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Abstract

Addressing challenges in domain invariance within single-cell genomics necessi-
tates innovative strategies to manage the heterogeneity of multi-source datasets
while maintaining the integrity of biological signals. We introduce TarDis, a novel
deep generative model designed to disentangle intricate covariate structures across
diverse biological datasets, distinguishing technical artifacts from true biological
variations. By employing tailored covariate-specific loss components and a self-
supervised approach, TarDis effectively generates multiple latent space representa-
tions that capture each continuous and categorical target covariate separately, along
with unexplained variation. Our extensive evaluations demonstrate that TarDis
outperforms existing methods in data integration, covariate disentanglement, and ro-
bust out-of-distribution predictions. The model’s capacity to produce interpretable
and structured latent spaces, including ordered latent representations for continuous
covariates, enhances its utility in hypothesis-driven research. Consequently, TarDis
offers a promising analytical platform for advancing scientific discovery, providing
insights into cellular dynamics, and enabling targeted therapeutic interventions.

1 Introduction

Domain invariance tackles the challenge of learning from datasets that, while representing the same
physical phenomena, originate from disparate sources such as different users, acquisition devices,
or locations [5]. As the data source often lacks direct relevance to the task, the objective is to
develop a model that maintains performance robustness by being invariant to these domain variations.
This invariance not only enhances model reliability across shifts, whether subpopulational [44] or
distributional [24], but also is an end in itself where the source is obscured to comply with data
protection requirements [27]. Such shifts, frequently observed in practical machine learning scenarios,
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necessitate models to be resilient to variations in multi-domain datasets by learning to minimize the
disparity in data distributions within the representation space; ideally achieving a low metric distance
between them. This concept is closely aligned with distributionally robust optimization strategies,
promoting the development of universally applicable machine learning models that withstand out-of-
distribution variations [25, 54, 81, 95].

The identification of spurious correlations within these multi-domain datasets can provide critical
insights for certain downstream applications, enriching the interpretive scope beyond mere domain
invariance. Moreover, models leveraging data representations or predictors derived from true cor-
relations, including domain-specific attributes or nuisance factors, more effectively discern causal
relationships, thereby enhancing their generalization capabilities [3, 4]. This recognition has spurred
interest in disentangled representation learning, aiming to segregate and independently model spu-
rious and invariant characteristics within the data [4, 6, 45]. Developing invariant representation
learning models is a complex multi-objective optimization problem, frequently necessitating linear
constraints on the data representations and classifiers [2, 3, 45], or the incorporation of conditional
priors within the VAE framework [4, 55].

Existing invariant representation learning methods often fail for continuous domain problems, an
area that is significantly underexplored yet critically important [7, 96, 98]. Examples include patient
monitoring systems where physiological spurious data varies daily and across activities [17], finance,
where models predicting stock prices or market trends must generalize across varying economic
conditions and times [34], and climate modeling, where models use invariant learning to forecast
weather or long-term climate changes across diverse locations and time periods [10]. Existing
methods are generally designed for discrete categorical domains and struggle with the continuous
nature of many real-world tasks. This leads to challenges such as sparse data in each domain, making
it hard to accurately estimate invariant correlations, and segmentation of continuous data into discrete
blocks which can misrepresent true data distributions. Addressing these issues is crucial for advancing
model robustness and ensuring applicability in dynamic environments [96].

In the context of domain invariance, multi-domain and multi-condition single-cell genomics datasets
present a critical testbed where the integration of data representations confronts complex challenges in
biological and pharmaceutical research [30]. Single-cell genomics offers a granular view of individual
cells’ genetic diversity, highlighting the variability among cells and essential for understanding cellular
and molecular processes [9, 37, 65]. However, the data often come from a range of labs and varied
experimental setups, incorporating batch effects and technical artifacts that can mask true biological
signals [22, 52]. These challenges are compounded when data includes cells affected by chemical
or genetic perturbations, sourced from diseased states, or differing in their origin, such as specific
organs, organisms, developmental stages, ethnicity, age, sex and other factors that further contribute to
variability [28, 32, 61, 76, 80]. Effective data integration is vital for separating technical artifacts from
relevant biological signals, facilitating a robust comparison of biological landscapes across various
domains and enhancing our understanding of the underlying cellular dynamics, with significant
implications for advancing disease research and therapeutic development [68, 69].

Hence, it becomes essential to disentangle invariant and spurious correlations for single-cell data
integration, where spurious correlations often obscure biological signals. The disentanglement of
these elements not only enhances data integration by clarifying underlying biological processes
but also bolsters out-of-distribution (OOD) prediction capabilities [4, 51]. Furthermore, there is a
compelling need for researchers to explore the potential effects of one covariate on another, whether
categorical or continuous, by manipulating such disentangled latent representations. For instance,
adjusting the continuous ‘drug dose’ representation while holding the representations of ‘disease
state’, ‘patient’, and continuous ‘age’ constant could reveal the dose-dependent effects on gene
expression independent of the disease’s progression or patient characteristics. Such analyses would
deepen our understanding of the interactions between various factors at the cellular level, thereby
unlocking new avenues for complex, hypothesis-driven research with single-cell genomics data.

To address the complexities inherent in multi-domain and multi-condition datasets, we intro-
duce TarDis, a novel end-to-end deep generative model specifically designed for the targeted
disentanglement of multiple covariates, such as those encountered in extensive single-cell genomics
data. 1 TarDis employs covariate-specific loss functions through a self-supervision strategy, enabling
the learning of disentangled representations that achieve accurate reconstructions and effectively

1“A place for everything, and everything in its place.” — Benjamin Franklin
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preserve essential biological variations across diverse datasets. It eschews additional architectural
complexities, enabling straightforward application to large datasets. TarDis ensures the independence
of invariant signals from noise, enhancing interpretability that is crucial for extracting biological
insights obscured by spurious data correlations. TarDis handles both categorical and, notably, con-
tinuous variables, demonstrating its adaptability to diverse data characteristics and allowing for a
granular understanding and representation of underlying data dynamics within a coherent and inter-
pretable latent space. This capability is instrumental for exploring complex biological phenomena and
conducting hypothesis-driven research. Empirical benchmarking across multiple datasets highlight
TarDis’s superior performance in covariate disentanglement, data integration, and out-of-distribution
predictions, significantly outperforming existing models. 2 3

2 Method

Let D represent a single-cell genomics dataset containing NC cells, where each cell, denoted as n,
is characterized by its gene expression (xn) and associated covariates (sn). The gene expression is
represented by a count vector xn = [xng]

NG
g=1, where xng ∈ Z≥0 is the expression count of gene g,

and NG is the total number of genes in the dataset. Additionally, each cell n is associated with a
vector of covariates sn = [snk]

NK

k=1, which may be either continuous or discrete, and NK indicates the
number of covariates. TarDis constructs a latent representation zn for gene expression xn, organized
as zn = (zn0, [znk]k∈Jk

), where Jk ⊆ {1, . . . , NK} denotes the subset of covariates targeted for
disentanglement. Specifically, znk is a latent vector constructed for each targeted covariate, while
zn0 captures residual information independent of targeted covariates. During model training, TarDis
employs a novel approach to foster disentanglement by generating pairs of additional latent vectors
(z

(k)
n )− and (z

(k)
n )+ corresponding to two data points (x(k)

n )− and (x
(k)
n )+. These data points are

selected randomly and differ in the kth covariate value, such that (s(k)nk )
+ = snk and (s

(k)
nk )

− ̸= snk.

The primary objective of TarDis training is to optimize the latent vectors based on a distance measure
F . While F is defined conceptually as a real-valued function, F : R|znk| → R≥0, here just to
illustrate the underlying concept, practical implementation typically employ multiple loss terms
instead of a single function for optimizing latent vectors, as will be discussed in further detail. For
each covariate k ∈ Jk, F should satisfy F (znk, (z

(k)
nk )

−) ≥ F (znk, (z
(k)
nk )

+), implying that latent
vector znk should be more similar to another vector that shares the same covariate value, (z(k)nk )

+,
than to a vector with a different covariate value, (z(k)nk )

−. Furthermore, the latent vector zn0 should
show equal similarity to any other vectors regardless of their covariate values, whether (z(k)n0 )

− and
(z

(k)
n0 )

+, thus fulfilling the condition: F (zn0, (z
(k)
n0 )

−) = F (zn0, (z
(k)
n0 )

+). This equality ensures
that zn0 remains unaffected by covariate-specific information, thereby providing a covariate-neutral
representation of the cell’s gene expression. Ultimately, the aim of TarDis is to produce a latent
representation in which znk reflects the influence of its corresponding covariate snk, while zn0
offers a covariate-neutral representation of the cell’s gene expression profile, unaffected by any
covariate-specific variations.

2.1 VAE Skeleton

TarDis builds upon a variational autoencoder (VAE) to construct a high-fidelity generative model
that underpins our disentanglement objectives. The VAE component optimization guided by the
Evidence Lower Bound (ELBO), a surrogate for the intractable marginal log-likelihood as shown in
Equation 1 [42]. Here, the covariates, sn, are pivotal for capturing factors that might influence the
observed data, such as batch effects. TarDis incorporates the target covariates as sn, and also allows
inclusion of non-target covariates, providing flexibility in managing different types of data impacts.
The first term of LVAE represents the reconstruction loss, LR, which quantifies the expected negative
log-likelihood of the observed data xn, conditioned on the latent variables, zn. The reconstruction
loss is formally expressed using the negative binomial (NB) distribution, ideal for capturing the count
variability inherent in data types like single-cell genomics (Equation 2). In this equation, Γ denotes
the gamma function, µ and θ refer to the mean and inverse dispersion parameters of the negative
binomial distribution, respectively [37]. The second term measures the Kullback-Leibler divergence
(KL), LKL, penalizing deviations of the learned posterior distribution qϕ(zn | xn, sn) from the prior

2Refer to Appendix A for discussions regarding relevant works.
3Source code for TarDis is available on GitHub under theislab/tardis.
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distribution p(zn). In Equation 3, the approximate posterior distribution is assumed to be Gaussian
distribution with mean µn and diagonal covariance matrix Σn, and the prior distribution p(zn) is
typically a standard normal distribution N (0, I) where I is the identity matrix in R|zn|×|zn|.

