b;
Shi et al., 2023; Liu et al., 2023) via score or flow matching. However, these methods can only be
used for the squared Euclidean cost. Indeed, they rely on the fact that the marginals of the SB can be
characterized as a mixture of Brownian bridges weighted by an EOT plan. However, this property
is true only when we choose the Wiener process as a reference measure in the SB problem, which is
limited to using c(x,y) = ∥x− y∥22 in (EK) (Léonard, 2013)[Eq. 1.2]. On the other hand, GENOT
is the first neural EOT framework that can handle any cost function, even those defined implicitly,
and whose evaluation requires a call to a non-differentiable sub-routine, like the geodesic distance
on the data manifold. This point allows us to emphasize that our method fundamentally differs from
theirs since we do not exploit the link between EOT and SB. Our approach is purely conditional and
uses flow matching only as a powerful generative black box to learn, for each x, a flow from ρ to
each π⋆

ε (·|x). Notably, since we set ρ ∈ M+
1 (Y) each flow occurs in the target domain Y , which

allows us to map distributions across spaces, while (Tong et al., 2023a;b; Shi et al., 2023; Liu et al.,
2023) model (stochastic) flow directlty from µ to ν, requiring from µ and ν to lie in the same space.

Computation of Neural Couplings. Another line of work considers computing neural couplings
through the weak OT paradigm Korotin et al. (2022a;b); Asadulaev et al. (2022); Gazdieva et al.
(2022), by solving a challenging min-max problem. However, (i) their method only enables mapping
within the same space, (ii) in the balanced setting, and (iii) cannot handle EOT problems since they
would require estimating the entropy of the neural coupling from samples at each iteration.

5 EXPERIMENTS

We demonstrate the applicability and versatility of the GENOT framework on toy data and single-
cell data to map within the same space and across incomparable spaces. Metrics are discussed in
appendix C and details on the single-cell datasets can be found in appendix D. Further experimental
details or results for each experiment are reported in appendix E. Setups for competing methods
are listed in appendix F. Details on the implementation of GENOT can be found in appendix G.
We introduce the notation GENOT-K for the GENOT model solving problem (EK) while GENOT
models solving the tasks (EGW) and (EFGW) are referred to as GENOT-GW and GENOT-FGW,
respectively. The prefix U is used whenever consider an unbalanced problem, as described in § 3.2.
Moreover, when reporting results based on the conditional mean of a GENOT model, we add the
suffix CM to the model name. If not stated otherwise, we use the squared Euclidean distance as cost.

5.1 GENOT-K TO MAP WITHIN SPACES

U-GENOT-K on simulated data To visualize the capabilities of UGENOT-K to learn unbalanced
entropy-regularized transport plans and rescaling functions, we compare its predictions with the OT
plan obtained from a discrete EOT solver. Fig. 1 shows that the unbalanced entropy-regularized
transport plan with ε = 0.05 and τ1 = τ2 = 0.98 between mixtures of Gaussians is accurately learnt
by U-GENOT-K. The influence of the unbalancedness parameters τ1, τ2 is visualized in Fig. 7. The
performance of GENOT-K is further assessed, in E, on its ability to learn the entropic OT coupling
between Gaussian distributions.
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Figure 3: Left: Calibration score for the predictions of GENOT-K for modeling cellular responses to
163 cancer drugs (appendix C.1). Right: Accuracy of cellular response predictions of U-GENOT-K
for different cancer drugs with varying unbalancedness parameter τ = τ1 = τ2. For each τ , U-
GENOT-K was run three times with different seeds.

Figure 2: UMAP (McInnes et al., 2018)
of the mouse pancreas development
dataset colored by uncertainty per cell
in the source distribution. Cells in the
target distribution are colored in gray.

U-GENOT-K for modeling single-cell trajectories OT
has been successfully applied to recover cellular trajecto-
ries in time-resolved single-cell data (Schiebinger et al.,
2019). Due to the ever increasing size of these datasets
(Haniffa et al., 2021), neural OT solvers are of particu-
lar interest and deterministic Monge map estimators have
been successfully applied to millions of cells (He et al.,
2023). We apply GENOT-K to a dataset capturing gene
expression of the developing mouse pancreas at embry-
onic days 14.5 and 15.5 (Bastidas-Ponce et al., 2019). We
assess the fitting property of the learnt plan by computing
the Sinkhorn divergence (Feydy et al., 2019a) between the
predicted target distribution p2♯π̂ε and the target distribu-
tion see (E.2). Fig. 12 shows that GENOT-K outperforms
competing methods.

A key feature of all GENOT models is the ability to sample from the conditional distribution.
Indeed, it is indispensable to stochastically model cellular trajectories, as cells are known to
evolve non-deterministically (Elowitz et al., 2002). Following Gayoso et al. (2022), we compute
cos-var(π̂ε(·|x)) = VarY∼π̂ε(·|x)[cos-sim(Y,EY∼π̂ε(·|x)[Y ])], where cos-sim(·, ·) denotes the co-
sine similarity, to assess the uncertainty of cell trajectories in the developing mouse pancreas (ap-
pendix C.1). We expect high uncertainty in cell types with fate decisions and low variance in mature
cell types or cell types with a homogeneous descending population. Indeed, Fig. 2 and Fig. 13 show
that GENOT-K helps to uncover lineage branching events.

The pancreas dataset considered so far subsets the original dataset to one cell lineage (endocrine)
to prevent obtaining biologically implausible couplings. Indeed, table 1 shows that in the balanced
case, the cell lineage transition score (see C.2) shows that only 66% of the cells are mapped to the
correct lineage. By loosening the conservation of mass constraint, U-GENOT-K helps to counteract
the distributional shift introduced by different proliferation rates of cells and experimental biases.

Prediction of cellular responses to drug perturbations with U-GENOT-K In-silico perturbation
prediction is a promising approach to accelerate drug discovery and improve gene therapies (Ji et al.,
2021; Hetzel et al., 2022). Neural OT has been successfully applied to model cellular responses to
such perturbations, using deterministic Monge maps (Bunne et al., 2021; Uscidda & Cuturi, 2023).
GENOT has the comparative advantage that it can sample from the conditional distribution, which
allows for uncertainty quantification. We consider single-cell RNAseq data measuring the response
of cells to 163 cancer drugs (Srivatsan et al., 2020). Each drug has been applied to a population of
cells that can be partitioned into 3 different cell types. While there is no ground truth in the matching
between unperturbed and perturbed cells due to the destructive nature of sequencing technologies,
we know which unperturbed subset of cells is supposed to be mapped to which perturbed subset
of cells. We use this to define an accuracy metric (Appendix C.2). For the uncertainty metric, we
choose again cos-var. Fig. 3 shows that for 117 out of 163 drugs the model is perfectly calibrated
(Appendix C.1), while it yields a negative correlation between error and uncertainty only for one
drug. To improve the accuracy of GENOT-K, we leverage its unbalanced formulation. Fig. 3 shows
that allowing for mass variation improves the performance for nine different cancer drugs which are
known to have a strong effect. Fig. 17 and 18 confirm the results visually.
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Figure 5: UMAP embedding of transported cells and cells in the target distribution (left), and jointly
colored by cell type (right).

5.2 GENOT-GW AND GENOT-FGW TO MAP ACROSS SPACES

Figure 4: Mapping a Swiss roll in R3 (top left) to a spiral
in R2 (bottom left). Center: Color code tracks where sam-
ples from the source (top) are mapped to (bottom). Right
column: samples (top) and their conditional distributions.

GENOT-GW on simulated data.
We transport a Swiss role in R3 to
a spiral in R2. Fig. 4 shows that
GENOT-GW successfully mimics an
isometric alignment. Here, we set
ε = 0.01 and investigate its influence
in more detail in Fig. 19.

GENOT-GW for translating
modalities of single cells The
number of modalities which can
be simultaneously measured in a
single cell is limited due to technical
limitations. At the same time, new
technologies allow to capture a more
diverse set of modalities Baysoy et al.
(2023). Yet, it is important to match
measurements of different modalities
to obtain a more holistic view of the
profile of a cell. The discrete GW
formulation has been used to match
measurements of cells in different modalities (Demetci et al., 2022). We use GENOT-GW to
translate ATAC measurements to gene expression space on a bone marrow dataset (Luecken et al.,
2021). As both modalities were measured in the same cell, the true match of each cell is known.
We compare GENOT-GW with the discrete GW formulation (see F.2) and assess the performance
with the FOSCTTM (“Fractions of Samples Closer to the True Match”) score (see C.2). We
leverage the flexibility of GENOT and use an approximated geodesic distance (Crane et al., 2013)
rather than the Euclidean distances, which is not meaningful within embeddings of single-cell
measurements (Moon et al., 2018). Fig. 6 shows 3 results related to the FOSCTTM score. First,
using a graph-based cost is crucial in higher dimensions. Second, out-of-sample prediction for
discrete GW based on regression (GW-LR) is competitive in low-dimensions, but not for higher.
Third, taking the conditional mean as prediction improves the result with respect to the FOSCTTM
score. Regarding the distributional fitting property, GENOT models are clearly superior. Crucially,
Fig. 6 shows that the fitting property of GENOT models is not affected by the cost.

GENOT-FGW improves modality translation of single cells As the predictions yielded by GW-
based models are not satisfactory, we introduce a novel method for translating between ATAC and
RNA measurements by extending the model proposed by Demetci et al. (2022) to the fused setting.
Therefore, we infer approximate gene expression from the ATAC measurements using gene activity
(Stuart et al., 2021). We construct a joint space of the two modalities using a conditional VAE (Lopez
et al., 2018a). Fig. 20 shows that the additional fused term helps to obtain a significantly better
alignment compared to GENOT-GW, with the best GENOT-FGW CM model (weight parameter
α = 0.7) attaining a FOSCTTM score of below 0.05. It is important to note that incorporating the
GW terms is necessary for attaining good results as discussed in appendix E.3. Fig. 5 visualizes
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Figure 6: Benchmark (mean and std across three runs)
of GENOT-GW models against discrete GW (GW-LR, ap-
pendix F) on translating cells between ATAC space of di-
mension d1 and RNA space of dimension d2 for experiment
d1/d2. Performance is measured with the FOSCTTM score
(appendix C.2) and the Sinkhorn divergence between target
and predicted target distribution. While on the left, we learn
the EOT coupling for the squared Euclidean cost, we use the
geodesic cost on the right (Crane et al., 2013).

the push-forward of the learnt cou-
pling. The intertwinement of sam-
ples of the target and the predicted
target in the left panel visualizes
the distribution fitting property, while
the separation into cell types on the
right confirms the optimality of the
learnt coupling. See figures 23 and
24 for further visualizations. When
aligning multiple modalities of single
cells, we cannot assume to have the
same proportion of cell types in both
datasets, for example due to experi-
mental biases caused by sequencing
technologies. We simulate this set-
ting by removing cells belonging to
either of the cell types Proerythrob-
lasts, Erythroblasts or Normoblasts
in the source distribution. Table
3 shows that U-GENOT-FGW pre-
serves high accuracy while learning
meaningul rescaling functions.

Conclusion. We introduce GENOT,
a versatile neural OT framework to
learn cost-efficient stochastic maps
within the same space and/or across
incomparable spaces. GENOT is
flexible to the extent that the mass
conservation constraint can be loosened, and provides tools to sample targets from an input. GENOT
can be used within a wide array of tasks in single-cell biology.
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Thibault Séjourné, Gabriel Peyré, and François-Xavier Vialard. Unbalanced optimal transport, from
theory to numerics, 2023a.
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APPENDIX

A ALGORITHMS

Algorithm 1 GENOT

Require: Source distribution µ; target distribution ν; batch size n; number of (per x) conditional
sample k; number of iterations Titer, entropic regularization strength ε, discrete solver Solverε
to estimate π⋆

ε from samples, parameterized time-dependent velocity field vt,θ.
1: for t = 1, . . . , Titer do
2: Sample batches x1, . . .xn ∼i.i.d µ and y1, . . .yn ∼i.i.d ν.
3: Compute π̂ε = Solverε ({xi}ni=1, {yi}ni=1) ∈ Rn×n

+ .
4: for i = 1, . . . , n do
5: Sample from the discrete conditional distribution ŷi,1, . . . ŷi,k ∼ π̂ε(·|xi).
6: Sample noise vectors zi,1, . . . , zi,k ∼ ρ.
7: Sample time-steps ti,1, . . . , ti,k ∼ U([0, 1]).
8: end for
9: Estimate GENOT loss:

L̂GENOT(θ)←
1

n

n∑
i=1

1

k

k∑
j=1

∥vt,θ(ti,j zi,j + (1− ti,j) ŷi,j |xi)− (ŷi,j − zi,j)∥22 .

10: Update θ to minimize L̂GENOT.
11: end for

Algorithm 2 U-GENOT

Require: Source distribution µ; target distribution ν; batch size n; number of (per x) conditional
sample k; number of iterations Titer, entropic regularization strength ε, left and right unbal-
ancedness parameter τ = (τ1, τ2), discrete solver Solverε,τ to estimate π⋆

ε,τ from samples,
parameterized time-dependent velocity field vt,θ, parameterized re-weighting functions ηθ, ξθ.

1: for t = 1, . . . , Titer do
2: Sample batches x1, . . .xn ∼i.i.d µ and y1, . . .yn ∼i.i.d ν.
3: Compute π̂ε,τ ← Solverε,τ ({xi}ni=1, {yi}ni=1) O(n2) or O(n3), depending on solver.
4: Set the marginal weights: a← π̂ε,τ1n and b← π̂⊤

ε,τ1n.
5: Set µ̃n ←

∑n
i=1 aiδxi the left marginal of π̂ε,τ .

6: Sample x̃1, . . . , x̃n ∼ µ̃n.
7: for i = 1, . . . , n do
8: Sample from the discrete conditional distribution ŷi,1, . . . ŷi,k ∼ π̂ε,τ (·|x̃i).
9: Sample noise vectors zi,1, . . . , zi,k ∼ ρ.

10: Sample time-steps ti,1, . . . , ti,k ∼ U([0, 1]).
11: end for
12: Estimate U-GENOT loss:

L̂U-GENOT(θ)←
1

n

n∑
i=1

1

k

k∑
j=1

∥vt,θ(ti,j zi,j + (1− ti,j) ŷi,j | x̃i)− (ŷi,j − zi,j)∥22 .