LVAE(θ, ϕ;xn, sn) = −Eqϕ(zn|xn,sn) [log pθ(xn|zn)] +DKL(qϕ(zn | xn, sn) ∥ p(zn)) (1)

LR = NB(xn;µn,θn) =
Γ(xn + θn)

Γ(xn + 1)Γ(θn)

(
θn

θn + µn

)θn
(

µn

θn + µn

)xn

(2)

LKL = DKL(N (µn,Σn) ∥ N (0, I)) (3)

2.2 Auxiliary Loss

In TarDis model training, the VAE optimization is intertwined with the novel auxiliary loss component
introduced, LC, to construct zn = (zn0, [znk]k∈Jk

) with znk ∼ N (µnk,Σnk). The overall loss func-
tion of TarDis integrates these components through a weighted sum, controlled by hyperparameters
λC, λKL, and λR (Equation 8). Specifically, LC is a composite loss function that incorporates four
distinct loss components for each covariate. For each target covariate snk, the loss function, L(k)

C ,
includes (N (k)

L )+ positive and (N
(k)
L )− negative loss terms. Similarly, for the covariate-free represen-

tation zn0, it includes (N (k0)
L )+ positive and (N

(k0)
L )− negative terms. The losses for positive pairs

and negative pairs given in Equations 4 and 5, respectively. Here, the λ values are hyperparameters
that determine the weight of each loss component, while the L loss functions encompass metrics such
as KL divergence and mean squared error (MSE)4. Thus, the overall covariate loss, L(k)

C , is computed
as the sum of these two pair losses, as specified in Equation 6. By aggregating these individual
covariate losses, the total auxiliary loss, LC, is expressed in Equation 7.

The configuration of L(k)
C is meticulously designed to meet several critical objectives within the

TarDis framework. First, by minimizing the distance between (z
(k)
nk )

+ and znk, the model ensures that
the latent representations of positive examples closely align with their corresponding covariate within
respective latent subset, accurately reflecting specific characteristics. In contrast, it maximizes the
distance between (z

(k)
nk )

− and znk, thereby promoting clear differentiation in the latent representations
of negative examples and enhancing the distinction between different covariates. Additionally, the
model strategy involves maximizing the distance between (z

(k)
n0 )

+ and zn0, while minimizing the
distance between (z

(k)
n0 )

− and zn0. This approach ensures that zn0 remains free from covariate-
specific influences, maintaining its role as a covariate-neutral representation. These operations
collectively ensure that covariate information is precisely captured in the respective targeted latent
subsets, znk, and effectively isolated from zn0.

(L(k)
C )+(ϕ;xn, sn) =

1

(N
(k)
L )+

(N
(k)
L )+∑
i=1

[
(λ

(k)
C )+i (L

(k)
C )+i (ϕ;xn, sn)

]

+
1

(N
(k0)
L )+

(N
(k0)
L )+∑
i=1

[
(λ

(k0)
C )+i (L

(k0)
C )+i (ϕ;xn, sn)

]
(4)

(L(k)
C )−(ϕ;xn, sn) =

1

(N
(k)
L )−

(N
(k)
L )−∑
i=1

[
(λ

(k)
C )−i (L

(k)
C )−i (ϕ;xn, sn)

]

+
1

(N
(k0)
L )−

(N
(k0)
L )−∑
i=1

[
(λ

(k0)
C )−i (L

(k0)
C )−i (ϕ;xn, sn)

]
(5)

L(k)
C (ϕ;xn, sn) = (L(k)

C )+(ϕ;xn, sn) + (L(k)
C )−(ϕ;xn, sn) (6)

LC(ϕ;xn, sn) =
1

|JK |

|JK |∑
k=1

L(k)
C (ϕ;xn, sn) (7)

LTarDis(θ, ϕ;D) =
1

NC

∑
(xn,sn)∈D

[λRLR(θ, ϕ;xn, sn) + λKLLKL(ϕ;xn, sn) + λCLC(ϕ;xn, sn)] (8)
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(a) (b) (c) (d)

Figure 1: (a) Comparison of disentanglement performance using maxMIG, showing that TarDis
variants outperform existing models. (b) MI in the reserved, znk, and unreserved, zn0, latent spaces
for TarDis under multiple and single covariate training conditions across various covariates and data
splits. (c) Relationship between the percentage of input features removed and the corresponding
maxMIG and R2 reconstruction scores, indicating robustness to feature removal. (d) Impact of
auxiliary loss weight (λC) on mean centroid distance in reserved latents, znk, and average silhouette
width (ASW) scores at the unreserved latent, zn0.

Although the theoretical framework primarily employs KL divergence as the loss metric, the principle
is also applicable to various losses between anchor points and negative or positive samples with
minor adjustments 4. The optimization of various hyperparameters, including the individual loss
weights, is conducted once and uniformly applied across all experiments, unless explicitly stated
otherwise 5. The experiments and benchmarking processes utilize a diverse array of datasets to ensure
comprehensive testing and validation of the model. Each dataset is selected to represent different
types and scales of data challenges 6. Various evaluation metrics are used to assess the model’s
performance, with a full discussion provided in Appendix H 7. The assumptions behind the theoretical
framework are discussed in Appendix E8.

3 Results

3.1 TarDis achieves robust disentanglement of covariates into isolated latent spaces

We assessed the TarDis model’s ability to disentangle covariates using the Afriat single-cell genomics
dataset, which includes three distinct covariates: age, zone status, and time (Appendix C.1). Ex-
periments were conducted with two methodologies: disentangling all covariates simultaneously,
TarDismultiple

9, and disentangling each covariate individually followed by concatenating the reserved
latent spaces, TarDissingle. The disentanglement performance was benchmarked using the maximum
mutual information gap (maxMIG), as detailed in Figure 1a, demonstrating that both configurations of
TarDis surpassed existing models (Appendix A) and achieved nearly 0.9 maxMIG scores on validation
sets. These results underscore the efficacy of TarDis in handling multiple covariates simultaneously
without compromising disentanglement quality. Further analysis using the mutual information (MI)
metric reveals minimal differences in the preservation of information within the unreserved and
reserved latent spaces between the two training strategies, indicating the model’s effective scalability
for disentanglement tasks (Figure 1b). Notably, for all subsequent experiments detailed in this paper,
we have exclusively employed the multiple-covariate disentanglement approach.

An ablation study was performed to evaluate the model’s robustness against feature reduction, where
varying percentages of input features were systematically removed. Results in Figure 1c show that

4Refer to Appendix F for a comprehensive discussion on the different loss function options.
5Refer to Appendix G for a detailed explanation of the chosen hyperparameters for the experiments.
6Refer to Appendix C for a description of the datasets used and their characteristics.
7Refer to Appendix H for a description of the evaluation metrics employed in the paper.
8Refer to Appendix E for a discussion of the assumptions behind the theoretical framework.
9Refer to Supplementary Figure 6 for UMAP visualizations of reserved latent space representations.
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Table 1: Benchmarking data integration performance by scIB package [56] metrics, organized into
biological signal conservation and batch correction categories (Appendix H). Quantification employed
a comprehensive set of metrics, with aggregate scores derived according to scIB standards. Cell-type
annotations are incorporated in the metrics where labels are necessary. Covariates such as library
platform, donor, sample status, and instrument are used as batch keys when required.

Metric PCA Harmony scVI scANVI inVAE TarDis-1 TarDis-2

Bio conservation

Isolated Labels 0.610 0.563 0.638 0.774 0.798 0.662 0.767
K-means NMI 0.691 0.620 0.649 0.792 0.651 0.634 0.713
K-means ARI 0.226 0.182 0.209 0.360 0.191 0.185 0.228
Silhouette Label (AWS) 0.504 0.482 0.496 0.576 0.508 0.497 0.508
Cell-type LISI (cLISI) 0.999 0.997 0.999 1.000 0.999 0.998 0.999

Batch correction

Silhouette Batch 0.851 0.862 0.867 0.861 0.840 0.903 0.896
Integration LISI (iLISI) 0.057 0.100 0.098 0.093 0.040 0.094 0.080
kBET per Label 0.309 0.475 0.487 0.526 0.194 0.448 0.430
Graph Connectivity 0.793 0.671 0.866 0.912 0.836 0.866 0.879
PCR Comparison 0.000 0.350 0.699 0.222 0.000 0.931 0.850

Aggregate score
Bio conservation 0.606 0.569 0.598 0.701 0.629 0.595 0.643
Batch correction 0.402 0.492 0.603 0.523 0.382 0.648 0.627
Total 0.524 0.538 0.600 0.629 0.530 0.616 0.637

TarDis maintained high maxMIG and R2 reconstruction scores, above 0.65 and 0.94 respectively,
affirming its resilience to input variability. Additionally, modifying the auxiliary loss weight, λC,
systematically influenced the clustering quality and disentanglement accuracy, as indicated by
the increased maxMIG score and mean centroid distance with higher λC values (Figure 1d and
Supplementary Figure 7). Moreover, the silhouette scores, calculated on the unreserved latent
space zn0 using cell type annotations as the labels, provided empirical evidence that effective
disentanglement correlates with enhanced biological signal representation, as further investigated in
Results 3.2. Overall, these results not only validate the robustness of TarDis in disentangling complex
covariate structures but also highlight its utility in preserving essential biological variations, pivotal
for advancing single-cell genomic data analysis.

3.2 TarDis achieves superior performance in single-cell genomics data integration

To probe the efficacy of invariant representation learning, we turned our attention to the Suo dataset, a
massive single-cell genomics dataset capturing human embryonic development. This dataset includes
about 850k cells from various organs and time points, using multiple methods, instruments, samples,
and platforms, as well as a wide range of cell types (Appendix C.2). Its complexity makes it an
ideal testbed for evaluating model performance in integrating intricate datasets. We assessed the data
integration quality using the scIB package metrics [56], which are recognized benchmarks in the
single-cell genomics community for evaluating the balance between biological signal preservation
and batch effect mitigation (Appendix H). This balance is crucial as inadequate correction can lead
to data clustering by batch, obscuring true biological variance, while over-correction may suppress
biological signals, reducing the biological relevance of the outcomes.

In our experimental setup, we tested two configurations of the TarDis model. TarDis-1 focuses on
covariates typically considered as batch keys in single-cell data integration tasks, such as library
platform, donor, sample status, and instruments. TarDis-2 extends this disentanglement to additional
covariates including sex, age, and notably, organ. The comparative results, detailed in Table 1, show
that TarDis, particularly TarDis-2, outperforms state-of-the-art models10 and maintains an optimal
balance between biological conservation and batch correction. By effectively disentangling various
spurious correlations from invariant biological signals, TarDis has demonstrated its robust capability
to manage the complexities inherent in vast and heterogeneous datasets.

10All models were trained under configurations that aimed to closely mirror the training of TarDis models given
in Appendix G, ensuring consistency in architectural choices and the selection of analogous hyperparameters
where applicable.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.20.599903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599903
http://creativecommons.org/licenses/by-nc-nd/4.0/


scVI Latent TarDis Latent
UMAP1

U
M

A
P2

C
ol

or
ed

 b
y 

D
os

e
C

ol
or

ed
 b

y 
D

ru
g

Ta
rD
is

 D
os

e 
La

te
nt

Ta
rD
is

 D
ru

g 
La

te
nt

UMAP1

U
M

A
P2

(b)(a)

Figure 2: UMAP visualization [58] of TarDis latent space representations from the Sciplex dataset
(a) Comparing the performance of scVI and TarDis models in capturing drug responses and dosage
effects. The upper row displays clusters differentiated by drug types, while the bottom row illustrates
the ordered representation of dosage, showcasing the ability of TarDis to structurally organize cellular
responses across different drug concentrations. (b) TarDis model training generates three distinct
latent spaces: unreserved, dose, and drug. Displayed UMAPs are the dose and drug latent subspaces,
demonstrating structured separation and ordered representation.

3.3 TarDis generates ordered latent representation for continuous covariates

In addressing the challenge of learning the representation of disentangled continuous covariates,
TarDis provides a solution that captures data variations without reducing them to mere categorical
approximations. Continuous covariates such as age or treatment dosage are critical for understanding
gradients in biological processes, cellular behavior, and disease progression. To manage the subtleties
associated with these variables, TarDis employs a distance-based loss function for each auxiliary loss
component. The model employs negative pair losses weighted by the distance between the values of
the continuous covariates, omitting positive pair losses due to the continuous nature of the covariate,
which results in generating an ordered and interpretable latent space (Figure 2).

In our studies, we focused on two primary continuous covariates, age and drug dosage, which present
distinct challenges due to their variability and significant impact on cellular phenotypes. We employed
two datasets to evaluate the effectiveness of TarDis in producing ordered latent representations of these
covariates. The first dataset, named Sciplex (Appendix C.5), involves drug perturbation experiments
and helps in analyzing the structured response of cells to varying drug dosages. The second dataset,
referred to as Braun (Appendix C.3), comprises 1.6 million cells from human embryonic brain
development, providing a complex scenario for assessing the impact of time as a continuous variable.
Through TarDis, we managed to produce ordered latent representations of these covariates within
isolated latent subsets while concurrently disentangling other variables such as the type of library
platform, donor characteristics, sample status, instrumentation used, and tissue types (Figure 2, 3).

This representation has enabled previously unfeasible hypothesis-driven biological analyses. For
example, TarDis allows for the exploration of organ-specific developmental gene expression patterns
for specific cell types, an analysis that previously wasn’t optimal with non-batch-corrected input
spaces. Unlike existing models such as scVI and scANVI, which address batch effects but often fail
to retain essential biological information like age or organ specifics —either being overly corrected
by batch keys or inadequately accounted for [52, 93]— TarDis allows researchers to isolate cells
from two different organs using the organ-specific latent subset and, for a given cell type, compare
expression patterns across developmental stages in a massive multi-organ developmental single-cell
dataset. This analysis benefits from a batch-corrected latent space, thanks to a set of other latent
subsets that disentangle batch effects. In Figure 3 upper right, TarDis enabled to identify genes
including EGR2-3-4, KLF2-4, RTL1, SPRY4-AS1, and FOSB, that decrease in expression through
embryonic development of human forebrain neurons within the Braun dataset, which were shown to
be associated with brain development, aging, and diseases including Down syndrome and bipolar
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Figure 3: Ordered latent spaces for dose and age (post-conception week) in the Sciplex and Braun
datasets, respectively. (left) Principal Component 1 (PC1) of the continuous covariate latent space
plotted against Palantir pseudotime [73], which uses a k-nearest neighbor graph to infer cell pseudo-
time trajectories. (middle) Density distribution of the continuous covariate in the respective latent
subset, illustrating ordered peaks corresponding to varying levels of the covariate. (Right) Differential
gene expression profiles plotted against the continuous covariate latent space, identifying genes that
show variation in expression levels associated with changes in the covariate, indicative of underlying
cellular processes. Gene expression patterns are highlighted with (upper right) increasing doses of
Nutlin and (bottom right) through human embryonic developmental stages of forebrain neuron.

disorder [19, 43, 57, 64, 67, 94]. In a parallel experiment using the Sciplex perturbation dataset,
TarDis effectively disentangled the influences of drug type and dosage (Figure 2, 3). Using the data
points corresponding to Nutlin cluster in drug latent, we analyzed how gene expression responds
to increasing doses. As shown in Figure 3 bottom right, this approach allowed us to pinpoint the
expression patterns of genes such as TP53I3, CDKN1A, GDF15, MDM2, FDXR, and NUPR1, which are
notably responsive to escalating doses of Nutlin [33, 89].

3.4 TarDis predicts counterfactual gene expressions accurately under OOD conditions

The capacity of predictive models to generate accurate gene expressions under OOD conditions is
pivotal for extrapolating research findings to new or novel environments. In evaluating this capacity,
TarDis was systematically tested using two distinct datasets to gauge its effectiveness in predicting
counterfactual gene expressions. Using the Afriat dataset, previously introduced, multiple models
were trained, each excluding a different combination of three covariates to create respective OOD sets.
Additionally, the Miller dataset, which comprises samples from human developmental embryonic
lung, was utilized to disentangle the effects of age and donor covariates (Appendix C.4). Similar
to the Afriat dataset, combinations of two covariates were systematically omitted during training to
simulate various OOD conditions.

Dataset MillerDataset Afriat

Figure 4: Performance comparison of TarDis and CPA in predicting counterfactual gene expressions
under out-of-distribution conditions using the Afriat and Miller datasets. R2 scores for reconstructed
gene expressions and differentially expressed genes (DEG) across varying unseen covariate combina-
tions highlight TarDis’s superior predictive capabilities.
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Figure 5: UMAP visualization of the TarDis perturbation latent space derived from the Norman
dataset: (a) Clusters corresponding to sets of perturbations associated with similar cell programs as
identified in the original publication [62], demonstrating the model’s ability to capture underlying
biological patterns. (b) UMAP visualization of TarDis latent space, colored by 270 perturbations. Rep-
resentative clusters are highlighted, illustrating the model’s capability to align identical perturbations
accurately despite nominal labeling differences, thus confirming label reconciliation. Wasserstein
distances are computed to quantitatively confirm the close, often overlapping, clustering of identical
perturbations [86].

TarDis demonstrated superior performance in predicting gene expressions under OOD conditions,
outperforming CPA10, another model that concurrently disentangles multiple covariates, in both the
Afriat and Miller datasets. In the Afriat dataset, TarDis achieved notably higher R2 reconstruction
scores, showcasing its strong capability for accurate reconstruction under varied and unseen conditions
(Appendix H.12). In the Miller dataset, the challenge intensified with the evaluation focusing on
differentially expressed genes, DEGs, (Appendix H.13). TarDis excelled, achieving significantly
better OOD predictions for DEGs compared to CPA. These results, shown in Figure 4, affirm the
utility of TarDis not only in disentangling complex covariate interactions within datasets but also
in its capability to generalize across novel, unseen domains, key to advancing the precision and
reliability of predictive models in single-cell genomics.

3.5 TarDis produces interpretable latent representations of disentangled covariates

In exploring the capabilities of TarDis to yield interpretable latent representations, we utilized the
Norman dataset, a comprehensive collection comprising 108k cells subjected to single or combinato-
rial gene perturbations (Appendix C.6). This dataset is particularly challenging due to the diversity
and complexity of its perturbations, with a total of 284 distinct perturbation conditions included in
this analysis. In this experiment, the inference model in TarDis relied solely on input features without
the introduction of covariate information, sn. This approach ensured that the learning process was
purely driven by the data’s inherent structure rather than external annotations. Our results indicate
that TarDis effectively disentangles these perturbations, with each perturbation distinctly isolated in
the latent space. Significantly, perturbations that share a common cellular program, as identified in
the original publication of the dataset [62], were found to cluster closely. The results support TarDis
ability to capture interpretable and biologically meaningful patterns, as the clustering is not random
qualitatively but reflects the underlying biological relationships (Figure 5a).