+
1

n

n∑
i=1

(ηθ(xi)− nai)
2 +

1

n

n∑
i=1

(ξθ(yi)− nbi)
2

13: Update θ to minimize L̂U-GENOT.
14: end for
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B PROOFS

B.1 PROOFS OF § 3

Proposition 3.1 (Well-posedness of GENOT Loss). Suppose that LGENOT(θ) = 0. Then the flows
{ϕ1(·|x)}∈X , induced by the velocity fields {vt,θ(·|x)}∈X , are a collection of optimal conditional
generators. Namely, for x in the support of µ, Z ∼ ρ and Y = ϕ1(Z|x) denoting the solution of the
ODE (5), then Y ∼ π⋆

ε (·|x), therefore this ideal conditional vector field vt,θ recovers π⋆
ε .

Proof. This result follows directly from the construction of the loss. Suppose that LGENOT(θ) = 0.
By Fubini’s Theoreom, this implies that:

EX∼µEt∼U([0,1]),Z∼ρ,Y∼π⋆
ε (·|x)[∥vt,θ (tZ + (1− t)Y |X)− (Y − Z)∥22] = 0 . (8)

Since it is positive, the function
ℓ : x 7→ Et∼U([0,1]),Z∼ρ,Y∼π⋆

ε (·|)[∥vt,θ (tZ + (1− t)Y |x)− (Y − Z)∥22]
is therefore zero µ-a.e. which means that for any source sample x ∼ µ, one has ℓ(x) = 0. Moreover,
ℓ(x) is the CFM loss with source ρ and target π⋆

ε (·|x), applied to the vector field vt,θ(·|x). Therefore,
ℓ(x) = 0 implies that vt,θ(·|x) generates a probability path between ρ and π⋆(·|x) thanks to (Lipman
et al., 2023)[Theorem 1], which means that if ϕt(·|x) is the flow induced by vt,θ(·|x), ϕ1(·|x)♯ρ =
π⋆
ε (·|x). Therefore, {ϕ1(·|x}x∈X is a collection of optimal conditional generator.

Proposition 3.2 (Re-Balancing the unbalanced problems.). Let π⋆
ε,τ be an unbalanced EOT cou-

pling, solution of (UEK) or (UEGW) between µ ∈M+(X ) and ν ∈M+(Y). We note µ̃ = p1♯π
⋆
ε,τ

and ν̃ = p2♯π
⋆
ε,τ its marginals. Then, in both cases, µ̃ (resp. ν̃) has a density w.r.t µ (resp. ν) i.e. it

exists η, ξ : Rd → R+ s.t. µ̃ = η · µ and ν̃ = ξ · ν. Moreover, µ̃ and ν̃ have the same mass and

1. (Kantorovich) π⋆
ε,τ solves the balanced problem (EK) between µ̃ and ν̃ with the same ε.

2. (Gromov-Wasserstein) Provided that cX and cY are conditionally positive (or conditionally neg-
ative) kernels (see Def. B.1), π⋆

ε,τ solves the balanced problem (EGW) between µ̃ and ν̃ with
ε′ = m(π⋆

ε,τ ) ε, where m(π⋆
ε,τ ) = π⋆

ε,τ (X × Y) is the total mass of π⋆
ε,τ .

Definition B.1. A kernel k : Rd×Rd → R is conditionally positive (resp. negative) if it is symmetric
and for any x1, ...,xn ∈ Rd and a ∈ Rn s.t. a⊤1n = 0, one has

n∑
i,j=1

aiaj k(xi,xj) ≥ 0 (resp. ≤ 0)

Proof of 3.2. Step 1: Re-weightings. We first show that for π⋆
ε,τ solution of EK problem, it exists

η, ξ : Rd → R+ s.t. µ̃ = p1♯π
⋆
ε,τ = η · µ and ν̃ = p1♯π

⋆
ε,τ = ξ · ν. We then remind the EK problem

between µ and ν:

min
π∈M+(X×Y)

∫
X×Y

c(x,y) dπ(x,y) + εKL(π|µ⊗ ν) + τ1KL(π1|µ) + τ2KL(π2|ν) . (9)

The relative entropy term KL(π|µ⊗ν) in (9) is finite if and only if π admits a density with respect to
µ⊗ ν. Therefore, one can reformulate 9 by restricting to the plan π = h ·µ⊗ ν with (non-negative)
relative density h ∈ L+

1 (X ×Y) w.r.t. µ⊗ ν. Moreover, in that case, the left marginal π1 of π has a
density h1 w.r.t. µ and the right marginal π2 has a density h2 w.r.t. ν, and these densities are given
by: h1(·) :=

∫
Y h(·,y) dν(y) and h2(·) :=

∫
X h(x, ·) dµ(x). Indeed, for any Borel set A ⊂ X , one

has:
π1(A) = π(A× Y)

=

∫
X×Y

1A(x)f(x,y) dµ(x) dν(y)

=

∫
X
1A(x)

(∫
Y
f(x,y) dν(y)

)
dµ(x)

=

∫
X
1A(x)h1(x) dµ(x)

(10)
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where the penultimate line follows from Fubini’s theorem, so π1 = h1 · µ. We show similarly that
π2 = h2 · ν. Therefore, one can reformulate (9) as:

min
h∈L+

1 (X×Y)

∫
X×Y

c(x,y)h(x,y) dµ(x) dν(y)+εKL(h|µ⊗ν)+τ1KL(h1|µ)+τ2KL(h2|ν) (11)

where we extend the KL divergence for densities: KL(r|γ) =
∫
(r log(r) + r − 1) dγ. As a result,

it exists h⋆ ∈ L+
1 (X × Y) s.t. π⋆

ε,τ = h⋆ · µ⊗ ν and then µ̃ = η · µ and ν̃ = ξ · ν with η = h⋆
1 and

ξ = h⋆
2. Moreover, by definition, π⋆

ε,τ is a coupling between its marginal µ̃ and ν̃, so they have the
same total mass. Indeed, using Fubini’s Theorem twice, we get:∫

X×Y
dπ⋆

ε,τ (x,y) =

∫
X
dµ̃(x) =

∫
Y
dν̃(y) (12)

We now handle the Gromov-Wasserstein case, when π⋆
ε,τ solve problem UEGW. We then remind

problem UEGW between µ and ν:

min
π∈M+(X×Y)

∫
(X×Y)2

|cX (x,x′)− cY(y,y
′)|2 dπ(x,y) dπ(x′,y′)

+ εKL⊗(π|µ⊗ ν) + λ1KL⊗(π1|µ) + λ2KL⊗(π2|ν),
(13)

The relative entropy penalty is now quadratic: KL⊗(π|µ ⊗ µ) = KL(π ⊗ π|(µ ⊗ ν)2), where
(µ⊗ ν)2 = (µ⊗ ν)⊗ (µ⊗ ν) to lighten notations. Therefore, the above objective function is finite
i.f.f. π ⊗ π has a density w.r.t. (µ⊗ ν)2. Using arguments similar to the ones used above, it means
that the marginals of π⊗ π have a density w.r.t. the marginals of (µ⊗ ν)2, which implies that π has
a density w.r.t. (µ⊗ ν). Now, we get the result by following exactly the same strategy as above.

Remark B.2. Note that in both cases, since dµ̃(x) = η(x) dµ(x) and dν̃(y) = ξ(y) dν(y), the
equality of mass of µ̃ and ν̃ yields EX∼µ[η(X)] = EY∼ν [ξ(Y )] .

Step 2: Optimality in the balanced problem for the Kantorovich case. We now prove point 1,
stating that if π⋆

ε,τ solves problem UEK between µ and ν, then it solves problem EK between µ̃ and
ν̃ for the same entropic regularization strength ε.

We rely on duality and the specific structure of the optimal density h⋆ s.t. π⋆
ε,τ = h⋆ · µ ⊗ ν.

Thanks to Séjourné et al. (2023a, Prop. 2), one has the existence of the so-called entropic potentials
f⋆ ∈ C(X ), g⋆ ∈ C(Y) s.t.

h⋆(x,y) =
dπ⋆

ε,τ

d(µ⊗ ν)
(x,y) = exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

)
(14)

Moreover, by Nutz, Theorem 4.2, such a decomposition is equivalent to the optimality in prob-
lem EK. Therefore, π⋆

ε,τ is solves problem EK between its marginals µ̃ and ν̃, i.e.

π⋆
ε,τ = argmin

π∈Π(µ̃,ν̃)

∫
X×Y

c(x,y) dπ(x,y) + εKL(π|µ⊗ ν) . (15)

Step 3: Optimality in the balanced problem for the Gromov-Wasserstein case. We now prove
point 2, stating that, provided that the costs cX and cY are conditionally positive (or conditionally
negative), if π⋆

ε,τ is a solves problem UEGW between µ and ν, then it solves problem EGW between
µ̃ and ν̃ for the entropic regularization strength ε′ = m(π⋆

ε,τ ) ε.

Define the functional:

F : (γ, π) ∈M+(X × Y)2 7→
∫
(X×Y)2

|cX (x,x′)− cY(y,y
′)|2 dπ(x,y) dγ(x′,y′)

+ εKL(π ⊗ γ|(µ⊗ ν)2) + λ1KL(π1 ⊗ γ1|µ× µ) + λ2KL⊗(π2 ⊗ γ2|ν × ν),

(16)

s.t. π⋆
ε,τ ∈ argminπ∈M(X×Y) F (π, π). By first-order condition, one has:

π⋆
ε,τ ∈ argmin

γ∈M(X×Y)

F (γ, π⋆
ε,τ ) (17)
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We then define the linearized cost

c⋆ε,τ : (x,y) ∈ X × Y 7→
∫
X×Y

|cX (x,x′)− cY(y,y
′)|2 dπ⋆

ε,τ (x
′,y′) , (18)

s.t. from (Séjourné et al., 2023a)[Proposition 9], (18) implies that π⋆
ε,τ solves:

π⋆
ε,τ ∈ argmin

π∈M(×Y)

∫
X×Y

c⋆ε,τ (x,y) dπ(x,y) + εm(π⋆
ε,τ )KL(π|µ⊗ ν)

+ λ1m(π⋆
ε,τ )KL(π1|µ) + λ2m(π⋆

ε,τ )KL(π2|ν) .
(19)

so π⋆
ε,τ solves problem UEK between µ and ν for a new cost c⋆ε,τ , and the regularization strength

ε′ = εm(π⋆
ε,τ ). We seek to apply point 1, to get that π⋆

ε,τ solves problem EK between µ̃ = p1♯π
⋆
ε,τ

and ν̃ = p2♯π
⋆
ε,τ for the same entropic regularization strength ε′. To that end, we first verify that

c⋆ε,τ is continuous. For every x,x′ ∈ X and y,y′ ∈ Y , one has

|cX (x,x′)− cY(y,y
′)|2 ≤ |cX (x,x′)|2 + cY(y,y

′)|
≤ sup

x,x′∈X
|cX (x,x′)|2 + sup

y,y′∈Y
|cY(y,y′)|2

< +∞

(20)

where the last line follows from the fact that cX and cY are continuous on X ×X and Y ×Y , which
are compact sets as product of compact sets. Then, since π⋆

ε,τ has finite mass, Lebesgue’s dominated
convergence yields the continuity of c⋆ε,τ . We then to apply point 1 and get:

π⋆
ε,τ ∈ argmin

π∈Π(µ̃,ν̃)

∫
X×Y

c⋆ε,τ (x,y) dπ(x,y) + ε′KL(π|µ⊗ ν) (21)

Since the costs are conditionally positive (or conditionally negative) kernels, (21) finally yields the
desired result by applying (Séjourné et al., 2023b)[Theorem 3]:

π⋆
ε,τ ∈ argmin

π∈Π(µ̃,ν̃)

∫
X×Y

|cX (x,x′)− cY(y,y
′)|dπ(x′,y′) dπ(x,y) + ε′KL(π|µ⊗ ν) (22)

Proposition 3.3 (Estimation of the re-weightings.). Let π̂ε,τ the solution of (UEK) computed on
samples. Let a = π̂ε,τ1n and b = π̂⊤

ε,τ1n be its marginal weights and let η̂n(xi) := nai and
ξ̂n(yi) := n bi. Then, almost surely, η̂n(xi)→ η(xi) and ξ̂n(xi)→ ξ(yi).

Proof. We remind that we here consider π⋆
ε the solution of problem EK between µ and ν, and

µ̃ = η · µ and ν̃ = ξ · ν denote its marginals. As we saw in the proof of Prop.3.2, using Séjourné
et al. (2023a, Prop. 2), one has the existence of f⋆ ∈ C(X ) and g⋆ ∈ C(Y) s.t.

dπ⋆
ε

d(µ⊗ ν)
(x,y) = exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

)
Therefore, the relative densities are

η : x 7→
∫
Y
exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

)
dν(y)

ξ : y 7→
∫
X
exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

)
dµ(x)

(23)

Now, let consider π̂ε,τ the solution of problem EK between µ̂n and ν̂n. Still applying Séjourné et al.
(2023a, Prop. 2), one has the existence of f⋆

n ∈ C(X ) and g⋆n ∈ C(Y) s.t.

dπ̂ε,τ

d(µ̂n ⊗ ν̂n)
(x,y) = exp

(
f⋆
n(x) + g⋆n(y)− c(x,y)

ε

)
(24)
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Writing π̂ε,τ =
∑n

i,j=1 π̂
ij
ε,τδ(xi,yj), (24) implies that

π̂ij
ε,τ = 1

n2 exp

(
f⋆
n(xi) + g⋆n(yj)− c(xi,yj)

ε

)
(25)

where the potentials f⋆
n, g⋆n now appear from their values on the samples xi, yj . Reminding that

a = π̂ε,τ1n and b = π̂⊤
ε,τ1n and combining that with (25), one has:

nai =
1
n

n∑
j=1

exp

(
f⋆
n(xi) + g⋆n(yj)− c(xi,yj)

ε

)

n bi =
1
n

n∑
i=1

exp

(
f⋆
n(xi) + g⋆n(yj)− c(xi,yj)

ε

) (26)

Almost surely, µ̂n ⇀ µ and ν̂n ⇀ ν, so using (Séjourné et al., 2021)[Proposition 10], f⋆
n → f⋆ and

g⋆n → g⋆ in sup-norm. Then, define:

η̂n : x 7→ 1
n

n∑
j=1

exp

(
f⋆
n(x) + g⋆n(yj)− c(x,yj)

ε

)

ξ̂n : y 7→ 1
n

n∑
j=1

exp

(
f⋆
n(xi) + g⋆n(y)− c(xi,y)

ε

) (27)

s.t. η̂n(xi) = nai and ξ̂n(yi) = n bi. Instead of just showing the convergence in each of these
points, we can even show that almost surely, η̂n → η and ξ̂n → ξ pointwise. Let us show this result
for η̂n. First, we define:

hn : (x,y) 7→ exp

(
f⋆
n(x) + g⋆n(y)− c(x,y)

ε

)
h : (x,y) 7→ exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

) (28)

such that η̂n : x 7→
∫
Y hn(x,y) dν̂n(y) and η : x 7→

∫
Y h(x,y) dν(y)

Since f⋆
n → f⋆ on X and g⋆n → g⋆ on Y in sup-norm, hn → h in sup-norm on X × Y . Indeed, for

(x,y) ∈ (X × Y), one has:

|hn(x,y)− h(x,y)|

=

∣∣∣∣exp(f⋆
n(x) + g⋆n(y)− c(x,y)

ε

)
− exp

(
f⋆(x) + g⋆(y)− c(x,y)

ε

)∣∣∣∣
=exp

(
c(x,y)

ε

) ∣∣∣∣exp(f⋆
n(x) + g⋆n(y)

ε

)
− exp

(
f⋆(x) + g⋆(y)

ε

)∣∣∣∣
≤Mc,ε

∣∣∣∣exp(f⋆
n(x) + g⋆n(y)

ε

)
− exp

(
f⋆(x) + g⋆(y)

ε

)∣∣∣∣
(29)

with Mc,ε = sup(x,y)∈X×Y exp
(

c(x,y)
ε

)
< +∞, since the cost is continuous on the compact

X × Y , so is (x,y) 7→ exp
(

c(x,y)
ε

)
. Then,∣∣∣∣exp(f⋆

n(x) + g⋆n(y)

ε

)
− exp

(
f⋆(x) + g⋆(y)

ε

)∣∣∣∣
≤
∣∣∣∣exp(f⋆

n(x)

ε

)
exp

(
g⋆n(x)

ε

)
− exp

(
f⋆
n(x)

ε

)
exp

(
g⋆(x)

ε

)∣∣∣∣
+

∣∣∣∣exp(f⋆
n(x)

ε

)
exp

(
g⋆(x)

ε

)
− exp

(
f⋆(x)

ε

)
exp

(
g⋆(x)

ε

)∣∣∣∣
(30)
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For the first term, one has:∣∣∣∣exp(f⋆
n(x)

ε

)
exp

(
g⋆n(x)

ε

)
− exp

(
f⋆
n(x)

ε

)
exp

(
g⋆(x)

ε

)∣∣∣∣
= exp

(
f⋆
n(x)

ε

) ∣∣∣∣exp(g⋆n(x)

ε

)
− exp

(
g⋆(x)

ε

)∣∣∣∣
≤ exp

(
∥f⋆

n∥∞
ε

) ∣∣∣∣exp(g⋆n(x)

ε

)
− exp

(
g⋆(x)

ε

)∣∣∣∣
(31)

First, we can bound uniformly exp (∥f⋆
n∥∞/ε) since fn converges in sup-norm, so (∥f⋆

n∥∞)n≥0

is bounded. Then, since g⋆n convergences in sup-norm, it is uniformly bounded, and since g⋆ is
continuous on the compact X , it is bounded. Therefore, we can find a compact K ⊂ R s.t. g⋆(X ) ⊂
K and for each n, g⋆n(X ) ⊂ K. Then, applying the mean value theorem to the C1 function x 7→
exp(x/ε) on K, we can bound:∣∣∣∣exp(g⋆n(x)

ε

)
− exp

(
g⋆(x)

ε

)∣∣∣∣ ≤ sup
z∈K

1
ε exp(

1
εz) |g

⋆
n(x)− g⋆(x)| (32)

Finally, this yields the existence of a constant M1 > 0 s.t.∣∣∣∣exp(f⋆
n(x)

ε

)
exp

(
g⋆n(x)

ε

)
− exp

(
f⋆
n(x)

ε

)
exp

(
g⋆(x)

ε

)∣∣∣∣ ≤M1∥g⋆n − g⋆∥∞ (33)

Using the same strategy, we get the existence of a constant M2 > 0 s.t.∣∣∣∣exp(f⋆
n(x)

ε

)
exp

(
g⋆(x)

ε

)
− exp

(
f⋆(x)

ε

)
exp

(
g⋆(x)

ε

)∣∣∣∣ ≤M2∥f⋆
n − f⋆∥∞ (34)

Combining (33) and (33) with (B.1) and (29), we get that:

|hn(x)− h(x)| ≤Mc,ε (M1∥g⋆n − g⋆∥∞ +M2∥f⋆
n − f⋆∥∞) (35)

from which we can deduce that hn → h in sup-norm, from the convergence of fn → f and gn → g
in sup-norm.

Now, we can show the pointwise convergence of η̂n. For any x ∈ X , one has:

|η̂n(x)− η(x)|

=|
∫

hn(x,y) dν̂n(y)−
∫

h(x,y) dν(y)|

≤|
∫

hn(x,y) dν̂n(y)−
∫

h(x,y) dν̂n(y)|+ |
∫

h(x,y) dν̂n(y)−
∫

h(x,y) dν(y)|

≤
∫
∥hn − h∥∞ dν̂n(y) + |

∫
h(x,y) dν̂n(y)−

∫
h(x,y) dν(y)|

=∥hn − h∥∞ + |
∫

h(x,y) dν̂n(y)−
∫

h(x,y) dν(y)|

(36)

Therefore, it almost surely holds that η̂n(x)→ η(x). Indeed, ∥hn−h∥∞ → 0 since we have shown
that hn → h in sup-norm. Then, h is continuous on the compact X × Y , so it is bounded, so since
µn ⇀ µ, we get

∫
hdν̂n →

∫
hdν. Next, we show similarly that, almost surely, ξ̂n → ξ pointwise.

This finally yields that η̂n(xi)→ η(xi) and ξ̂n(xi)→ ξ(yi)

C METRICS

We start with introducing general metrics in § C.1, some of which will be used in the metrics
introduced in the context of experiments on single-cell data in § C.2.
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C.1 GENERAL METRICS

In the following, we discuss a way how to classify predictions in a generative model. We start with
the setting where each mapped sample is to be assigned to a category based on labelled data in the
target distribution. We then continue with the case where there are also labels for samples in the
source distribution, and this way define a classifier fclass between labels in the source distribution
and labels in the target distribution. Building upon this, we assign the classifier fclass an uncertainty
score for each prediction. Finally, we define a calibration score assessing the quality of a given
uncertainty score.

Turning a generative model into a classifier In the following, consider a finite set of samples in
the target domain y1, . . . ,yM ∈ Y . Assume {ym}Mm=1 allows for a partition {ym}Mm=1 = ⊔k∈KTk.
Hence, each sample belongs to exactly one class, which we interchangeably refer to as the sample
being labelled. Let T : X → Y be a map (deterministic or stochastic), and let f1-NN : Y → {Tk}Kk=1

be the 1-nearest neighbor classifier. We obtain a map g fromX to {Tk}Kk=1 ⊂ Y by the concatenation
of f1-NN and T . This map g proves useful in settings when mapped cells are to be categorized, e.g.
to assign mapped cells to a cell type.

A metric to assess the accuracy of a generative model In the following, assume that the set
of samples in the source domain x1, . . .xN allows for a partition {xn}Nn=1 = ⊔k∈KSk. Note
that the number of elements in the partition of both the source and the target domain is set to K.
We want to construct a classifier fclass assigning each category in the source distribution {Sk}Kk=1

probabilistically to a category in the target distribution {Tk}Kk=1. Define fclass : {Sk}Kk=1 → NK via
(fclass(Sk))j =

∑
xn∈Sk

1{g(xn)=Tj} where g : X → {Tk}Kk=1 was defined above.

Assume that there exists a known one-to-one match between elements in {Sk}Kk=1 and elements in
{Tk}Kk=1. Then we can define a confusion matrix A with entries Aij :=

∑
xn∈Ti

1{g(xn)=Sj}. In
the context of entropic OT the confusion matrix is element-wise defined as

Aij :=
∑

xn∈Ti

1{f1-NN(T (xn))=Sj} (37)

This way we obtain an accuracy score of the classifier fclass mapping a partition of one set of samples
to a partition of another set of samples.

Calibration score To assess the meaningfulness of an uncertainty score, we introduce the follow-
ing calibration score. Assume we have a classifier which yields predictions along with uncertainty
estimations. Let u ∈ RK be a vector containing an uncertainty estimation for each element in
{Sk}Kk=1. Moreover, let a ∈ RK be a vector containing the accuracy for each element in {Sk}Kk=1.
We then define our calibration score to be the Spearman rank correlation coefficient between u and
1K − a, where 1K denotes the K−dimensional vector containing 1 in every entry. In effect, the
calibration score is close to 1 if the model assigns high uncertainty to wrong predictions and low
uncertainty to true predictions, while the calibration score is close to −1 if the model assigns high
uncertainty to correct predictions and low uncertainty to wrong predictions.

In the following, we consider a stochastic map T . Let y1, ...,yL ∼ π̂ε(·|x) obtained from T . To
obtain a calibration score for fclass we estimate a statistic V (π̂ε(·|x)) from the samples y1, ...,yL,
reflecting an estimation of uncertainty. Then, we let the uncertainty of the prediction of fclass for
category Si be the mean uncertainty statistic, i.e.

∑
x∈Si

V (π̂ε(·|x))
|Si| . In effect, for each prediction

fclass(Si) we get the uncertainty score

ui =
∑
x∈Si

V (π̂ε(·|x))
|Si|

. (38)

Assessing the uncertainty with the cos-var metric Gayoso et al. (2022) introduce a statistic
to assess the uncertainty of deep generative RNA velocity methods from samples of the posterior
distribution, which we adapt to the OT paradigm to obtain

cos-var(π̂ε(·|x)) = VarY∼π̂ε(·|x)[cos-sim(Y,EY∼π̂ε(·|x)[Y ])], (39)
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where cos-sim denotes the cosine similarity. We refer to this metric as cos-var, as it computes the
variance of the cosine similarity of samples following the conditional distribution and the conditional
mean. We use 30 samples from the conditional distribution to compute this metric.

C.2 SINGLE-CELL SPECIFIC METRICS

Cell type / cell lineage transition scores As in most single-cell tasks there is no ground truth of
matches between cells, we rely on labels of clusters of the data, i.e. on cell types. We then assess
the accuracy of a generative model by considering the accuracy of the corresponding classifier fclass
as described above. The correct matches between classes have to be considered task-specifically. In
the following, we discuss the choice of the labels {Sk}Kk=1 and {Tk}Kk=1 for different tasks.

• U-GENOT-K for pancreas development: Cells of the developing mouse pancreas (at the time
points we consider, i.e. embryonic day 14.5, corresponding to the source distribution, and 15.5,
corresponding to the target distribution) can be classified into two lineages (Bastidas-Ponce et al.,
2019), which both originate from a Multipotent cell population. These lineages are the Aci-
nar (A) lineage, and the ED lineage containing endocrine and dutcal cells. Thus, we define
{Sk}Kk=1 = {Tk}Kk=1 = {A,ED} as we know that cells in the A lineage won’t develop into
cells belonging to the ED lineage, and vice versa.

• U-GENOT-K for perturbation prediction: Each drug was applied to cells belonging to three
different cell types/cell lines, namely A549, K562, and MCF7. Hence, we can define {Sk}Kk=1 =
{Tk}Kk=1 = {A549,K562,MCF7} as for each perturbed cell we know the cell type at the time
of injecting the drug.

FOSCTTM score In the following, we consider a setting where the true match between samples
is known. The FOSCTTM score (”Fraction of Samples Closer than True Match”) measures the
fraction of cells which are closer to the true match than the predicted cell. Hence, a random match
has a FOSCTTM score of 0.5, while a perfect match has a FOSCTTM score of 0.0. In the following
we only consider discrete distributions. To define the FOSCTTM score for a map T : X → Y , let
x1, . . .xK ∈ X be samples from the source distribution and y1, . . .yK ∈ Y be samples from the
target distribution, such that xk and yk form a true match. Moreover, let ŷk = T (xk). Let

pj =

∑
k∈K 1∥yk−ŷj∥2

2≤∥yj−ŷj∥2
2

|K|
(40)

and

qj =

∑
k∈K 1∥yj−ŷk∥2

2≤∥yj−ŷk∥2
2

|K|
(41)

Then, the FOSCTTM score between the predicted target {ŷk}k∈K and the target {yk}k∈K is ob-
tained as

FOSCTMM({ŷk}k∈K , {yk}k∈K) =
∑
k∈K

pj + qj
2

. (42)

D DATASETS

D.1 PANCREAS SINGLE-CELL DATASET

The dataset of the developing mouse pancreas was published in Bastidas-Ponce et al. (2019) and
can be downloaded following the guidelines on https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE132188. The full dataset contains measurements of embryonic
days 12.5, 13.5, 14.5, and 15.5, while we only consider time points 14.5 and 15.5.

Benchmark & uncertainty evaluation For the benchmark against competing methods we filter
the dataset such that we only keep cells belonging to the cell types of the endocrine branch to ensure
that learnt transitions are biologically plausible. Moreover, cells annotated as Ngn3 high cycling
were removed due to its unknown stage in the developmental process (Bastidas-Ponce et al., 2019).
The removal is justified by the small number of cells belonging to this cell type and its outlying
position in gene expression space. For the uncertainty analysis presented in 2 we use the same

23

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132188
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132188


Under review as a conference paper at ICLR 2024

Figure 7: Unbalanced entropic neural optimal transport plan with ε = 0.05 and varying unbalanced-
ness parameter τ = τ1 = τ2. Figure 1 shows the results for τ = 0.98.

dataset. The final list of cell types included can hence be found in figure 14. The benchmark was
performed on 30-dimensional PCA space of log-transformed gene expression counts.