A particularly rigorous test of the model’s interpretability involved the re-labeling of certain pertur-
bations in the dataset. Specifically, the labels were altered to appear as two distinct entities: ‘X+0’
and ‘0+X’, despite originating from the same perturbation. This was designed to test whether TarDis
could recognize and reconcile these as identical despite their nominal differences. The results were in
line with our expectations: TarDis successfully overlapped these perturbations in the latent space,
affirming its capability to generate biologically coherent and interpretable latent representations, even
under challenging conditions (Figure 5b). This analysis not only confirms the robustness of TarDis’s
disentanglement capabilities but also highlights its potential in generating actionable insights from
complex genomic data, where interpretability is crucial for meaningful biological inference.
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4 Conclusion

In this study, we presented TarDis, a novel deep generative model designed for the targeted dis-
entanglement of covariates in complex multi-domain and multi-condition datasets, particularly
focusing on the challenges presented by single-cell genomics data. Our approach leverages a series
of covariate-specific loss functions to facilitate robust disentanglement and invariant representation of
both continuous and categorical variables, thus enhancing data integration capabilities and enabling
more insightful biological analyses. Through rigorous benchmarking against existing models and
diverse datasets, TarDis has demonstrated superior performance not only in its capacity to disentangle
complex covariate structures but also in maintaining essential biological signals crucial for accurate
data interpretation and analysis, and generating robust predictions under out-of-distribution condi-
tions. Moreover, TarDis’s ability to generate ordered latent representations of continuous covariates
significantly enhances differential analyses across varying conditions. The model perform robustly in
generating interpretable and biologically meaningful latent representations, which could empower
researchers to conduct advanced hypothesis-driven research, potentially unveiling novel insights and
therapeutic targets.

TarDis establishes a robust approach for exploring complex biological questions, offering researchers
unprecedented clarity in dissecting the nuanced interactions between diverse covariates. This capabil-
ity is instrumental in advancing personalized medicine, supporting the development of customized
therapeutic strategies grounded in a profound understanding of individual responses to different
treatments. Considering the expansion of TarDis applications beyond genomics, for instance into
neuromarketing using EEG event-related potentials (ERP) data, it becomes crucial to acknowledge
that modifications to the model may be necessary to accommodate different types of data. We are
actively investigating these potential applications, aiming to extend the reach and impact of TarDis
across various scientific and applied fields11.
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A Related Work

Models like single-cell Variational Inference (scVI) facilitate data integration by incorporating
environmental variables such as experimental batches or sequencing protocols alongside gene data,
using one-hot vectors processed through a conditional variational autoencoder (cVAE) to reduce
technical noise [52]. Its extension, single-cell ANnotation using Variational Inference (scANVI),
builds on this by introducing cell annotations in a semi-supervised approach, thus enhancing cell
integration across diverse environments and adeptly capturing cell type variations [20, 93]. Despite
their effective integration, these models may over-correct, adjusting biological signals while targeting
technical noise, which can obscure subtle biological variations such as inter-patient differences
or treatment effects. Moreover, these methodologies tend to aggregate all sources of spurious
correlations indiscriminately, failing to discern the unique characteristics of each source [20, 52, 84].
This approach inadequately addresses the nuanced interactions between these sources and biological
signals, particularly problematic with continuous spurious covariates such as age or drug dosage.
Models equipped to continuously adapt to these subtle variations are thus essential, ensuring that
biological insights derived from single-cell genomics are not confounded by these varying conditions.

Several models in single-cell genomics have explored creating multiple latent spaces to handle dif-
ferent sources of variability distinctly. For instance, contrastiveVI models each covariate separately,
developing a shared latent space for the common variability across covariates and an exclusive latent
space for the target covariate’s unique variability [91]. Similarly, single cell disentangled Integra-
tion preserving condition-specific Factors (scDisInFact) develops a shared latent space specifically
designed to account for and eliminate batch effects, while simultaneously maintaining separate
latent spaces for other covariates, isolating and preserving the variations from batch influences.
[99]. Yet, none of these approaches offer a control latent space dedicated to retaining batch effects
while filtering out the influences of other covariates, essential for accurately distinguishing between
variations caused by batch effects and those arising from true biological differences. Such methods
draw inspiration from broader approaches focused on fair and disentangled representation, such as
Flexibly Fair VAE (FFVAE) and Fader networks, and unsupervised disentanglement techniques such
as Total Correlation VAE (β-TCVAE) [18, 49, 63, 74]. The cell optimal transport model (CellOT)
uses optimal transport (OT) methods to align cells from control and perturbed conditions, but its
non-generative, single-covariate focus limits broader applicability [13]. Biolord offers a unique
approach to supervised disentanglement, yet it faces scalability issues due to per-cell optimization
[66]. The invariant VAE (inVAE) method introduces conditional priors within the VAE framework to
effectively disentangle spurious and invariant correlations. While it offers nuanced disentanglement,
inVAE faces optimization challenges, particularly in large datasets, and does not separate latent
representations for individual covariates, and does not support continuous covariates naively limiting
its ability to analyze complex interactions between various biological conditions in detail [4]. On the
other hand, Compositional Perturbation Autoencoder (CPA) handles drug perturbations and produce
latent embedding but their assumption of linearity in the latent space limits capturing complex,
non-linear biological interactions [38, 53].

While existing approaches in single-cell genomics have notably advanced the disentanglement of
spurious and invariant correlations, they predominantly excel within narrowly defined scenarios.
Many models, however, simplify continuous covariates by categorizing them, which undermines
the granularity of biological insights and limits their applicability in precision medicine. Beyond
this, there’s a critical need for models that not only handle the diversity of single-cell data but also
scale efficiently and train effectively given the heterogeneity inherent in these datasets. Despite
the innovative nature of these methods, they are often tailored to specific experimental conditions
rather than offering a universal solution across the diverse landscape of single-cell analysis. There
remains an unmet need for a comprehensive model that excels in data integration, out-of-distribution
prediction, and serves as a robust platform for addressing intricate biological questions across various
conditions and experimental setups.
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Figure 6: UMAP visualization of TarDismultiple latent space representations from the Afriat dataset.
The TarDis model training produces four distinct latent spaces: unreserved, status, zone, and time.
The UMAP plots for the status, zone, and time latent subspaces illustrate a well-structured separation
of the covariates, indicating effective encoding of the underlying data distributions and disentangled
relationships within these subspaces.
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Figure 7: UMAP visualizations of disentangled time representation of Afriat dataset in the TarDis
model with varying weights of the auxiliary loss λC. Each panel illustrates the latent space represen-
tation of targeted time covariate, highlighting how different λC values influence the clustering and
separation of data points corresponding to different time points. As λC increases, given above of the
UMAP visualizations, the disentanglement quality improves, evidenced by more distinct clusters,
indicating the model’s enhanced ability to preserve temporal information while disentangling other
covariates. These visualizations provide qualitative support for the quantitative findings on the impact
of auxiliary loss weight on disentanglement performance.
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C Datasets

Please be aware that this section contains embedded hyperlinks, which are essential for accessing the
referenced datasets and additional resources. For optimal functionality and ease of navigation, it is
highly recommended to consult the PDF version of this document. The PDF format ensures that all
hyperlinks are active and can be directly accessed, facilitating seamless retrieval of the associated
data and supplementary information.

C.1 Afriat Dataset

Description: The Afriat dataset, named after the first author of the study, provides high-resolution
single-cell RNA sequencing and single-molecule transcript imaging data of host and parasite gene
expression during the liver stage of the rodent malaria parasite Plasmodium berghei ANKA. It
highlights spatial differences in gene expression across hepatocyte lobule zones, revealing insights
into the molecular interactions between host and parasite [1].

Number of Samples: The dataset comprises 19,053 individual cells.

Number of Features: It encompasses expression profiles across 8,203 genes.

Source: The data is publicly accessible. The raw dataset can be found under GEO accession number
GSE181725. Processed data are available as a Seurat object [14] at Zenodo. The AnnData [88]
format, utilized in this study, was downloaded from Figshare, as prepared by Biolord study [66]. No
preprocessing or subsetting was performed on our part.

C.2 Suo Dataset

Description: Named after a co-author of the originating study, the Suo dataset offers a multi-organ,
single-cell transcriptomic perspective, capturing dynamic immune system developments across nine
prenatal human tissues during embryonic stages. This comprehensive dataset details the temporal and
spatial maturation of immune cells, highlighting embryonic developmental timing and the interaction
between different organ systems in shaping the immune landscape [82].

Number of Samples: From an initial count of 908,178 individual cells, 841,922 cells met quality
control standards set by established single-cell best practices [30].

Number of Features: The dataset, which initially profiled 33,538 genes, has been refined to focus on
8,192 highly variable genes (HVGs), following established single-cell sequencing best practices [30].

Source: Processed data are available in AnnData format, accessible at Cellatlas portal. Additional
metadata with more detailed annotation is available through the cellxgene server [11]. The metadata
was then refined and corrected for errors by the authors.

C.3 Braun Dataset

Description: Named for the first author, the Braun dataset provides a comprehensive single-cell
transcriptomic analysis of the human brain during the crucial first trimester. Spanning 5 to 14
postconceptional weeks across 26 brain specimens, the dataset includes over 1.66 million cells
dissected into 111 distinct biological samples. This extensive dataset captures the early spatial
and transcriptional blueprint of brain development, with detailed insights into neuronal and glial
differentiation trajectories [12].

Number of Samples: From an initial count of 1,665,937 individual cells, 1,661,498 cells met quality
control standards set by established single-cell best practices [30].

Number of Features: The dataset, which initially profiled 59,459 genes, has been refined to focus on
8,192 highly variable genes (HVGs), following established single-cell sequencing best practices [30].