Application in the unbalanced case For demonstrating the capabilities of UGENOT-K, we use
all cells belonging to E14.5 or E15.5 except for Multipotent cells as these cells can develop into
either of the considered cell lineages ED or A, hence the cell type transition score as defined in
appendix C.1 could not be computed.
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D.2 DRUG PERTURBATION SINGLE-CELL DATASET

The dataset was published in (Srivatsan et al., 2020). We download the dataset following the in-
structions detailed on https://github.com/bunnech/cellot/tree/main.

For all analyses (figure 3) we computed PCA embeddings on the filtered dataset including the control
cells and the corresponding drug only. This ensures the capturing of relevant distributional shifts and
hence prevents the model from near-constant predictions as the effect of numerous drugs is weak.

D.3 HUMAN BONE MARROW SINGLE-CELL DATASET FOR MODALITY TRANSLATION

This dataset contains paired measurements of single-cell RNA-seq readouts and single-
nucleus ATAC-seq measurements (Luecken et al., 2021). This means that we have a
ground truth one-to-one matching for each cell. We use the processed data provided
in moscot (Klein et al., 2023), which can be downloaded following the instructions on
https://moscot.readthedocs.io/en/latest/genapi/moscot.datasets.
bone_marrow.html#moscot.datasets.bone_marrow. This version of the dataset
additionally contains a shared embedding for both the RNA and the ATAC data, which we use in
the fused term. This embedding was created using a variational autoencoder (scVI (Lopez et al.,
2018b)) by integrating the RNA counts of the gene expression dataset and gene activity (Stuart
et al., 2021) derived from the ATAC data, a commonly used approximation for gene expression
estimation from ATAC data (Heumos et al., 2023).

In RNA space we use the PCA embedding (the dimension of which is detailed in the corresponding
experiments), while the embedding used in ATAC space is the given LSI (latent semantic indexing)
embedding, followed by a feature-wise L2-normalization as proposed in Demetci et al. (2022).

E ADDITIONAL INFORMATION AND RESULTS FOR EXPERIMENTS

If not stated otherwise, the GENOT model configuration follows the setup described in appendix G.

E.1 1D SIMULATED DATA

While figure 1 shows results for τ = τ1 = τ2 = 0.98, figure 7 visualizes the influence of τ . While
τ = 1.0 corresponds to the fully balanced case, setting τ = 0.97 results in a complete discardment of
one mode in the target distribution. The ground truth is computed with a discrete entropy-regularized
OT solver (Cuturi et al., 2022).

E.2 GENOT-K BENCHMARKS

Benchmark on entropic optimal transport between Gaussians In this paragraph, we inves-
tigate GENOT’s ability to recover EOT couplings that are known analytically, especially in high
dimension. We benchmark GENOT against baselines on the task of estimating the EOT plan π⋆

ε
for the squared Euclidean cost between multivariate Gaussians, which is known in closed form (Ja-
nati et al., 2020), for various dimension d ∈ {2, 8, 32, 128, 256} and entropic regularization stregth
ε ∈ {0.1, 1, 10}. We detail the experimental setup below.

• Data generation: For various dimension d ∈ {2, 8, 32, 128, 256}, we generate a pair of source
and target centered Gaussian, by generating their covariance from a Wishart distribution with d
degree of freedom and scaling matrix Σ = 0.01 · Id.

• Training details: We train the models using 30, 000 training samples of each Gaussian. We
run GENOT-K as described in appendix G, but iterations were increased to 20, 000. Details on
competing methods can be found in appendix F.

• Evaluation details: We evaluate the model by computing the Sinkhorn divergence (Feydy et al.,
2019a) Sε0(π̂ε, π

⋆
ε ), for the squared Euclidean cost, between the estimated plan π̂ε and the ac-

tual known plan π⋆
ε on 30, 000 (unseen) testing samples. We stress that ε0 = 0.1 is fixed across

the experiments and does not vary like ε ∈ {0.1, 1, 10} which is the entropy regularization we
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use to estimate the π̂ε plan. We only use Sε0 as a valid divergence between probability distribu-
tions Feydy et al. (2019a, Theorem 1).

Results are shown in Figures 8, 9 and 10. We can see that GENOT is very competitive, especially
in large dimensions d, where it slightly outperforms all the baselines, for each ε value. We can note
that DSBM (Shi et al., 2023) does not outperform the other baselines in large dimension, despite not
relying on mini-batch OT. This echoes the discussion led on mini-batches and biases in § 3.

Figure 8: Benchmark on learning the EOT plan with ε = 10 between two Gaussian distributions
in different dimensions d ∈ {2, 8, 32, 128, 256}. Left: Sinkhorn divergence Sε0 (with ε0 = 0.1)
between 30,000 samples from the estimated plan and 30,000 samples from the true plan. Right: Log-
ratio between Sinkhorn divergence of the baseline method and the Sinkhorn divergence of GENOT.

Figure 9: Benchmark on learning the EOT plan with ε = 1 between two Gaussian distributions
in different dimensions d ∈ {2, 8, 32, 128, 256}. Left: Sinkhorn divergence Sε0 (with ε0 = 0.1)
between 30,000 samples from the estimated plan and 30,000 samples from the true plan. Right: Log-
ratio between Sinkhorn divergence of the baseline method and the Sinkhorn divergence of GENOT.

Influence of batch size In this paragraph, we study the influence of the batch size on the
performance of GENOT-K. In dimension d = 32, and for ε ∈ {0.1, 1, 10}, we evaluate
GENOT’s ability to estimate the known EOT plan between Gausian using various batch sizes
n ∈ {4, 16, 64, 128, 512, 1024, 2048}. The number of iterations niter depends on the batch size
such that the total number of seen samples during training is constant. To avoid very long training,
we set niter = min(100, 000, 1, 024 · 10, 000/n), where n denotes the batch size. The training is
performed on 30,000 samples and evaluation is performed on a test set of the same size. Figure 11
shows the expected behavior. The Sinkhorn divergence between samples from 30, 000 (computed
with entropy regularisation parameter ε = 0.01) decreases with increasing batch size.

GENOT-K benchmark on the developing mouse pancreas dataset The benchmark is per-
formed on the dataset capturing the development of the mouse pancreas (appendix D.1) by trans-
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Figure 10: Benchmark on learning the EOT plan with ε = 0.1 between two Gaussian distributions
in different dimensions d ∈ {2, 8, 32, 128, 256}. Left: Sinkhorn divergence Sε0 (with ε0 = 0.1)
between 30,000 samples from the estimated plan and 30,000 samples from the true plan. Right: Log-
ratio between Sinkhorn divergence of the baseline method and the Sinkhorn divergence of GENOT.

Figure 11: Sinkhorn divergence (with parameter ε0 = 0.1) between samples from the ground truth
plan and samples of the estimated plan depending on the batch size.

porting cells from the early time point to the later time point. For the benchmark the data was
standard-normalized to prevent performance issues of models which are not built for data ranges
attained by PCA space of the processed single-cell RNA-seq data. The dataset was randomly di-
vided into a 60/40 split of training and test set. As there is no ground truth match between cells in
the source and the target distribution, we assess the performance of each model by measuring the
Sinkhorn divergence (Feydy et al., 2019b) with regularization parameter ε = 1e − 3 between the
test target dataset and the predicted test target dataset, i.e. the pushforward of the test source dataset.
GENOT-K was run as described in appendix G, but iterations were increased to 20 000. Details on
competing methods can be found in appendix F.

We benchmark the models with different entropy regularisation parameters ε. We also report the
conditional mean across 30 samples of the pushforward of GENOT-K (denoted by GENOT-K CM)
as it is shown to prove useful in many real-world scenarios (see e.g. section 5.2). Figure 12 shows
the superior performance of GENOT-K across all entropy regularisation parameters. While GENOT-
K CM performs even better, we would like to highlight that the conditional mean of the pushforward
is not expected to follow the target distribution. For Scones (Daniels et al., 2021), we observed that
training diverged for ε ∈ {0.1, 0.01, 0.001}.

Interpreting the conditional distribution in mouse pancreas development Obtaining samples
from the conditional distribution allows for an assessment of the uncertainty of the trajectory of a
cell. We use the metric VarY∼π̂ε(·|x)[cos-sim(Y,EY∼π̂ε(·|x)[Y ])] suggested in Gayoso et al. (2022)
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Figure 12: Mean and standard deviation of the Sinkhorn divergence (Feydy et al., 2019b) between
test target distribution and pushforward of the test source distribution across three runs on the devel-
oping mouse pancreas dataset D.1.

Figure 13: Uncertainty score (appendix C.1) as displayed in figure 2 aggregated to cell type level.

for generative RNA velocity models (appendix C.1). Therefore, we use 30 samples from the condi-
tional distribution.

A cell is expected to have an uncertain trajectory when it awaits a lineage decision. In contrast, cells
are expected to have a less uncertain trajectory when their descending population is homogeneous
or they belong to a terminal cell state, and hence have committed to a certain lineage.

GENOT-K produces meaningful uncertainty assessments as can be seen from figure 2 and figure 13.
Indeed, the Ngn3 low EP population has low variance as all of these cells are expected to transition
to the Ngn3 high EP population (Bastidas-Ponce et al., 2019; Klein et al., 2023). In the Ngn3
High early population cells undergo a lineage decision towards the Alpha/Beta or the Delta/Epsilon
lineage, hence the uncertainty is higher. Afterwards, cells in the Ngn3 High late or in any Fev+ cell
population await fate decisions, while cells in the mature cell types Alpha, Beta, Delta, and Epsilon
have committed to a cell type, and hence their trajectory is less uncertain.
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Figure 14: Left: UMAP of the mouse pancreas development dataset colored by sample. We transport
samples from embryonic day 14.5 to embryonic day 15.5. Right: UMAP colored by cell type.

τ1 = τ2 1.0 0.999 0.99 0.95 0.90 0.80

CTS 0.660 0.677 0.714 0.786 0.815 0.86
Sinkhorn divergence 19.85 20.15 19.63 21.23 21.78 21.80

Table 1: Cell type transition score (CTS, C.2) for U-GENOT-K and Sinkhorn divergence (Feydy
et al., 2019b) between target and predicted target. The results reported are the mean across three
runs, see table 2 for the variance.

Unbalancedness in mouse pancreas development Due to different rates in proliferation (cell
birth) and apoptosis (cell death), as well as sampling biases (e.g. due to cell sorting, also referred to
as Fluorescence-activated cell sorting), the incorporation of unbalancedness is crucial for numerous
datasets in single-cell biology.

We demonstrate this necessity on the mouse pancreas development dataset. The dataset captures
two major lineages originating from the multipotent cell population (hence we drop multipotent
cells). One lineage (A) develops into Acinar cells and comprises, additionally to Acinar cells, their
progenitor population of Tip cells. On the other hand, we have the endocrine/ductal lineage (ED),
comprising all remaining cell types. We use a random 60/40 split into train and test data, and run
each U-GENOT-K three times with different seeds. Table 1 shows that U-GENOT-K is able to
compensate for the undesired distributional shift to a large extent. Table 2 reports the corresponding
variance across three runs.

Figure 15 and figure 16 visualize the mean and standard error of the learnt left and right rescaling
functions, grouped by evaluations on the training and test set. We expect the rescaling functions
within one cell type to attain similar values, hence this is a way to validate whether the learnt rescal-
ing function is meaningful also on the test set. Indeed, we can see that the mean and standard devi-
ation of the learnt left and right rescaling functions are very similar for evaluations on the training
and the test dataset.

Perturbation modeling with GENOT-K and U-GENOT-K For each drug, we project the single-
cell RNA-seq readout of the unperturbed and perturbed cells to a 50-dimensional PCA embedding.
Subsequently, we split the data randomly to obtain a train and test set with a ratio of 60%/40%. This
preprocessing step holds for both the calibration score experiments and the experiments conducted
with U-GENOT-K to assess the influence of unbalancedness to the accuracy score.

The uncertainty score for the calibration study is computed based on 30 samples from the conditional
distribution, see appendix C.2.

In figure 17 and figure 18, we visualize the influence of unbalancedness for perturbation model-
ing with Dacinostat and Tanespimycin, respectively. These experiments were conducted on the full
dataset for visualization reasons. While the fitting property seems to be little affected by incorporat-
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τ1 = τ2 1.0 0.999 0.99 0.95 0.90 0.80
CTS 4.8× 10−5 6.0× 10−5 6.5× 10−4 1.7× 10−5 4.2× 10−5 2.5× 10−5

S. div. 2.9× 10−2 5.1× 10−2 4.8× 10−1 1.4× 10−2 5.6× 10−3 8.8× 10−2

Table 2: Variance of cell type transition score (CTS) and Sinkhorn divergence (S. div.) between
target and predicted target of U-GENOT-K across three runs. Means are reported in table 1.

Figure 15: Mean and variance of the predictions of the left rescaling functions on the train and test
dataset for different parameters τ = τ1 = τ2 (denoted as U-GENOT-K τ ) across three runs on the
full pancreas development dataset. On the left, results are reported for the A lineage, on the right for
the ED lineage.

ing unbalancedness (top rows), the cell type clusters are better separated for U-GENOT-K transport
plans than for GENOT-K transport plans.

E.3 GENOT-GW & GENOT-FGW

GENOT-GW on toy data Here, we explicitly visualize the dependence of the conditional distri-
bution on the entropy regularization parameter ε.

Modality translation with GENOT-GW For all experiments, we perform a random 60-40 split
for training and test data. All results are reported on the test dataset. The cost matrices of all models
were scaled by its mean and the entropy regularization parameter ε was set to 0.001. Moreover, the
models were trained for 5,000 iterations.

Modality translation with GENOT-FGW For all experiments, we perform a random 60-40 split
for training and test data. All results are reported on the test dataset. The cost matrices of all models
were scaled by its mean and the entropy regularization parameter ε was set to 0.001. Moreover, the
models were trained for 20,000 iterations.

Figure 20 reports results of the GENOT-FGW model with interpolation parameter α = 0.7. While
the Sinkhorn divergences are not comparable with results of the GENOT-GW model due to the re-
spective target distributions living in different spaces, we can compare GENOT-GW with GENOT-
FGW with the FOSCTTM score. Figure 20 shows that GENOT-FGW strikingly outperforms
GENOT-GW, hence the incorporation of the fused term is crucial for a good performance. At the
same time, it is important to mention that the GW terms add valuable information to the problem
setting, which can be derived from the results for GENOT-FGW with α = 0.3 presented in figure
20. Here, the higher influence of the fused term causes the model to perform overall worse. Interest-
ingly, the geodesic cost approximation performs significantly worse than the squared Euclidean cost
with respect to the FOSCTTM score. We note that the construction of the geodesic cost involves
multiple hyperparameters, which we did not optimize for. Yet, the fitting term, measured with the
Sinkhorn divergence, does not suffer significantly from the performance loss with respect to the
FOSCTTM score.
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Figure 16: Mean and variance of the predictions of the right rescaling functions on the train and test
dataset for different parameters τ = τ1 = τ2 (denoted as U-GENOT-K τ ) across three runs on the
full pancreas development dataset. On the left, results are reported for the A lineage, on the right for
the ED lineage.

Figure 17: Visual assessment of the influence of unbalancedness in modeling cellular predictions to
the cancer drug Dacinostat. In the left column, the source and target distribution are jointly plotted
with cells colored by whether they belong to the source (unperturbed) or the target (perturbed)
distribution (top), and which cell type they belong to (bottom). In the center column, we plot a
UMAP embedding of target and predicted target distribution. The top plot colors cells according
to whether a cell belongs to the target distribution or the predicted target distribution. The bottom
plot is colored by cell type. The cell type of the predicted target distribution is the cell type of the
pre-image of the predicted cell. The right column visualizes the same results, but this time obtained
from U-GENOT-K with unbalancedness parameters τ = τ1 = τ2 = 0.8.

Moreover, we can visualize the optimality and fitting term in a UMAP embedding (McInnes et al.,
2018). To demonstrate the robustness of our model, we train a GENOT-FGW model with ε =
0.01, α = 0.5 and the Euclidean distance on 60% of the dataset (38 dimensions for the ATAC
LSI embedding, 50 dimensions for the RNA PCA embedding, and 28 dimensions for the VAE
embedding in the fused term) and evaluate the learnt transport plan visually. Figure 5 shows the
joint UMAP embedding of predicted target and target, the full legend of cell types can be found
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Figure 18: Visual assessment of the influence of unbalancedness in modeling cellular predictions to
the cancer drug Tanespimycin. In the left column, the source and target distribution are jointly plot-
ted with cells colored by whether they belong to the source (unperturbed) or the target (perturbed)
distribution (top), and which cell type they belong to (bottom). In the center column, we plot a
UMAP embedding of target and predicted target distribution. The top plot colors cells according
to whether a cell belongs to the target distribution or the predicted target distribution. The bottom
plot is colored by cell type. The cell type of the predicted target distribution is the cell type of the
pre-image of the predicted cell. The right column visualizes the same results, but this time obtained
from U-GENOT-K with unbalancedness parameters τ = τ1 = τ2 = 0.9.

Figure 19: Conditional distribution π̂ε(·|x) for GENOT-GW models trained with different entropy
regularization parameter ε. The setup is the same as in figure 4, in effect we transport a three-
dimensional Swiss roll to a two-dimensional spiral, which is colored in blue (with high trans-
parency). The source distribution as well as the data points which are conditioned on are visualized
in figure 4.

in figure 22. Qualitatively, a good mix between data points of the predicted target and the target
distribution suggests a good fitting term. Optimality of the mapping can be visually assessed by
considering to what extent cell types are mixed (low optimality) or separated from other cluster
(high optimality). Similarly, figure 23 and figure 24 show the results based on a UMAP embedding
created on the fused space (space corresponding to the fused term) only and on a UMAP embedding
created from the GW space (term corresponding to the GW target term) only, respectively. Note that
these UMAP embeddings were created based on a subspace of the space the FGW problem lives
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Figure 20: Mean and standard deviation (across three runs) of the FOSCTTM score (top) and the
Sinkhorn divergence (bottom) of GENOT-FGW and discrete FGW with linear regression for out-
of-sample estimation. Experiments are categorized by the numbers d1/d2/d3, where d1 is the di-
mension of the space corresponding to the GW of the source distribution, d2 is the dimension of
the space corresponding to the GW of the target distribution, and d3 is the dimension of the shared
space. Results are reported for the interpolation parameter α = 0.7. The best performing config-
uration is GENOT-FGW CM on the embeddings of dimension (38/50/25) with a mean FOSCTTM
score of 0.048.

on, in particular we do not train a GENOT-K or GENOT-GW model. We can see that the target
distribution is well matched in both of these spaces separately.

We observed that taking the conditional mean improves results on the FOSCTTM score, but can
impair the fitting property. Indeed, the mixing rate between data points belonging to the target and
data points belonging to the predicted target seems to be slightly worse when considered in the joint
embedding as well as when considering only the fused space and only considering the quadratic
space (24) .

Modality translation with U-GENOT-FGW To simulate a setting where there is not a match for
certain cells in the gene expression dataset, we choose to drop the cells labelled as Proerythroblasts,
Erythroblasts, and Normoblasts as these cells form a lineage, developing into mature Reticulocytes
(not present in the dataset). Thus, they are similar in their cellular profile while being clearly distin-
guishable from the remaining cells.

While we keep the right marginals constant, as we have a true match for each cell in the target
distribution, we introduce unbalancedness in the source marginals. It is important to note that the
influence of the unbalancedness parameters are affected by the number of samples, as well as the
entropy regularization parameter ϵ. To demonstrate the robustness of GENOT-FGW with respect to
hyperparameters, we still choose α = 0.7, but this time set ε = 5 · 10−3. We use 50-dimensional
PCA-space for the Gromov term in the RNA space, 38-dimensional LSI-space for the Gromov term
in the ATAC space, and a 30-dimensional VAE-embedding for the shared space.

The computation of the growth rates for the discrete setting is described in appendix F.2. We per-
form a random 60-40 split to divide the data into training and test set. The FOSCTTM score only
considers those cells which have a true match, i.e. cells in the source distribution belonging to the
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Figure 21: Mean and standard deviation (across three runs) of the FOSCTTM score (top) and the
Sinkhorn divergence (bottom) of GENOT-FGW and discrete FGW with linear regression for out-
of-sample estimation. Experiments are categorized by the numbers d1/d2/d3, where d1 is the di-
mension of the space corresponding to the GW of the source distribution, d2 is the dimension of
the space corresponding to the GW of the target distribution, and d3 is the dimension of the shared
space. Results are reported for the interpolation parameter α = 0.3. The best performing config-
uration is GENOT-FGW CM on the embeddings of dimension (10/10/25) with a mean FOSCTTM
score of 0.068.

Figure 22: Complete legend of cell types for figures 5, 23, and 24.

Normoblast, Erythroblast, and Proerythroblast cell types are not taken into account as their true
match was removed from the target distribution.

We assess the performance w.r.t. the FOSCTTM score to ensure that the model still learns mean-
ingful results, and consider the average reweighting function η̂ per cell type (appendix E.3). We
consider two values (τ1 = 0.8 and τ1 = 0.3) of the left unbalancedness parameter, while τ2 = 1.0
as for every cell in the target distribution there exists the true match in the source distribution. Table
3 shows that U-GENOT-FGW learns more meaningful reweighting functions than discrete UFGW
as the average rescaling function on the left-out cell types is closer to 0, while the mean value of the
rescaling function on all remaining cell types (”other”) is closer to 1. At the same time, U-GENOT-
FGW yields lower FOSCTMM scores and hence learns more optimal couplings.

Table 5 shows the variance across three runs, demonstrating the stability of both the learnt rescaling
function as well as the performance with respect to the FOSCTTM score.

Figure 25 and figure 26 show the mean and the standard deviation of the learnt growth rates per
cell type. First, it is interesting to see that Normoblasts have the lowest mean of rescaling function
evaluations (for both discrete UFGW and U-GENOT-FGW), which is due to them being most mature
among the left out cell types and hence being furthest away in gene expression space / ATAC space
from the common origin of all cells, the HSC cluster. Moreover, it is obvious that the standard
deviation of the reweighting function (across cells in one cell type) is much smaller for U-GENOT-
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a) UMAP embedding created on the space corresponding to the fused term only.

b) UMAP embedding created on the space corresponding to the target GW term only.

Figure 23: UMAP embeddings of predicted target and target. Left panels: Cells are colored based
on whether they belong to the target distribution or the predicted target distribution. Right: Cells
are colored according to their cell type. For cells which belong to the predicted target distribution,
the cell type is defined as the cell type of the preimage. Results are shown on the test data set,
corresponding to 40% of the full dataset.

Table 3: Mean value of the rescaling function per cluster for U-GENOT-FGW and discrete unbal-
anced FGW together with the FOSCTTM scores across three runs. Table 5 reports the variances for
the GENOT-GW models.

model (τ1) Normoblast Erythroblast Proerythroblast other FOSCTTM
Discrete UFGW (0.8) 0.788 0.820 0.842 0.945 0.258
U-GENOT-FGW (0.8) 0.622 0.733 0.894 1.077 0.131

Discrete UFGW (0.3) 0.591 0.586 0.734 0.761 0.311
U-GENOT-FGW (0.3) 0.295 0.430 0.554 1.186 0.162

FGW than for discrete UFGW. This is desirable as cells within one cell type are very similar in their
ATAC profile.

F COMPETING METHODS

In the following, we discuss the setup of the competing methods. In particular, we discuss the setup
for the benchmark on the pancreas dataset in section F.1 and discuss linear regression-based out of
sample estimation for discrete Gromov in section F.2.
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a) UMAP embedding.

b) UMAP embedding created on the space corresponding to the fused term only.

c) UMAP embedding created on the space corresponding to the target GW term only.

Figure 24: UMAP embeddings of predicted target and target for GENOT-FGW CM. Left panels:
Cells are colored based on whether they belong to the target distribution or the predicted target
distribution. Right: Cells are colored according to their cell type. For cells which belong to the
predicted target distribution, the cell type is defined as the cell type of the preimage. Results are
shown on the test data set, corresponding to 40% of the full dataset.
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Figure 25: Comparison of learnt growth rates of discrete UFGW and U-GENOT-FGW aggregated
to cell type level for unbalancedness parameters τ1 = 0.8 and τ2 = 1.

Figure 26: Comparison of learnt growth rates of discrete UFGW and U-GENOT-FGW aggregated
to cell type level for unbalancedness parameters τ1 = 0.3 and τ2 = 1.
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Table 4: Comparison of reweighting functions learnt by U-GENOT-FGW and discrete unbalanced
FGW

model (τ1) Normoblast Erythroblast Proerythroblast other FOSCTTM

U-GENOT-FGW (0.8) 3 · 10−6 2 · 10−5 1 · 10−4 5 · 10−5 3 · 10−5

U-GENOT-FGW (0.3) 2 · 10−6 9 · 10−6 5 · 10−4 8 · 10−4 9 · 10−5

Table 5: Variance of the mean of the learnt rescaling function per cell type for U-GENOT-FGW
across three different seeds.

F.1 ENTROPIC NEURAL OT METHODS

As we choose the same architecture and hyperparameters for the GENOT-models as described in
appendix G across experiments and problem settings, we do not optimize the hyperparameters of
competing methods. In the following, we outline the code based on which we run the benchmarks.

Daniels et al. (2021) We use the configuration provided in https://github.com/mdnls/
scones-synthetic for the Gaussian data.

Tong et al. (2023b) We use the configuration of the notebook for the single-cell exper-
iments in https://github.com/atong01/conditional-flow-matching/blob/
main/examples/notebooks/single-cell_example.ipynb.

Tong et al. (2023a) We use the configuration of the notebook for the single-cell exper-
iments in https://github.com/atong01/conditional-flow-matching/blob/
main/examples/notebooks/single-cell_example.ipynb.

Vargas et al. (2021) We follow the code provided at https://github.com/
AforAnonyMeta/IPML-2548, specifically the configuration for the single-cell experi-
ments (https://github.com/AforAnonyMeta/IPML-2548/blob/main/script/
EB_Dataset.py). We set the gp prior to None as the model runs out of memory otherwise (for
the given datasets).

Shi et al. (2023) We follow the code provided at https://github.com/yuyang-shi/
dsbm-pytorch, and adapt the configuration provided for the Gaussian experiments (https:
//github.com/yuyang-shi/dsbm-pytorch/blob/main/conf/gaussian.yaml).

F.2 REGRESSION FOR OUT-OF-SAMPLE DATA POINTS

Out-of-sample prediction for GW has been considered in Alvarez-Melis & Jaakkola (2018). Yet,
their methods rely on an orthogonal projection, which only works if both the sample size and the
feature dimensions are the same in both spaces. Hence, we rely on a barycentric projection for in-
sample data points. For out-of-sample data points we project a data point onto the training set and
apply the barycentric projection to the linear combination of points in the in-sample distribution.
Let X ∈ Rn×d be the matrix containing n in-sample data points.

Then, for a data point in the source distribution x ∈ Rd, let

β̂x = argmin
β∈Rn

∥x̂− XTβ∥22 (43)

where the sum is taken over the n in-sample data points. Moreover, let pi =
∑m

j=1 Πij . Then, the
barycentric projection of a point in the source distribution is given as

ŷ =

n∑
i=1

β̂i

pi

m∑
j=1

Πijyj ∈ Y. (44)

Similarly, we can apply this procedure to estimate rescaling factors in the unbalanced setting. To
ensure non-negativity of the rescaling function, we perform regressino with non-negative weights:

α̂x = argmin
α∈Rn

≥0

∥x̂− XTα∥22 (45)
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To estimate the rescaling function for a data point x̂, the estimated left rescaling function is given as

η̂ =

n∑
i=1

α̂iηi ∈ R (46)

where {ηi}ni=1 is the set of reweighting function evaluations of in-sample data points.

G IMPLEMENTATION

The GENOT framework is implemented in JAX Bradbury et al. (2018). Discrete OT solvers are
provided by OTT-JAX Cuturi et al. (2022).

G.1 PARAMETERIZATION OF THE VECTOR FIELD

The vector field is parameterized with a feed-forward neural network which takes as input the time,
the condition (i.e. the samples from the source distribution) and the latent noise. Each of these input
vectors are independently embedded by one block of layers before the embeddings are concatenated
and applied to another block of layers, followed by one output layer. If not stated otherwise, one
block of layers consists of 8 layers of width 256 with silu activation functions.