Source: Raw sequencing data are available from the European Genome Phenome Archive under the
accession number EGAS00001004107). The data can be browsed interactively at SciLifeLab Portal
and cellxgene server. The metadata was then refined and corrected for errors by the authors.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.20.599903doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181725
https://zenodo.org/record/7081863
https://figshare.com/ndownloader/files/39375713
https://developmental.cellatlas.io/fetal-immune
https://cellxgene.cziscience.com/collections/b1a879f6-5638-48d3-8f64-f6592c1b1561
https://ega-archive.org/datasets/EGAD00001006049
https://hdca-sweden.scilifelab.se/tissues-overview/brain/
https://cellxgene.cziscience.com/collections/4d8fed08-2d6d-4692-b5ea-464f1d072077
https://doi.org/10.1101/2024.06.20.599903
http://creativecommons.org/licenses/by-nc-nd/4.0/


C.4 Miller Dataset

Description: The Miller dataset, named after the first author of the paper, provides a detailed single-
cell mRNA sequencing atlas of human lung development from 11.5 to 21 weeks, integrated with
studies on homogeneous human bud tip organoid cultures. This dataset specifically investigates the
role of SMAD signaling in the differentiation of bud tip progenitors into airway lineages, showcasing
how in vitro conditions mirror in vivo airway structures and function. This comprehensive atlas
underscores critical insights into the cellular mechanisms guiding human airway differentiation [59].

Number of Samples: From an initial count of 8443 individual cells, 7405 cells met quality control
standards set by established single-cell best practices [30].

Number of Features: The dataset, which initially profiled 36,601 genes, has been refined to focus on
8,192 highly variable genes (HVGs), following established single-cell sequencing best practices [30].

Source: The raw scRNA-seq data associated with this study are available in the EMBL-EBI ArrayEx-
press database under accession number E-MTAB-8221. The metadata was then refined and corrected
for errors by the authors.

C.5 Sciplex Dataset

Description: The Sciplex dataset, derived from the sci-Plex technology using nuclear hashing,
quantifies transcriptional responses to chemical perturbations at single-cell resolution. Applied to
three cancer cell lines and exposing them to 188 distinct compounds, it evaluates dose-dependent
effects and different drug responses. This high-throughput chemical screen profiles approximately
650,000 single-cell transcriptomes across about 5000 samples in a single experiment, revealing
cellular heterogeneity in drug response, commonalities within compound families, and nuanced
differences within compound types, particularly histone deacetylase inhibitors [80].

Number of Samples: The dataset comprises 14,811 individual cells.

Number of Features: It encompasses expression profiles across 4999 genes.

Source: Both processed and raw data are accessible via NCBI GEO under accession number
GSE139944. The dataset used, in its preprocessed and subsetted format, aligns with the methodology
described in the CPA paper [53], provided courtesy of the authors of CPA. No further preprocessing
or subsetting was conducted by our team.

C.6 Norman Dataset

Description: Named for the first author, the Norman dataset leverages high-content Perturb-seq
(single-cell RNA-sequencing pooled CRISPR screens) to explore cellular and organismal complexity
through combinatorial gene expression. The dataset features transcriptional responses from 284
different single or double gene knockouts, allowing for the exploration of genetic interactions at
scale. This includes the mapping of regulatory pathways, classification of genetic interactions such
as suppressors, and the mechanistic study of synergistic effects, notably between CBL and CNN1 in
erythroid differentiation [62].

Number of Samples: The dataset comprises 108,497 individual cells.

Number of Features: It encompasses expression profiles across 5000 genes.

Source: Raw data is accessible via NCBI GEO under accession number GSE133344. The dataset
used, in its preprocessed and subsetted format, aligns with the methodology described in the CPA
paper [53], provided courtesy of the authors of CPA. No further preprocessing or subsetting was
conducted by our team.
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D Limitations

While TarDis introduces significant advancements in disentangling complex covariate structures in
single-cell genomics, it is important to acknowledge several inherent limitations. TarDis operates
under a supervised learning paradigm, which necessitates access to pre-labeled covariates. This
requirement limits its applicability to datasets where such labels are readily available and accurately
annotated, constraining its utility in less structured environments.

A notable limitation of TarDis is the potential for overfitting. Although rigorous validation protocols
and robust regularization strategies, including elevated dropout rates and weight decay—more
aggressive than those utilized in generic VAE models like scVI—are employed, the risk remains. In
our study, the hyperparameters were carefully optimized at the onset of all experiments, ensuring
consistent conditions across all tests, which mitigated the concerns of overfitting. It is important to
note that our successful one-time optimization and the avoidance of overfitting in single-cell genomics
data do not guarantee similar outcomes across other data types, hence users must conduct cautious
benchmarking on validation splits to ensure the model’s generalizability.

Moreover, the disentanglement of interdependent covariates introduces unique challenges. For
example, accurately disentangling age and donor in a single-cell genomics data as covariates requires
the presence of multiple donors of varying ages to prevent the model from conflating these factors.
Without such diversity, the model risks inaccurately attributing the influence of one covariate to
another, thereby undermining the reliability of the disentanglement, particularly evident in our
validation splits.

Additionally, the implementation of TarDis introduces computational overhead, slightly slowing
down the processing speed. Nevertheless, this does not significantly impact performance, even with
large datasets like the Braun dataset, which comprises 1.6 million cells. The primary bottleneck
arises from the selection of counteractive minibatches for each covariate during training, which is
quantified to increase the average training time by approximately 1.8 times in comparison to scVI,
when three covariates were targeted.

The encoding of covariates in a one-hot format, sn, while optional as mentioned in Section 2, generally
fosters better disentanglement in the validation splits. However, the dependency of disentanglement
on the input space may necessitate further optimization. This adjustment is crucial for enhancing
the model’s utility in specific downstream tasks, as demonstrated in our analysis using the Norman
dataset in Section 3.5.

Lastly, TarDis necessitates numerous hyperparameters, especially concerning the loss weights for
each of the four terms associated with every covariate. This complexity was manageable in our
experiments through our aforementioned one-time optimization, and it did not present issues for
single-cell data. However, adapting the model to new datasets could necessitate further tuning,
potentially complicating its application across varied contexts. It is also important to underscore the
model assumptions in Appendix E, as these foundational assumptions highlight potential limitations
and areas where TarDis might encounter challenges.
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E Theoretical Assumptions

- Gene Dependency: The model implicitly assumes that the expression of genes can be
considered independently (conditional on the latent space and covariates) when calculating
losses. However, genes often exhibit co-expression or are co-regulated, which the model
might not account for without specific modifications.

- Homogeneity of Cell Populations: It’s implicitly assumed that cell populations are homoge-
neous within groups defined by covariates, which might not be the case in heterogeneous
biological conditions such as tumors or developing tissues.

- Distribution of Gene Expression Counts: The model assumes that gene expression counts
can be modeled effectively using a Negative Binomial distribution. This assumption is
common but might not always capture the real variability and distribution in different types
of datasets.

- Linearity and Gaussianity of Latent Space: The auxiliary loss assumes a Gaussian distribu-
tion for the latent vectors znk. This implies assumptions about linearity and normality in the
latent space, which may not hold in more complex or non-linear biological data structures.
This assumption is critical for the model’s simplicity and tractability:

znk ∼ N (µnk,Σnk) (9)

- Static Covariate Definition: The model assumes static and well-defined positive or negative
sample definitions in terms of covariate values. This is critical for the stability of the training
process: s(k)+nk and s

(k)−
nk are fixed and consistent throughout the dataset.

- Consistency and Availability of Covariate Labels: Consistent and accurate labeling of
covariates across all cells is required. Incomplete or inaccurate labels can undermine the
model’s effectiveness:

p(snk = s′) = 1 ∀n ∈ NC (10)
- Smoothness of Latent Space: The auxiliary loss assumes the latent space is smooth and

continuous, allowing for meaningful interpolation and extrapolation:

∀znk, ∃ continuous function g such that g(znk) = xn (11)

- Sensitivity to Outliers: The model does not explicitly account for outliers, which can skew
learned representations. It’s assumed that:

p(xn is outlier) = 0 (12)

- Assumption of Sufficient Sample Size: The effectiveness of the model in disentangling and
accurately representing biological phenomena is contingent upon having a sufficiently large
number of samples to cover the variability and complexity of the data. Small sample sizes
could lead to overfitting and poor generalization to new data:

min
k

( ∑
n∈NC

I(snk = s′)

)
≥ threshold (13)

- Data Sparsity: The model assumes it can handle sparsity in single-cell genomic data without
additional modifications.

- Consistency of Environmental and Experimental Conditions: It’s assumed that all cells are
subject to similar environmental and experimental conditions, aside from the controlled vari-
ations represented by covariates. Variability in these conditions could introduce unmodeled
noise and bias.
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F Loss Functions

Without loss of generality, various choices for the loss function are investigated, focusing on elu-
cidating the loss incurred between the anchor point xnk and the positive sample (x

(k)
nk )

+. The loss
between the anchor point and the negative sample (x(k)

nk )
− can be derived similarly, with appropriate

adjustments to maximize this loss.

F.1 Mean Squared Error (MSE)

The MSE between the latent representation of the anchor znk and its positive counterpart (z(k)nk )
+ for

the kth covariate is given by:

(L(k)
C )+i (ϕ;xn, sn) = MSE(znk, (z

(k)
nk )

+) =
1

|znk|

|znk|∑
j=1

(znkj − (z
(k)
nkj)

+)2 (14)

However, minimizing the L2 distance between normal vectors from distinct multivariate normal
distributions with unique diagonal covariance matrices does not inherently ensure the convergence of
their distributions. While this minimization may align distribution means, it disregards differences in
variances and higher-order moments essential for comprehensive distributional characterization.