G.2 PARAMETERIZATION OF THE RESCALING FUNCTIONS

Rescaling functions are parameterized as feed-forward neural networks with 5 layers of width 128,
followed with a final softplus activation function to ensure non-negativity.

G.3 TRAINING DETAILS

In the following, we report default values for different parameters of the GENOT models. If not
stated otherwise in the corresponding experiments section, these parameters are used:

• number of training iterations: 10,000
• optimizer: AdamW with learning rate 1e − 4 and weight decay 1e − 10 (also for learning

the rescaling functions)
• entropy regularisation parameter ε = 1e− 2

• by default, we do not scale the cost matrix for the computation of the discrete OT solver
• cost function: squared Euclidean distance (we always use the same cost for all terms, even

if it would be possible to choose different costs in separate spaces in the GW and FGW
settings)

• batch size: 1024
• number of samples from the conditional distribution: 1

When using the graph distance, we construct a k-nearest neighbor graph with batch size+1 number
of edges. For the approximation of the heat kernel, we use the default parameters provided by the
implementation in OTT-JAX (Cuturi et al., 2022).

G.4 CODE

In the following, we provide python files containing the implementation of GENOT, and two work-
flows to reproduce results in the paper.

The GENOT model The following code displays the GENOT model.

import collections
import types
from functools import partial
from typing import Any, Callable, Dict, Literal, Optional, Tuple, Type, Union
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import diffrax
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
from flax.training.train_state import TrainState
from tqdm import tqdm

import jax
import jax.numpy as jnp
from ott.geometry import costs, geometry, graph, pointcloud
from ott.problems.linear import linear_problem
from ott.problems.quadratic import quadratic_problem
from ott.solvers import was_solver
from ott.solvers.linear import sinkhorn
from ott.solvers.nn.models import ModelBase
from ott.solvers.quadratic import gromov_wasserstein

Match_fn_T = Callable[
[jax.random.PRNGKeyArray, jnp.array, jnp.array], Tuple[jnp.array, jnp.array, jnp.array, jnp.array]

]
Match_latent_fn_T = Callable[[jax.random.PRNGKeyArray, jnp.array, jnp.array], Tuple[jnp.array, jnp.array]]

def sample_conditional_indices_from_tmap(
key: jax.random.PRNGKeyArray,
tmat: jnp.ndarray,
k_samples_per_x: Union[int, jnp.ndarray],
left_marginals: Optional[jnp.ndarray],

*,
is_balanced: bool,

) -> Tuple[jnp.array, jnp.array]:
if not is_balanced:

key, key2 = jax.random.split(key, 2)
indices = jax.random.choice(

key=key2, a=jnp.arange(len(left_marginals)), p=left_marginals, shape=(len(left_marginals),)
)

else:
indices = jnp.arange(tmat.shape[0])

tmat_adapted = tmat[indices]
indices_per_row = jax.vmap(

lambda tmat_adapted: jax.random.choice(
key=key, a=jnp.arange(tmat.shape[1]), p=tmat_adapted, shape=(k_samples_per_x,)

),
in_axes=0,
out_axes=0,

)(tmat_adapted)

return jnp.repeat(indices, k_samples_per_x), indices_per_row % tmat.shape[1]

class GENOT:
def __init__(

self,
neural_net: Union[Type[ModelBase], Tuple[Type[ModelBase], Type[ModelBase]]],
input_dim: int,
output_dim: int,
iterations: int,
ot_solver: Type[was_solver.WassersteinSolver],
optimizer: Optional[Any] = None,
k_noise_per_x: int = 1,
t_offset: float = 1e-5,
epsilon: float = 1e-2,
cost_fn: Union[costs.CostFn, Literal["graph"]] = costs.SqEuclidean(),
solver_latent_to_data: Optional[Type[was_solver.WassersteinSolver]] = None,
latent_to_data_epsilon: float = 1e-2,
latent_to_data_scale_cost: Any = 1.0,
scale_cost: Any = 1.0,
graph_kwargs: Dict[str, Any] = types.MappingProxyType({}),
fused_penalty: float = 0.0,
split_dim: int = 0,
mlp_eta: Callable[[jnp.ndarray], float] = None,
mlp_xi: Callable[[jnp.ndarray], float] = None,
tau_a: float = 1.0,
tau_b: float = 1.0,
callback: Optional[Callable[[jnp.ndarray, jnp.ndarray, jnp.ndarray], Any]] = None,
callback_kwargs: Dict[str, Any] = {},
callback_iters: int = 10,
seed: int = 0,

**kwargs: Any,
) -> None:

"""
The GENOT training class.

Parameters
----------
neural_net

Neural vector field
input_dim

Dimension of the source distribution
output_dim

Dimension of the target distribution
iterations
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Number of iterations to train
ot_solver

Solver to match samples from the source to the target distribution
optimizer

Optimizer for the neural vector field
k_noise_per_x

Number of samples to draw from the conditional distribution
t_offset

Offset for sampling from the time t
epsilon

Entropy regularization parameter for the discrete solver
cost_fn

Cost function to use for the discrete OT solver
solver_latent_to_data

Linear OT solver to match samples from the noise to the conditional distribution
latent_to_data_epsilon

Entropy regularization term for `solver_latent_to_data`
latent_to_data_scale_cost

How to scale the cost matrix for the `solver_latent_to_data` solver
scale_cost

How to scale the cost matrix in each discrete OT problem
graph_kwargs

Keyword arguments for the graph cost computation in case `cost="graph"`
fused_penalty

Penalisation term for the linear term in a Fused GW setting
split_dim

Dimension to split the data into fused term and purely quadratic term in the FGW setting
mlp_eta

Neural network to learn the left rescaling function
mlp_xi

Neural network to learn the right rescaling function
tau_a

Left unbalancedness parameter
tau_b

Right unbalancedness parameter
callback

Callback function
callback_kwargs

Keyword arguments to the callback function
callback_iters

Number of iterations after which to evaluate callback function
seed

Random seed
kwargs

Keyword arguments passed to `setup`, e.g. custom choice of optimizers for learning rescaling functions
"""
if isinstance(ot_solver, gromov_wasserstein.GromovWasserstein) and epsilon is not None:

raise ValueError(
"If `ot_solver` is `GromovWasserstein`, `epsilon` must be `None`. This check is performed "
"to ensure that in the (fused) Gromov case the `epsilon` parameter is passed via the `ot_solver`."

)

# setup parameters
self.rng = jax.random.PRNGKey(seed)
self.seed = seed
self.iterations = iterations
self.metrics = {"loss": [], "loss_eta": [], "loss_xi": []}

# neural parameters
self.neural_net = neural_net
self.state_neural_net: Optional[TrainState] = None
self.optimizer = optax.adamw(learning_rate=1e-4, weight_decay=1e-10) if optimizer is None else optimizer
self.noise_fn = self.noise_fn = jax.tree_util.Partial(

jax.random.multivariate_normal, mean=jnp.zeros((output_dim,)), cov=jnp.diag(jnp.ones((output_dim,)))
)
self.input_dim = input_dim
self.output_dim = output_dim
self.k_noise_per_x = k_noise_per_x
self.t_offset = t_offset

# OT data-data matching parameters
self.ot_solver = ot_solver
self.epsilon = epsilon
self.cost_fn = cost_fn
self.scale_cost = scale_cost
self.graph_kwargs = graph_kwargs # "k_neighbors", kwargs for graph.Graph.from_graph()
if fused_penalty != 0 and split_dim == 0:

raise ValueError("Missing 'split_dim' for FGW.")
self.fused_penalty = fused_penalty
self.split_dim = split_dim

# OT latent-data matching parameters
self.solver_latent_to_data = solver_latent_to_data
self.latent_to_data_epsilon = latent_to_data_epsilon
self.latent_to_data_scale_cost = latent_to_data_scale_cost

# unbalancedness parameters
self.mlp_eta = mlp_eta
self.mlp_xi = mlp_xi
self.state_eta: Optional[TrainState] = None
self.state_xi: Optional[TrainState] = None
self.tau_a: float = tau_a
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self.tau_b: float = tau_b

# callback parameteres
self.callback = callback
self.callback_kwargs = callback_kwargs
self.callback_iters = callback_iters

self.setup(**kwargs)

def setup(self, **kwargs: Any) -> None:
"""
Set up the model.

Parameters
----------
kwargs

Keyword arguments for the setup function
"""
self.state_neural_net = self.neural_net.create_train_state(self.rng, self.optimizer, self.input_dim)
self.step_fn = self._get_step_fn()
if self.solver_latent_to_data is not None:

self.match_latent_to_data_fn = self._get_match_latent_fn(
self.solver_latent_to_data, self.latent_to_data_epsilon, self.latent_to_data_scale_cost

)
else:

self.match_latent_to_data_fn = lambda key, x, y, **_: (x, y)

if isinstance(self.ot_solver, sinkhorn.Sinkhorn):
problem_type = "linear"

else:
problem_type = "fused" if self.fused_penalty > 0 else "quadratic"

if self.cost_fn == "graph":
self.match_fn = self._get_match_fn_graph(

problem_type=problem_type,
ot_solver=self.ot_solver,
epsilon=self.epsilon,
tau_a=self.tau_a,
tau_b=self.tau_b,
fused_penalty=self.fused_penalty,
split_dim=self.split_dim,
k_samples_per_x=self.k_noise_per_x,
scale_cost=self.scale_cost,

**self.graph_kwargs,
)

else:
if problem_type == "linear":

self.match_fn = self._get_sinkhorn_match_fn(
self.ot_solver,
epsilon=self.epsilon,
cost_fn=self.cost_fn,
tau_a=self.tau_a,
tau_b=self.tau_b,
scale_cost=self.scale_cost,
k_samples_per_x=self.k_noise_per_x,

)
else:

self.match_fn = self._get_gromov_match_fn(
self.ot_solver,
cost_fn=self.cost_fn,
tau_a=self.tau_a,
tau_b=self.tau_b,
scale_cost=self.scale_cost,
split_dim=self.split_dim,
fused_penalty=self.fused_penalty,
k_samples_per_x=self.k_noise_per_x,

)

if self.mlp_eta is not None:
opt_eta = kwargs["opt_eta"] if "opt_eta" in kwargs else optax.adamw(learning_rate=1e-4, weight_decay=1e-10)
self.state_eta = self.mlp_eta.create_train_state(self.rng, opt_eta, self.input_dim)

if self.mlp_xi is not None:
opt_xi = kwargs["opt_xi"] if "opt_xi" in kwargs else optax.adamw(learning_rate=1e-4, weight_decay=1e-10)
self.state_xi = self.mlp_xi.create_train_state(self.rng, opt_xi, self.output_dim)

def __call__(
self,
x: Union[jnp.array, collections.abc.Iterable],
y: Union[jnp.array, collections.abc.Iterable],
batch_size_source: Optional[int] = None,
batch_size_target: Optional[int] = None,

) -> None:
"""
Train GENOT.

Parameters
----------
x

Source data as an iterator or data array
y

Target data as an iterator or data array
batch_size_source
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Batch size for the source distribution.
batch_size_target

Batch size for the target distribution.
"""
# prepare data
if not hasattr(x, "shape"):

x_loader = x
x_load_fn = lambda x: x

else:
assert batch_size_source is not None, "'batch_size_source' must be specified when 'x' is an array."
x_loader = iter(

tf.data.Dataset.from_tensor_slices(x)
.repeat()
.shuffle(buffer_size=10_000, seed=self.seed)
.batch(batch_size_source)

)
x_load_fn = tfds.as_numpy

if not hasattr(y, "shape"):
y_loader = y
y_load_fn = lambda x: x

else:
assert batch_size_target is not None, "'batch_size_target' must be specified when 'y' is an array."
y_loader = iter(

tf.data.Dataset.from_tensor_slices(y)
.repeat()
.shuffle(buffer_size=10_000, seed=self.seed)
.batch(batch_size_target)

)
y_load_fn = tfds.as_numpy

batch: Dict[str, jnp.array] = {}
for step in tqdm(range(self.iterations)):

source_batch, target_batch = x_load_fn(next(x_loader)), y_load_fn(next(y_loader))
self.rng, rng_time, rng_noise, rng_step_fn = jax.random.split(self.rng, 4)
batch["source"] = source_batch
batch["target"] = target_batch
n_samples = len(source_batch) * self.k_noise_per_x
t = (jax.random.uniform(rng_time, (1,)) + jnp.arange(n_samples) / n_samples) % (1 - self.t_offset)
batch["time"] = t[:, None]
batch["noise"] = self.noise_fn(rng_noise, shape=(len(source_batch), self.k_noise_per_x))
(

metrics,
self.state_neural_net,
self.state_eta,
self.state_xi,
eta_predictions,
xi_predictions,

) = self.step_fn(
rng_step_fn,
self.state_neural_net,
batch,
self.state_eta,
self.state_xi,

)
for key, value in metrics.items():

self.metrics[key].append(value)

if self.callback is not None and step % self.callback_iters == 0:
self.callback(

source=batch["source"],
target=batch["target"],
eta_predictions=eta_predictions,
xi_predictions=xi_predictions,

**self.callback_kwargs,
)

def _get_sinkhorn_match_fn(
self,
ot_solver: Any,
epsilon: float,
cost_fn: str,
tau_a: float,
tau_b: float,
scale_cost: Any,
k_samples_per_x: int,

) -> Callable:
@partial(

jax.jit,
static_argnames=["ot_solver", "epsilon", "cost_fn", "scale_cost", "tau_a", "tau_b", "k_samples_per_x"],

)
def match_pairs(

key: jax.random.PRNGKeyArray,
x: jnp.ndarray,
y: jnp.ndarray,
ot_solver: Any,
tau_a: float,
tau_b: float,
epsilon: float,
cost_fn: str,
scale_cost: Any,
k_samples_per_x: int,

) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray, jnp.ndarray]:
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geom = pointcloud.PointCloud(x, y, epsilon=epsilon, scale_cost=scale_cost, cost_fn=cost_fn)
out = ot_solver(linear_problem.LinearProblem(geom, tau_a=tau_a, tau_b=tau_b))
a, b = out.matrix.sum(axis=1), out.matrix.sum(axis=0)
inds_source, inds_target = sample_conditional_indices_from_tmap(

key=key,
tmat=out.matrix,
k_samples_per_x=k_samples_per_x,
left_marginals=a,
is_balanced=(tau_a == 1.0) and (tau_b == 1.0),