Mathematically speaking, if znk ∼ N (µnk,Σnk) and (z
(k)
nk )

+ ∼ N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+), by using
linearity of expectation and properties of the transpose, the expected squared L2 distance between
znk and (z

(k)
nk )

+ can be simplified to:

E
[
∥znk − (z

(k)
nk )

+∥22
]
= E

[
zTnkznk

]
− E

[
(znk)

T (z
(k)
nk )

+
]
− E

[
((z

(k)
nk )

+)T znk

]
+ E

[
((z

(k)
nk )

+)T (z
(k)
nk )

+
]

(15)

For any vector znk with mean µnk and covariance Σnk, the following identity holds:

E
[
zTnkznk

]
= tr(Σnk) + µT

nkµnk (16)

Applying this to (z
(k)
nk )

+ and also knowing znk and (z
(k)
nk )

+ are independent, we have:

E
[
((z

(k)
nk )

+)T (z
(k)
nk )

+
]
= tr((Σ(k)

nk )
+) + ((µ

(k)
nk )

+)T (µ
(k)
nk )

+ (17)

E
[
zTnk(z

(k)
nk )

+
]
= µT

nk(µ
(k)
nk )

+ (18)

E
[
((z

(k)
nk )

+)T znk

]
= ((µ

(k)
nk )

+)Tµnk (19)

where tr(·) denotes the trace of a matrix. Substituting back, we find:

E
[
∥znk − (z

(k)
nk )

+∥22
]
= tr(Σnk) + µT

nkµnk − 2µT
nk(µ

(k)
nk )

+ + tr((Σ(k)
nk )

+) + ((µ
(k)
nk )

+)T (µ
(k)
nk )

+ (20)

To simplify further, recognizing the vector identity ∥∆∥22 = ∆T∆ for squared terms where ∆ =

(µ
(k)
nk − (µ

(k)
nk )

+):

E
[
∥znk − (z

(k)
nk )

+∥22
]
= tr(Σnk) + tr((Σ(k)

nk )
+) + ∥∆∥22 (21)

This expression reveals that the expected squared L2 distance depends on both the aggregate covari-
ances and the squared difference between the means. Minimizing this distance reduces the mean
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disparity term ∥∆∥22, but does not necessarily minimize the covariance term tr(Σnk + (Σ
(k)
nk )

+),
which reflects distributional variability. However, it is crucial to ensure the convergence of our latent
representations of similar pairs across their entire characteristics. Notably, as Tong and Kobayashi
[83] demonstrated, differences in the diagonal covariances of multivariate normal distributions can
significantly influence the optimal transport cost and Wasserstein distance, even when the means are
aligned. This highlights the importance of considering both mean and covariance differences for
accurate distribution comparison. Consequently, we redirect our focus towards statistical metrics
like KL divergence, which encompass the entire distribution and provide a more comprehensive
assessment of distributional convergence.

F.2 KL Divergence

Unlike the L2 distance, which primarily measures central tendency, the KL divergence accounts for
both dispersion and correlation structure. Specifically, KL divergence is sensitive to differences in the
means and covariance matrices of the distributions, offering a comprehensive measure of how well
one distribution approximates another, beyond merely the distance between their centers.

To frame our problem contextually, assume we have determined the representation of a pos-
itive data point in a lower-dimensional space, i.e., (z

(k)
nk )

+ is fixed. With this in mind, we
aim to represent the anchor point to reflect its partial similarity in its corresponding latent
representation znk. Therefore, we utilize the encoder distribution of the positive sample,
qϕ((z

(k)
nk )

+|(x(k)
nk )

+, (s
(k)
nk )

+) = N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+) as the target for the current point’s distri-
bution, qϕ(znk|xnk, snk) = N (µnk,Σnk) given that the gradients for the forward pass of the
positive sample are not computed.

Based on the KL divergence between these two multivariate Gaussian distributions, the positive pair
loss (L(k)

C )+i (ϕ;xn, sn) = −DKL(N (µnk,Σnk) ∥ N ((µ
(k)
nk )

+, (Σ
(k)
nk )

+)) can be calculated using a
straightforward and efficient formula:

(L(k)
C )+i (ϕ;xn, sn) =

1
2

[
tr(inv((Σ(k)

nk )
+)Σnk) + ((µ

(k)
nk )

+ − µnk)
T inv((Σ(k)

nk )
+)((µ

(k)
nk )

+ − µnk)− |znk|+ log

∣∣∣(Σ(k)
nk )+

∣∣∣
|Σnk|

]
(22)

Here, inv(.) stands for the inverse of a matrix, |.| represents the determinant of a matrix, |znk|
is the dimensionality of the distributions, Σnk = diag((σnk1)

2, . . . , (σnk|znk|)
2) and (Σ

(k)
nk )

+ =

diag(((σ
(k)
nk1)

+)2, . . . , ((σ
(k)
nk|znk|)

+)2). Furthermore, the determination of the determinant for such
matrices is simplified, requiring only the multiplication of their diagonal elements. Therefore,
equation 22 becomes:

(L(k)
C )+i (ϕ;xn, sn) =

1
2

∑|znk|
j=1

[
(σnkj)

2

((σ
(k)
nkj)

+)2
+

((µ
(k)
nkj)

+−µnkj)
2

((σ
(k)
nkj)

+)2
− 1 + 2 log (σ

(k)
nkj)

+ − 2 log σnkj

]
(23)

We propose summing the KL divergence over all covariates k, analogous to the total correlation (TC)
in the objective function of the Relevance Factor VAE (RF-VAE)[41]. This approach is designed to
promote independence among latent variables. Consequently, we apply this method to the KL loss
term by calculating the KL divergence between each latent representation and the standard normal
distribution individually, and then summing the results.

Additionally, instead of assigning a weight to each positive pair loss function with respect to covariate
k and the KL divergence between its latent representation and the prior distribution (standard normal
distribution), we introduce relevance indicators, r(k) and r

(0)
j respectively. These indicators can be

learned via a variational approach. They are parameterized and updated during the training process.

r
(0)
j = W

(0)
j · znj + b

(0)
j ∀j ∈ {0} ∪ Jk

r(k) = W(k) · znk + b(k) ∀k ∈ Jk
(24)

Hence the primary objective function to maximize for becomes:

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.20.599903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599903
http://creativecommons.org/licenses/by-nc-nd/4.0/


(LC)
+(ϕ;xn, sn) =

1

|Jk|
∑
k∈Jk

[
−r(k)DKL(N (µnk,Σnk) ∥ N ((µ

(k)
nk )

+, (Σ
(k)
nk )

+))
]

+
1

|Jk|+ 1

∑
∀j∈{0}∪Jk

[
−r

(0)
j DKL(N (µnj ,Σnj) ∥ N (0, I)

]

F.3 Bhattacharyya Loss

When comparing the Bhattacharyya Loss (DB) to the KL divergence, several key distinctions arise.
KL divergence can be less effective in handling outliers and noise compared to DB , which provides a
more robust measure in noisy environments [77]. Studies have demonstrated that in high-dimensional
data scenarios, DB can outperform KL divergence in both clustering accuracy and robustness to data
anomalies [16].

Incorporating DB as a loss function offers several additional advantages. First, it has shown superior
performance in distinguishing between different distributions, which is essential for effective novelty
detection [78] and a key aspect of disentanglement. Disentangling different factors of variation in the
data often requires a measure that can accurately differentiate between various underlying distributions.
Thus, the superior performance of DB in this regard directly supports its use in disentanglement
tasks. In the domain of single-cell RNA sequencing (scRNA-seq), DB has been successfully applied
to detect fear-memory-related genes from neuronal data, demonstrating its ability to handle the high
heterogeneity and dropout noise inherent in such datasets [97]. Furthermore, it has been integrated into
k-means clustering, enhancing the efficiency and memory-saving capabilities for large-scale scRNA-
seq data analysis [8]. DB is also robust to outliers and noise, ensuring more reliable and consistent
results, which is crucial for noisy datasets [60]. Disentangling factors of variation in noisy datasets
requires a measure that can reliably handle outliers and noisy data points without compromising
the integrity of the disentangled components. DB’s robustness makes it a suitable choice for such
tasks. Additionally, its symmetry and comprehensive capture of distributional differences enhance
the accuracy of various analytical models [90]. For disentanglement, accurately capturing and
separating the underlying factors of variation in the data is essential. DB’s mathematical properties
ensure that it can provide a more precise and reliable measure of these differences, facilitating better
disentanglement.

Therefore, we can write the positive pair loss utilizing DB as follows:

(L(k)
C )+i (ϕ;xn, sn) = DB(znk, (z

(k)
nk )

+)

=

[
1

8
((µ

(k)
nk )

+ − µnk)
T

(
Σnk + (Σ

(k)
nk )

+

2

)−1

((µ
(k)
nk )

+ − µnk)

+
1

2
ln


∣∣∣(Σnk + (Σ

(k)
nk )

+)
∣∣∣

2

− 1

2
ln

(√
|Σnk|

∣∣∣(Σ(k)
nk )

+
∣∣∣)]

=
1

4

|znk|∑
j=1

((µ
(k)
nkj)

+ − (µnkj))
2

(σnkj)2 + ((σ
(k)
nkj)

+)2
+

1

2

|znk|∑
j=1

ln

(
(σnkj)

2 + ((σ
(k)
nkj)

+)2

2 · σnkj(σ
(k)
nkj)

+

)
(25)

F.4 Mahalanobis Loss

Mahalanobis Loss (DM ) is a robust metric for quantifying the distance-like measure between a point
and a distribution, or between two points within a distribution-defined space. Unlike KL divergence
and DB , DM measures the deviation of a point from the mean of a distribution and can be extended
to compare the central tendencies of two distributions.

The innovative use of DM significantly enhances data interpretation and clustering accuracy. The
DR-A model, combining a VAE with a generative adversarial network (GAN) leverages DM for
dimensionality reduction, achieving superior clustering and more precise low-dimensional represen-
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tations of scRNA-seq data [50]. This precision is crucial for accurately representing covariates in
lower-dimensional spaces.

The scDREAMER framework integrates DM within an adversarial VAE to tackle skewed cell types
and nested batch effects, improving batch correction and preserving biological variability across
heterogeneous datasets [75]. Table 1 highlights that while our model excels in batch correction, there
is room for improvement in biological conservation. Therefore, we can adopt DM to measure the
dissimilarity between the latent representation of the anchor point znk and the respective posterior
distributions qϕ((z

(k)
nk )

+ | (x(k)
nk )

+, (s
(k)
nk )

+) as follows:

(L(k)
C )+i (xn, sn) = DM (znk, (z

(k)
nk )

+)2

= (

√
(znk − (µ

(k)
nk )

+)T ((Σ
(k)
nk )

+)−1(znk − (µ
(k)
nk )

+))2
(26)

The inverse covariance matrix computation simplifies to the reciprocal of each diagonal element,
resulting in:

(L(k)
C )+i (ϕ;xn, sn) =

|znk|∑
j=1

(znkj − (µ
(k)
nkj)

+)2

((σ
(k)
nkj)

+)2
(27)

Minimizing DM encourages zn and (z
(k)
nk )

+ to be located within high-probability regions of the
latent space, as defined by the Gaussian distribution. The latent representation of the positive example
(z

(k)
nk )

+ serves as a reference, with all adjustments made relative to the current anchor point znk.

F.5 Fisher Information

Fisher information can be used to measure the amount of information that a random variable (z
(k)
nk )

+

carries about the unknown parameters µnk and Σnk of a probability distribution modeling (z
(k)
nk )

+.
This measurement allows for a more precise identification of the most informative latent factors,
leading to more interpretable representations. Because Fisher information is grounded in information
theory, the resulting disentangled factors are often more meaningful and easier to understand, which
is beneficial for tasks requiring human interpretability of covariates [85]. Representations derived
using Fisher information have been shown to improve performance in downstream tasks such as
classification, clustering, and anomaly detection [39], which is the ultimate goal of learning latent
representations of single-cell RNA-seq data. Therefore, in the context of VAEs, Fisher information
aids in analyzing information loss during the encoding process:

Iµnkj
(µnk,Σnk) = E

qϕ((z
(k)
nk )+|xn,sn)

[(
∂

∂µnkj
log qϕ((z

(k)
nk )

+ | xn, sn)

)2
]

(28)

Iσnkj
(µnk,Σnk) = E

qϕ((z
(k)
nk )+|xn,sn)

[(
∂

∂σnkj
log qϕ((z

(k)
nk )

+ | xn, sn)

)2
]

(29)

(L(k)
C )+i (ϕ;xn, sn) =

|znk|∑
j=1

[
Iµnkj

(µnk,Σnk) + Iσnkj
(µnk,Σnk)

]
(30)

In our case, the log-likelihood function for a single observation xn is given by:

log
(
qϕ((z

(k)
nk )

+ | xn, sn)
)
= − 1

2

[
|znk| log(2π) +

∑|znk|
j=1 log σ2

nkj +
∑|znk|

j=1

((z
(k)
nkj)

+−µnkj)
2

σ2
nkj

]
(31)
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For the mean parameter µnkj :

Iµnkj
(µnk,Σnk) = E

[
∂

∂µnkj

((z
(k)
nkj)

+ − µnkj)
2

σ2
nkj

]

=
2

σ2
nkj

· ((z(k)nkj)
+ − µnkj)

(32)

For the variance parameter σ2
nkj :

Iσ2
nkj

(µnk,Σnk) = E

[
∂

∂σ2
nkj

log
(
qϕ((z

(k)
nk )

+ | xn, sn)
)]

= 2σnkj − 4 ·
((z

(k)
nkj)

+ − µnkj)
2

σ2
nkj

(33)
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G Experimental Details

G.1 Model

Table 2: Hyperparameters for model configuration: This table lists the hyperparameters used in the
model configuration, including their descriptions and assigned values.

Parameter Description Value

n_input Number of input features.
n_batch Number of batches. If 0, no batch correction is

performed.
0

n_labels Number of labels. 0
n_hidden Number of nodes per hidden layer. Passed into

Encoder and Decoder.
512

n_latent Dimensionality of the latent space. 24 +8 * NK

n_layers Number of hidden layers. Passed into Encoder and
Decoder.

3

n_continuous_cov Number of continuous covariates. 0
n_cats_per_cov A list of integers containing the number of categories

for each categorical covariate.
None

dropout_rate Dropout rate. Passed into Encoder but not Decoder. 0.25
dispersion Flexibility of the dispersion parameter, which can be

"gene", "gene-batch", "gene-label", or
"gene-cell", when gene_likelihood is either nb
or zinb.

"gene"

log_variational If True, use torch.log1p on input data before
encoding for numerical stability (not normalization).

True

gene_likelihood Distribution to use for reconstruction in the generative
process. ("zinb", "nb", "poisson")

"nb"

latent_distribution Distribution for the latent space. ("normal", "ln") "normal"
encode_covariates If True, covariates are concatenated to gene expression

prior to passing through the encoder(s).
False

deeply_inject_covariates If True and n_layers > 1, covariates are
concatenated to the outputs of hidden layers in the
encoder(s) and the decoder.

True

batch_representation Method for encoding batch information. ("one-hot",
"embedding")

"one-hot"

use_batch_norm Specifies where to use torch.nn.BatchNorm1d in the
model. ("encoder", "decoder", "none",
"both")

None

use_layer_norm Specifies where to use torch.nn.LayerNorm in the
model. ("encoder", "decoder", "none",
"both")

"both"

use_size_factor_key If True, use the anndata.AnnData.obs column as
defined by the size_factor_key parameter in the
model’s setup_anndata method as the scaling factor
in the mean of the conditional distribution.

False

use_observed_lib_size If True, use the observed library size for RNA as the
scaling factor in the mean of the conditional
distribution.

True

library_log_means Vector of shape (1, n_batch) of means of the log
library sizes that parameterize the prior on library size.

None

library_log_vars Vector of shape (1, n_batch) of variances of the log
library sizes that parameterize the prior on library size.

None

var_activation Callable used to ensure positivity of the variance of the
variational distribution. Passed into Encoder. The
default is the exponential function.

None

deeply_inject_disentengled_latents If True, deeply inject disentangled latents. True
include_auxillary_loss If True, include auxiliary loss. True
beta_kl_weight Weight for the KL divergence term in the loss function. 0.5
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G.2 Training

Table 3: Hyperparameters used for optimization: It provides a comprehensive overview of the
configurations necessary to monitor and enhance model performance throughout the training

Parameter Description Value

max_epochs Maximum number of training epochs. 600
train_size Proportion of data used for training. 0.8
batch_size Number of samples per batch. 128
check_val_every_n_epoch Frequency of validation checks in epochs. 10
limit_train_batches Fraction of training batches to use. 1.0
limit_val_batches Fraction of validation batches to use. 1.0
learning_rate_monitor Monitor learning rate during training. True
early_stopping Enable early stopping. False
early_stopping_patience Number of epochs with no improvement after which

training will be stopped.
150

early_stopping_monitor Metric to monitor for early stopping. "elbo_train"
n_epochs_kl_warmup Number of epochs for KL divergence warmup. 600
lr Learning rate. 1e-4
weight_decay Weight decay (L2 penalty). 1e-4
optimizer Optimizer to use. "AdamW"
reduce_lr_on_plateau Reduce learning rate when a metric has stopped

improving.
True

lr_patience Number of epochs with no improvement after which
learning rate will be reduced.

100

lr_scheduler_metric Metric to monitor for learning rate scheduler. "elbo_train"

G.3 Loss

Table 4: Summary of LC configuration designed for covariates, namely status control, time, and
zone in TarDismultiple model trained on Afriat dataset. It provides insights into how each covariate
contributes to the overall model loss.

Configuration Auxiliary Losses

Covariate Res
Dim

Target
Type

Loss
Type

Latent Group Weight Count
Type

Opt
Type

status 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max

time 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max

zone 8 categorical MSE
reserved 100 − max

10 + min

completely
unreserved

10 − min
100 + max
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G.4 Compute Resources and System Configuration

For the computational tasks in our research, we employed NVIDIA Tesla A100 GPUs, which feature
40 GB of high-bandwidth HBM2 memory each. This GPU architecture is specifically designed for
accelerating machine learning and high-performance computing applications, providing substantial
throughput for both single and mixed-precision computations. We allocated 64 GB of GPU memory
for processing large training datasets, which facilitated efficient handling of extensive computational
operations without the need for frequent data swapping, thereby minimizing I/O overhead. For
smaller datasets, a reduced memory allocation of 16 GB was used, which optimized resource
utilization without compromising performance. On the CPU side, our computational nodes were
equipped with dual Intel Xeon Gold 6230 processors. Each processor offers 20 cores operating at
a base frequency of 2.1 GHz, which can boost up to 3.9 GHz. This setup provided a robust and
responsive environment for handling non-GPU-intensive tasks and managing the preprocessing and
postprocessing stages of our experiments. The system’s main memory configuration included 256
GB of DDR4 RAM per node, which was crucial for supporting the high-throughput demands of data-
intensive operations, particularly when dealing with large-scale datasets and complex computational
models. Computational experiments were orchestrated using an internal SLURM (Simple Linux
Utility for Resource Management) compute cluster. We configured SLURM to efficiently allocate
resources based on the demands of queued jobs, with dynamic adjustments based on priority and
current load. It should be noted that the computational resources described here sufficed for all phases
of the research project; the full project did not require more compute resources than those reported
for the experiments.
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H Evaluation Metrics

H.1 Average Silhouette Width

The average silhouette width (ASW) [71] evaluates clustering quality by measuring the relationship
between within-cluster and between-cluster distances. ASW values range from -1 to 1, where -1
indicates misclassification, 0 indicates overlapping clusters, and 1 indicates well-separated clusters.