)
return x[inds_source], y[inds_target], a, b

return jax.tree_util.Partial(
match_pairs,
ot_solver=ot_solver,
epsilon=epsilon,
cost_fn=cost_fn,
tau_a=tau_a,
tau_b=tau_b,
scale_cost=scale_cost,
k_samples_per_x=k_samples_per_x,

)

def _get_gromov_match_fn(
self,
ot_solver: Any,
cost_fn: str,
tau_a: float,
tau_b: float,
scale_cost: Any,
split_dim: int,
fused_penalty: float,
k_samples_per_x: int,

) -> Callable:
@partial(

jax.jit,
static_argnames=[

"ot_solver",
"cost_fn",
"scale_cost",
"fused_penalty",
"split_dim",
"tau_a",
"tau_b",
"k_samples_per_x",

],
)
def match_pairs(

key: jax.random.PRNGKeyArray,
x: Tuple[jnp.ndarray, jnp.ndarray],
y: Tuple[jnp.ndarray, jnp.ndarray],
ot_solver: Any,
tau_a: float,
tau_b: float,
cost_fn: str,
scale_cost,
fused_penalty: float,
k_samples_per_x: int,
split_dim: int = 0,

) -> Tuple[jnp.array, jnp.array]:
geom_xx = pointcloud.PointCloud(

x=x[..., split_dim:], y=x[..., split_dim:], cost_fn=cost_fn, scale_cost=scale_cost
)
geom_yy = pointcloud.PointCloud(

x=y[..., split_dim:], y=y[..., split_dim:], cost_fn=cost_fn, scale_cost=scale_cost
)
if split_dim > 0:

geom_xy = pointcloud.PointCloud(
x=x[..., :split_dim], y=y[..., :split_dim], cost_fn=cost_fn, scale_cost=scale_cost

)
else:

geom_xy = None
prob = quadratic_problem.QuadraticProblem(

geom_xx, geom_yy, geom_xy, fused_penalty=fused_penalty, tau_a=tau_a, tau_b=tau_b
)
out = ot_solver(prob)
a, b = out.matrix.sum(axis=1), out.matrix.sum(axis=0)
inds_source, inds_target = sample_conditional_indices_from_tmap(

key=key,
tmat=out.matrix,
k_samples_per_x=k_samples_per_x,
left_marginals=a,
is_balanced=(tau_a == 1.0) and (tau_b == 1.0),

)
return x[inds_source], y[inds_target], a, b

return jax.tree_util.Partial(
match_pairs,
ot_solver=ot_solver,
cost_fn=cost_fn,
tau_a=tau_a,
tau_b=tau_b,
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scale_cost=scale_cost,
split_dim=split_dim,
fused_penalty=fused_penalty,
k_samples_per_x=k_samples_per_x,

)

def _get_match_fn_graph(
self,
problem_type: Literal["linear", "quadratic", "fused"],
ot_solver: Any,
epsilon: float,
k_neighbors: int,
tau_a: float,
tau_b: float,
scale_cost: Any,
fused_penalty: float,
split_dim: int,
k_samples_per_x: int,

**kwargs,
) -> Callable:

def get_nearest_neighbors(
X: jnp.ndarray, Y: jnp.ndarray, k: int = 30 # type: ignore[name-defined]

) -> Tuple[jnp.ndarray, jnp.ndarray]: # type: ignore[name-defined]
concat = jnp.concatenate((X, Y), axis=0)
pairwise_euclidean_distances = pointcloud.PointCloud(concat, concat).cost_matrix
distances, indices = jax.lax.approx_min_k(

pairwise_euclidean_distances, k=k, recall_target=0.95, aggregate_to_topk=True
)
return distances, indices

def create_cost_matrix(X: jnp.array, Y: jnp.array, k_neighbors: int, **kwargs: Any) -> jnp.array:
distances, indices = get_nearest_neighbors(X, Y, k_neighbors)
a = jnp.zeros((len(X) + len(Y), len(X) + len(Y)))
adj_matrix = a.at[

jnp.repeat(jnp.arange(len(X) + len(Y)), repeats=k_neighbors).flatten(), indices.flatten()
].set(distances.flatten())
return graph.Graph.from_graph(adj_matrix, normalize=kwargs.pop("normalize", True), **kwargs).cost_matrix[

: len(X), len(X) :
]

@partial(
jax.jit,
static_argnames=[

"ot_solver",
"problem_type",
"epsilon",
"k_neighbors",
"tau_a",
"tau_b",
"k_samples_per_x",
"fused_penalty",
"split_dim",

],
)
def match_pairs(

key: jax.random.PRNGKeyArray,
x: jnp.ndarray,
y: jnp.ndarray,
ot_solver: Any,
problem_type: Literal["linear", "quadratic", "fused"],
epsilon: float,
tau_a: float,
tau_b: float,
fused_penalty: float,
split_dim: int,
k_neighbors: int,
k_samples_per_x: int,

**kwargs,
) -> Tuple[jnp.array, jnp.array, jnp.ndarray, jnp.ndarray]:

if problem_type == "linear":
cm = create_cost_matrix(x, y, k_neighbors, **kwargs)
geom = geometry.Geometry(cost_matrix=cm, epsilon=epsilon, scale_cost=scale_cost)
out = ot_solver(linear_problem.LinearProblem(geom, tau_a=tau_a, tau_b=tau_b))

else:
cm_xx = create_cost_matrix(x[..., split_dim:], x[..., split_dim:], k_neighbors, **kwargs)
cm_yy = create_cost_matrix(y[..., split_dim:], y[..., split_dim:], k_neighbors, **kwargs)
geom_xx = geometry.Geometry(cost_matrix=cm_xx, epsilon=epsilon, scale_cost=scale_cost)
geom_yy = geometry.Geometry(cost_matrix=cm_yy, epsilon=epsilon, scale_cost=scale_cost)
if problem_type == "quadratic":

geom_xy = None
else:

cm_xy = create_cost_matrix(x[..., :split_dim], y[..., :split_dim], k_neighbors, **kwargs)
geom_xy = geometry.Geometry(cost_matrix=cm_xy, epsilon=epsilon, scale_cost=scale_cost)

prob = quadratic_problem.QuadraticProblem(
geom_xx, geom_yy, geom_xy, fused_penalty=fused_penalty, tau_a=tau_a, tau_b=tau_b

)
out = ot_solver(prob)

a, b = out.matrix.sum(axis=0), out.matrix.sum(axis=1)
inds_source, inds_target = sample_conditional_indices_from_tmap(

key=key,
tmat=out.matrix,
k_samples_per_x=k_samples_per_x,
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left_marginals=a,
is_balanced=(tau_a == 1.0) and (tau_b == 1.0),

)
return x[inds_source], y[inds_target], a, b

return jax.tree_util.Partial(
match_pairs,
problem_type=problem_type,
ot_solver=ot_solver,
epsilon=epsilon,
k_neighbors=k_neighbors,
tau_a=tau_a,
tau_b=tau_b,
k_samples_per_x=k_samples_per_x,
fused_penalty=fused_penalty,
split_dim=split_dim,

**kwargs,
)

def _get_match_latent_fn(self, ot_solver: Type[sinkhorn.Sinkhorn], epsilon: float, scale_cost: Any) -> Callable:
@partial(jax.jit, static_argnames=["ot_solver", "epsilon", "scale_cost"])
def match_latent_to_data(

key: jax.random.PRNGKeyArray,
ot_solver: Type[was_solver.WassersteinSolver],
x: jnp.ndarray,
y: jnp.ndarray,
epsilon: float,
scale_cost: Any,

) -> Tuple[jnp.ndarray, jnp.ndarray]:
geom = pointcloud.PointCloud(x, y, epsilon=epsilon, scale_cost=scale_cost)
out = ot_solver(linear_problem.LinearProblem(geom))
inds_source, inds_target = sample_conditional_indices_from_tmap(key, out.matrix, 1, None, is_balanced=True)
return x[inds_source], y[inds_target]

return jax.tree_util.Partial(match_latent_to_data, ot_solver=ot_solver, epsilon=epsilon, scale_cost=scale_cost)

def _get_step_fn(self) -> Callable:
def loss_fn(

params_mlp: jnp.array,
apply_fn_mlp: Callable,
batch: Dict[str, jnp.array],

):
def phi_t(x_0: jnp.ndarray, x_1: jnp.ndarray, t: jnp.ndarray) -> jnp.ndarray:

return (1 - t) * x_0 + t * x_1

def u_t(x_0: jnp.ndarray, x_1: jnp.ndarray) -> jnp.ndarray:
return x_1 - x_0

phi_t_eval = phi_t(batch["noise"], batch["target"], batch["time"])
mlp_pred = apply_fn_mlp(

{"params": params_mlp}, t=batch["time"], latent=phi_t_eval, condition=batch["source"]
)
d_psi = u_t(batch["noise"], batch["target"])

return jnp.mean(optax.l2_loss(mlp_pred, d_psi))

def loss_a_fn(
params_eta: Optional[jnp.ndarray],
apply_fn_eta: Optional[Callable],
x: jnp.ndarray,
a: jnp.ndarray,
expectation_reweighting: float,

) -> float:
eta_predictions = apply_fn_eta({"params": params_eta}, x)
return (

optax.l2_loss(eta_predictions[:, 0], a).mean()
+ optax.l2_loss(jnp.mean(eta_predictions) - expectation_reweighting),
eta_predictions,

)

def loss_b_fn(
params_xi: Optional[jnp.ndarray],
apply_fn_xi: Optional[Callable],
x: jnp.ndarray,
b: jnp.ndarray,
expectation_reweighting: float,

) -> float:
xi_predictions = apply_fn_xi({"params": params_xi}, x)
return (

optax.l2_loss(xi_predictions, b).mean()
+ optax.l2_loss(jnp.mean(xi_predictions) - expectation_reweighting),
xi_predictions,

)

@jax.jit
def step_fn(

key: jax.random.PRNGKeyArray,
state_neural_net: TrainState,
batch: Dict[str, jnp.array],
state_eta: Optional[TrainState] = None,
state_xi: Optional[TrainState] = None,

):
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rng_match, rng_noise = jax.random.split(key, 2)
original_source_batch = batch["source"]
original_target_batch = batch["target"]
source_batch, target_batch, a, b = self.match_fn(rng_match, batch["source"], batch["target"])
rng_noise = jax.random.split(rng_noise, (len(target_batch)))

noise_matched, conditional_target = jax.vmap(self.match_latent_to_data_fn, 0, 0)(
key=rng_noise, x=batch["noise"], y=target_batch

)

batch["source"] = jnp.reshape(source_batch, (len(source_batch), -1))
batch["target"] = jnp.reshape(conditional_target, (len(source_batch), -1))
batch["noise"] = jnp.reshape(noise_matched, (len(source_batch), -1))

grad_fn = jax.value_and_grad(loss_fn, has_aux=False)
loss, grads_mlp = grad_fn(

state_neural_net.params,
state_neural_net.apply_fn,
batch,

)
metrics = {}
metrics["loss"] = loss

integration_eta = jnp.sum(a)
integration_xi = jnp.sum(b)

if state_eta is not None:
grad_a_fn = jax.value_and_grad(loss_a_fn, argnums=0, has_aux=True)
(loss_a, eta_predictions), grads_eta = grad_a_fn(

state_eta.params,
state_eta.apply_fn,
original_source_batch[:,],
a * len(original_source_batch),
integration_xi,

)

new_state_eta = state_eta.apply_gradients(grads=grads_eta)
metrics["loss_eta"] = loss_a

else:
new_state_eta = eta_predictions = None

if state_xi is not None:
grad_b_fn = jax.value_and_grad(loss_b_fn, argnums=0, has_aux=True)
(loss_b, xi_predictions), grads_xi = grad_b_fn(

state_xi.params,
state_xi.apply_fn,
original_target_batch[:,],
(b * len(original_target_batch))[:, None],
integration_eta,

)
new_state_xi = state_xi.apply_gradients(grads=grads_xi)
metrics["loss_xi"] = loss_b

else:
new_state_xi = xi_predictions = None

return (
metrics,
state_neural_net.apply_gradients(grads=grads_mlp),
new_state_eta,
new_state_xi,
eta_predictions,
xi_predictions,

)

return step_fn

def transport(
self, source: jnp.array, seed: int = 0, diffeqsolve_kwargs: Dict[str, Any] = types.MappingProxyType({})

) -> Union[jnp.array, diffrax.Solution, Optional[jnp.ndarray]]:
"""
Transport the distribution.

Parameters
----------
source

Source distribution to transport
seed

Random seed for sampling from the latent distribution
diffeqsolve_kwargs

Keyword arguments for the ODE solver.

Returns
-------

The transported samples, the solution of the neural ODE, and the rescaling factor.
"""
diffeqsolve_kwargs = dict(diffeqsolve_kwargs)
rng = jax.random.PRNGKey(seed)
latent_shape = (len(source),)
latent_batch = self.noise_fn(rng, shape=latent_shape)
apply_fn_partial = partial(self.state_neural_net.apply_fn, condition=source)
solution = diffrax.diffeqsolve(

diffrax.ODETerm(
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lambda t, y, *args: apply_fn_partial({"params": self.state_neural_net.params}, t=t, latent=y)
),
diffeqsolve_kwargs.pop("solver", diffrax.Tsit5()),
t0=0,
t1=1,
dt0=diffeqsolve_kwargs.pop("dt0", None),
y0=latent_batch,
stepsize_controller=diffeqsolve_kwargs.pop(

"stepsize_controller", diffrax.PIDController(rtol=1e-3, atol=1e-6)
),

**diffeqsolve_kwargs,
)
if self.state_eta is not None:

weight_factors = self.state_eta.apply_fn({"params": self.state_eta.params}, x=source)
else:

weight_factors = jnp.ones(source.shape)
return solution.ys, solution, weight_factors

The network architectures The following code contains the neural network architectures.

from typing import Callable, Optional

import flax.linen as nn
import optax
from flax.training import train_state

import jax
import jax.numpy as jnp
from ott.solvers.nn.models import ModelBase, NeuralTrainState

class Block(nn.Module):
"""
Block of a neural network.

Parameters
----------
dim

Input dimension.
out_dim

Output dimension.
num_layers

Number of layers.
act_fn

Activation function.
"""

dim: int = 128
out_dim: int = 32
num_layers: int = 3
act_fn: Callable[[jnp.ndarray], jnp.ndarray] = nn.silu

@nn.compact
def __call__(self, x):

for i in range(self.num_layers):
x = nn.Dense(self.dim, name=f"fc{i}")(x)
x = self.act_fn(x)

return nn.Dense(self.out_dim, name="fc_final")(x)

class MLP_vector_field(ModelBase):
"""
Neural vector field.

Parameters
----------
output_dim

Output dimension.
latent_embed_dim

Latent embedding dimension.
condition_embed_dim

Condition embedding dimension.
t_embed_dim

Time embedding dimension.
joint_hidden_dim

Joint hidden dimension.
num_layers

Number of layers per block.
act_fn

Activation function.
n_frequencies

Number of frequencies for time embedding.
"""

output_dim: int
latent_embed_dim: int
condition_embed_dim: Optional[int] = None
t_embed_dim: Optional[int] = None
joint_hidden_dim: Optional[int] = None
num_layers: int = 3
act_fn: Callable[[jnp.ndarray], jnp.ndarray] = nn.silu
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n_frequencies: int = 1

def time_encoder(self, t: jnp.array) -> jnp.array:
freq = 2 * jnp.arange(self.n_frequencies) * jnp.pi
t = freq * t
return jnp.concatenate((jnp.cos(t), jnp.sin(t)), axis=-1)

def __post_init__(self):
if self.condition_embed_dim is None:

self.condition_embed_dim = self.latent_embed_dim
if self.t_embed_dim is None:

self.t_embed_dim = self.latent_embed_dim

concat_embed_dim = self.latent_embed_dim + self.condition_embed_dim + self.t_embed_dim
if self.joint_hidden_dim is not None:

assert self.joint_hidden_dim >= concat_embed_dim, (
"joint_hidden_dim must be greater than or equal to the sum of " "all embedded dimensions. "

)
self.joint_hidden_dim = self.latent_embed_dim

else:
self.joint_hidden_dim = concat_embed_dim

super().__post_init__()

@property
def is_potential(self) -> bool:

return self.output_dim == 1

@nn.compact
def __call__(self, t: float, condition: jnp.ndarray, latent: jnp.ndarray) -> jnp.ndarray:

condition, latent = jnp.atleast_2d(condition, latent)

t = jnp.full(shape=(len(condition), 1), fill_value=t)
t = self.time_encoder(t)
t = Block(

dim=self.t_embed_dim,
out_dim=self.t_embed_dim,
num_layers=self.num_layers,
act_fn=self.act_fn,

)(t)

condition = Block(
dim=self.condition_embed_dim,
out_dim=self.condition_embed_dim,
num_layers=self.num_layers,
act_fn=self.act_fn,

)(condition)

latent = Block(
dim=self.latent_embed_dim, out_dim=self.latent_embed_dim, num_layers=self.num_layers, act_fn=self.act_fn

)(latent)

concat_embed = jnp.concatenate((t, condition, latent), axis=-1)
out = Block(

dim=self.joint_hidden_dim,
out_dim=self.joint_hidden_dim,
num_layers=self.num_layers,
act_fn=self.act_fn,

)(concat_embed)

return nn.Dense(self.output_dim, use_bias=True, name="final_layer")(out)

def create_train_state(
self,
rng: jax.random.PRNGKeyArray,
optimizer: optax.OptState,
input_dim: int,

) -> NeuralTrainState:
params = self.init(rng, jnp.ones((1, 1)), jnp.ones((1, input_dim)), jnp.ones((1, self.output_dim)))["params"]
return train_state.TrainState.create(apply_fn=self.apply, params=params, tx=optimizer)

class MLP_marginal(ModelBase):
"""
Neural network parameterizing a reweighting function.

Parameters
----------
hidden_dim

Hidden dimension.
num_layers

Number of layers.
act_fn

Activation function.
"""

hidden_dim: int
num_layers: int = 3
act_fn: Callable[[jnp.ndarray], jnp.ndarray] = nn.silu

@property
def is_potential(self) -> bool:

return True
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@nn.compact
def __call__(self, x: jnp.ndarray) -> jnp.ndarray:

z = x
z = Block(dim=self.hidden_dim, out_dim=1, num_layers=self.num_layers, act_fn=self.act_fn)(z)
return nn.softplus(z)

Example workflow for recovering lineage branching events in the pancreas dataset The fol-
lowing code reproduces the computations needed for figure 2.

# import GENOT
from genot.models.model import GENOT
from genot.nets.nets import MLP_vector_field

from typing import Iterable, Tuple
from joblib import Parallel, delayed
import jax
import jax.numpy as jnp
import numpy as np
import pandas as pd
from ott.solvers.linear import sinkhorn
import scanpy as sc

# load data into current directory. The data can be downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132188
adata = sc.read("../../data/adata_pancreas_2019_endocrine.h5ad")
sc.pp.pca(adata, n_comps=30)

source_train = adata.obsm["X_pca"]
target_train = adata.obsm["X_pca"]

# Train the GENOT-K model
ot_solver = sinkhorn.Sinkhorn()
neural_net = MLP_vector_field(target_train.shape[1], latent_embed_dim=256, num_layers=8, n_frequencies=128)

genot_k = GENOT(
neural_net,
ot_solver=ot_solver,
epsilon=1e-2,
scale_cost="mean",
input_dim=30,
output_dim=30,
iterations=10_000,
k_noise_per_x=1,

)
genot_k(source_train, target_train, 1024, 1024)

# Sample from the conditional distribution
push_source = [None] * 30

for i in range(30):
push_source[i] = genot_k.transport(source_train, seed=i)[0][0, ...]

# The following code snippets are needed for computing the uncertainty statistics and are taken from
# https://github.com/YosefLab/velovi/blob/a8090d63396e2695bc8695f2fc69c34b39d62dc4/velovi/_model.py

def sample_velocities_from_transport_matrix(
transport_matrix: np.ndarray, target_distribution: np.ndarray, n_samples: int

) -> np.ndarray:
res = [None] * n_samples
for i in range(n_samples):

res[i] = target_distribution[
jax.vmap(lambda x: jax.random.categorical(jax.random.PRNGKey(i), x))(jnp.log(transport_matrix))

]
return jnp.asarray(res)

def compute_statistics_from_samples(
samples: np.ndarray, split_to_k_batches: int, cell_names: Iterable[str]

) -> pd.DataFrame:
batch_size = samples.shape[0] // split_to_k_batches
assert samples.shape[0] % split_to_k_batches == 0
# samples is of shape (n_samples, n_cells, dim_velocity_vector)
df = pd.DataFrame(index=cell_names)

for i in range(split_to_k_batches):
df[f"var_{i}"] = np.sum(np.var(samples[i * batch_size : (i + 1) * batch_size, ...], axis=0), axis=1)
var_cols = [f"var_{i}" for i in range(split_to_k_batches)]

df["var_of_variance"] = df[var_cols].var(axis=1)
df["mean_of_variance"] = df[var_cols].mean(axis=1)
return df

def compute_directional_statistics_from_samples(
samples: np.ndarray, n_jobs: int, cell_names: Iterable[str]

) -> pd.DataFrame:
samples = np.asarray(samples)
n_cells = len(cell_names)
df = pd.DataFrame(index=cell_names)
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df["directional_variance"] = np.nan
df["directional_difference"] = np.nan
df["directional_cosine_sim_variance"] = np.nan
df["directional_cosine_sim_difference"] = np.nan
df["directional_cosine_sim_mean"] = np.nan
results = Parallel(n_jobs=n_jobs, verbose=3)(

delayed(_directional_statistics_per_cell)(samples[:, cell_index, :]) for cell_index in range(n_cells)
)
# cells by samples
cosine_sims = np.stack([results[i][0] for i in range(n_cells)])
df.loc[:, "directional_cosine_sim_variance"] = [results[i][1] for i in range(n_cells)]
df.loc[:, "directional_cosine_sim_difference"] = [results[i][2] for i in range(n_cells)]
df.loc[:, "directional_variance"] = [results[i][3] for i in range(n_cells)]
df.loc[:, "directional_difference"] = [results[i][4] for i in range(n_cells)]
df.loc[:, "directional_cosine_sim_mean"] = [results[i][5] for i in range(n_cells)]

return df, cosine_sims

def _cosine_sim(v1: np.ndarray, v2: np.ndarray) -> np.ndarray:
"""Returns cosine similarity of the vectors."""
v1_u = _centered_unit_vector(v1)
v2_u = _centered_unit_vector(v2)
return np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)

def _directional_statistics_per_cell(
tensor: np.ndarray,

) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Internal function for parallelization.

Parameters
----------
tensor

Shape of samples by genes for a given cell.
"""
n_samples = tensor.shape[0]
# over samples axis
mean_velocity_of_cell = tensor.mean(0)
cosine_sims = [_cosine_sim(tensor[i, :], mean_velocity_of_cell) for i in range(n_samples)]
angle_samples = [np.arccos(el) for el in cosine_sims]
return (

cosine_sims,
np.var(cosine_sims),
np.percentile(cosine_sims, 95) - np.percentile(cosine_sims, 5),
np.var(angle_samples),
np.percentile(angle_samples, 95) - np.percentile(angle_samples, 5),
np.mean(cosine_sims),

)

def _centered_unit_vector(vector: np.ndarray) -> np.ndarray:
"""Returns the centered unit vector of the vector."""
vector = vector - np.mean(vector)
return vector / np.linalg.norm(vector)

# In the following, we compute the statistics
cosine_vars_source = compute_directional_statistics_from_samples(

np.array(push_source), 2, adata[adata.obs["day"] == "14.5"].obs_names
)
adata.obs["directional_cosine_sim_variance"] = cosine_vars_source[0]["directional_cosine_sim_variance"]

Example workflow for modality translation in the bone marrow dataset The following code
reproduces the computations needed for figure 5.

# import GENOT
from genot.models.model import GENOT
from genot.nets.nets import MLP_vector_field

import jax
import jax.numpy as jnp
import numpy as np
import scipy
import sklearn.preprocessing as pp
from ott.geometry.pointcloud import PointCloud
from ott.solvers.linear import acceleration, sinkhorn
from ott.solvers.quadratic import gromov_wasserstein
from ott.tools.sinkhorn_divergence import sinkhorn_divergence
import scanpy as sc
from moscot import datasets

# Perform modality translation with GW and graph costs
adata_atac = datasets.bone_marrow(rna=False)
adata_rna = datasets.bone_marrow(rna=True)

# Preprocess data and split into train and test split
adata_source = adata_atac.copy()
adata_target = adata_rna.copy()
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n_cells_source = len(adata_atac)

n_samples_train = int(n_cells_source * 0.6)
n_samples_test = n_cells_source - n_cells_source

inds_train = np.asarray(jax.random.choice(jax.random.PRNGKey(0), n_cells_source, (n_samples_train,), replace=False))
inds_test = list(set(list(range(n_cells_source))) - set(np.asarray(inds_train)))

fused = np.concatenate((adata_atac.obsm["geneactivity_scvi"], adata_rna.obsm["geneactivity_scvi"]), axis=0)
fused = sc.pp.pca(fused, n_comps=25)

source_fused = fused[: len(adata_source), :]
target_fused = fused[len(adata_target) :, :]

source_q = pp.normalize(adata_source.obsm["ATAC_lsi_red"], norm="l2")
target_q = adata_target.obsm["GEX_X_pca"]

source_train_q = source_q[inds_train, :]
source_test_q = source_q[inds_test, :]
target_train_q = target_q[inds_train, :]
target_test_q = target_q[inds_test, :]
source_train_fused = source_fused[inds_train, :]
source_test_fused = source_fused[inds_test, :]
target_train_fused = target_fused[inds_train, :]
target_test_fused = target_fused[inds_test, :]

source_train = np.concatenate((source_train_fused, source_train_q), axis=1)
source_test = np.concatenate((source_test_fused, source_test_q), axis=1)
target_train = np.concatenate((target_train_fused, target_train_q), axis=1)
target_test = np.concatenate((target_test_fused, target_test_q), axis=1)

# Train the GENOT-FGW model
neural_net = MLP_vector_field(target_train.shape[1], latent_embed_dim=256, num_layers=8, n_frequencies=128)
linear_ot_solver = sinkhorn.Sinkhorn(momentum=acceleration.Momentum(value=1.0, start=25))
solver = gromov_wasserstein.GromovWasserstein(epsilon=0.01, linear_ot_solver=linear_ot_solver)

genot_fgw = GENOT(
neural_net,
epsilon=None,
scale_cost="mean",
input_dim=source_train.shape[1],
output_dim=target_train.shape[1],
iterations=5_000,
ot_solver=solver,
k_noise_per_x=1,
fused_penalty=1.0,
split_dim=fused.shape[1],

)
genot_fgw(source_train, target_train, 1024, 1024)

# Sample 30 times from the conditional distribution
res_test = [None] * 30

for i in range(30):
res_test[i] = genot_fgw.transport(source_test, seed=i)[0][0, ...]

# Compute the conditional mean
cond_mean_test = jnp.mean(jnp.asarray(res_test), axis=0)

# define the FOSCTTM score (taken from SCOT, Demetci et al., 2022)
def foscttm(

x: np.ndarray,
y: np.ndarray,

) -> float:
d = scipy.spatial.distance_matrix(x, y)
foscttm_x = (d < np.expand_dims(np.diag(d), axis=1)).mean(axis=1)
foscttm_y = (d < np.expand_dims(np.diag(d), axis=0)).mean(axis=0)
fracs = []
for i in range(len(foscttm_x)):

fracs.append((foscttm_x[i] + foscttm_y[i]) / 2)
return np.mean(fracs).round(4)

# Evaluate optimality with the FOSCTTM score
foscttm_one_sample = foscttm(res_test[0], target_test)
foscttm_cond_mean = foscttm(cond_mean_test, target_test)

# Evaluate fitting property with the sinkhorn divergence
sinkhorn_div_one_sample = sinkhorn_divergence(PointCloud, res_test[0], target_test, epsilon=1e-2).divergence
sinkhorn_div_cond_mean = sinkhorn_divergence(PointCloud, cond_mean_test, target_test, epsilon=1e-2).divergence
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