For each data point xn, the silhouette coefficient s(xn) is calculated as:

s(xn) =
dinter(xn)− dintra(xn)

max (dintra(xn), dinter(xn))
(34)

where dintra(xn) is the average distance from point xn to all other points within the same cluster
(intra-cluster distance) and dinter(xn) is the minimum average distance from point xn to points in any
other cluster (nearest-cluster distance). The overall ASW is the mean of the silhouette coefficients for
all points in the dataset:

ASW =
1

NC

NC∑
n=1

s(xn) (35)

where NC is the total number of data points. ASW is particularly relevant in single-cell genomics for
assessing how well cells cluster based on their gene expression profiles [70]. This metric provides an
intuitive measure of clustering quality and batch mixing, crucial for understanding both biological
conservation and batch effect removal. It is particularly useful in clustering-based analyses but may
be sensitive to noise and outliers.

H.2 Cell Type Average Silhouette Width

Cell type average silhouette width (Cell type ASW) [56] evaluates cell clustering quality in single-
cell transcriptomics by measuring how well cells are grouped based on type labels. The silhouette
coefficient for each cell is computed similarly to general ASW. To scale the ASW values between 0
and 1, the following transformation is applied:

celltypeASW =
ASWc + 1

2
(36)

where ASWc is the ASW computed over all cell type labels c.

H.3 Batch Average Silhouette Width

Batch average silhouette width (Batch ASW) [56] assesses the quality of batch mixing in integrated
datasets, which is essential in single-cell transcriptomics to ensure that technical variations do not
obscure biological signals. The silhouette coefficient for each cell, based on batch labels, is computed
similarly to general ASW.

To obtain a Batch ASW score between 0 and 1, the following transformation is applied for each batch
label j:

batchASWj =
1

|Cj |
∑

xn∈Cj

(1− sbatch(xn)) (37)

where Cj is the set of cells with batch label j, |Cj | is the size of this set, and sbatch(n) is the silhouette
coefficient for each cell n based on batch labels. The final Batch ASW score is calculated by averaging
the batch ASW values across all batch labels:

batchASW =
1

|B|
∑
j∈B

batchASWj (38)

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.06.20.599903doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.20.599903
http://creativecommons.org/licenses/by-nc-nd/4.0/


where B is the set of unique batch labels. A Batch ASW score closer to 0 indicates good batch
mixing, meaning batch effects have been effectively corrected [26].

H.4 Isolated Label F1 Score

Precision, also known as positive predictive value, gauges the proportion of correctly predicted
positive instances among the total predicted positives. It’s calculated by considering True Positives
(TP) against False Positives (FP), following the formula:

Precision =
TP

TP + FP
(39)

In contrast, Recall, also called sensitivity or true positive rate, measures how well the model identifies
actual positive instances, crucial when false negatives are costly. Its calculation focuses on TP relative
to FN, given by:

Recall =
TP

TP + FN
(40)

The F1 score, a harmonic mean of precision and recall, offers a single metric balancing both aspects,
with high values indicating a well-balanced model. It is calculated as:

F1 = 2× Precision × Recall
Precision + Recall

(41)

Isolated Label Scores are used to evaluate the clustering and separation of cell identity labels shared
by a few batches. Specifically, the isolated label F1 score, also known as the class-wise F1 score,
evaluates the F1 score for individual classes and is optimized to achieve the best clustering of these
isolated labels, ensuring effective integration of rare cell types. This metric is particularly valuable for
handling imbalanced datasets, such as those in single-cell genomics, where it assesses the accuracy
of identifying rare cell types [56, 79]. The original scIB package typically employs a cluster-based
F1 scoring method by default. However, for the sake of speed and simplicity, we are opting to use the
ASW instead as implemented in scib-metrics package [23]. The isolated label ASW measures
the separation quality of these labels. These scores address the challenge of integrating rare cell
types, ensuring that integration methods can effectively manage rare cell populations. However, the
performance of these scores is heavily influenced by the quality of initial annotations.

H.5 Mutual Information

Mutual information (MI) quantifies the reduction in uncertainty about one variable given knowledge
of another between variables in complex systems, making it a valuable measure in both theoretical
analyses and practical applications [21, 47]. It measures the amount of information shared between
two random variables z+n and z−n as follows:

I(z+n , z
−
n ) = p(z+n , z

−
n ) log

(
p(z+n , z

−
n )

p(z+n )p(z
−
n )

)
(42)

where p(z+n , z
−
n ) is the joint probability distribution of z+n and z−n , and p(z+n ) and p(z−n ) are their

marginal distributions.

The value of MI is non-negative, I(z+n , z
−
n ) ≥ 0, and measures the reduction in uncertainty of z+n

given z−n and vice versa. When I(z+n , z
−
n ) = 0, the variables are statistically independent, meaning

that knowing z+n does not provide any information about z−n . A higher value of MI indicates a greater
level of dependency between the variables.

H.6 Normalized Mutual Information

MI is influenced by dataset size and cluster entropy, complicating comparisons across datasets.
Normalization techniques, which adjust MI to a standard range, typically [0, 1], enable more equitable
comparisons.
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NMI(z+n , z
−
n ) =

I(z+n , z
−
n )√

H(z+n )H(z−n )
(43)

where H(z+n ) and H(z−n ) are the entropies of z+n and z−n .The higher values indicate superior clustering
quality [87]. In the context of single-cell genomics, the normalized mutual information (NMI) is
critical for evaluating how well clusters correspond to known cell types [56]. This metric evaluates
how well cell-type labels are preserved post-integration. It is often used in scenarios requiring
validation of clustering results against known labels. While it provides an intuitive measure, it may
not distinguish well between near-perfect and perfect clustering.

H.7 Maximum Mutual Information Gap

The maximum mutual information gap (maxMIG) is a metric designed to evaluate the disentanglement
of latent variables in complex datasets where the number of covariates exceeds two, a complexity that
only particular methods are equipped to manage [18, 31, 40, 48, 92] due to its ability to generalize
and be unbiased [18, 53, 72]. This measure quantifies the MI between latent representations and
observed covariates, focusing on how effectively these latent variables independently capture the
informative characteristics of each covariate.

The maxMIG is defined for a set of latent variables [zk]
NK

k=1 and corresponding covariates [sk]
NK

k=1 as:

maxMIG(z1, . . . , zNK
; s1, . . . , sNK

) =
1

NK

NK∑
k=1

1

H(sk)
max
j ̸=k

[MI(zk, sk)− MI(zk, sj)] (44)

The maxMIG score is computed by averaging the normalized differences between the mutual
information of each latent variable with its corresponding covariate and the highest mutual information
with any other covariate. This focus on maximizing the information gap helps evaluate the specificity
and relevance of each latent variable to its respective covariate. Higher maxMIG values suggest
better disentanglement, indicating that each latent variable is more uniquely aligned with a specific
covariate, thus enhancing the model’s interpretability and generalizability.

H.8 Rand Index

The Rand index (RI) serves as a pivotal metric for evaluating the concordance between two clustering
outcomes. It quantifies the degree of similarity by scrutinizing the allocation of data points into
clusters across two distinct clustering results. Computed as the ratio of the sum of agreements to
the total number of data point pairs, RI encapsulates both intra-cluster cohesion and inter-cluster
separation. The formula for calculating the Rand Index is as follows:

RI =
TP + TN(

N
2

) (45)

where N = TP + TN + FP + FN. While the Rand Index offers valuable insights into clustering
performance, it may have limitations when dealing with varying cluster sizes or datasets with an
uncertain number of clusters.

H.9 Adjusted Rand Index

The RI quantifies the proportion of agreements between the two clusterings out of all possible pairings
of elements. However, because the RI does not adjust for the chance grouping of elements, the
Adjusted Rand Index (ARI) [35, 56] is often preferred, which is defined as:

ARI =
RI − Expected RI

Max RI − Expected RI
(46)

where the Expected RI is the expected value of the RI for random clusterings and the Max RI is the
maximum possible value of the RI. Mathematically, the ARI can be expressed as:
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ARI =

∑
ij

(
nij

2

)
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(n2)

1
2

[∑
i

(
ai

2

)
+
∑

j

(
bj
2

)]
−

[∑
i (

ai
2 )

∑
j (

bj
2 )

]
(n2)

(47)

where nij is the number of elements in the intersection of cluster i in X and cluster j in Y , ai is the
number of elements in cluster i of X , bj is the number of elements in cluster j of Y , and

(
n
2

)
denotes

the binomial coefficient. This adjustment provides a corrected-for-chance measure, making the ARI a
more reliable metric for clustering comparison.

Values of ARI above zero indicate better-than-random agreement, with a value of 1 representing
perfect agreement [36]. In single-cell data analysis, ARI is useful for validating the consistency of
cell type assignments across different clustering methods. This metric is key for evaluating clustering
performance in the presence of noise and is commonly used to validate clustering results in datasets
with known ground truth. However, it can be less intuitive to interpret compared to simpler metrics.

H.10 k-nearest neighbor Batch Effect Test

The k-nearest neighbor batch effect test (kBET) [15, 56] assesses batch effects in high-dimensional
datasets by testing the homogeneity of batch labels within the k-nearest neighbors of each data point.
It evaluates whether the neighbors of a cell are more likely to come from the same batch than expected
under random mixing. kBET is a robust method designed to quantify batch effects in single-cell
RNA sequencing (scRNA-seq) data. To implement kBET, one first constructs a k-nearest-neighbor
(kNN) graph for each cell in the dataset, using an appropriate distance metric such as Euclidean
distance in a principal component analysis (PCA)-reduced space. For each cell n, the algorithm
identifies its k nearest neighbors and calculates the proportion of cells from each batch within this
neighborhood, denoted as pjn, where j indexes the batches. Under the null hypothesis of no batch
effect, the expected proportion of cells from each batch should reflect the overall batch composition
in the dataset, represented as qj . The kBET then compares the observed batch proportions pjn with
the expected proportions qj using a statistical test, such as the Chi-square test or a permutation-based
test. The test statistic for each cell n is computed as

χ2
n =

|B|∑
j=1

(pjn − qj)
2

qj

where |B| is the number of batches. The p-value associated with the Chi-square statistic indicates
the likelihood that the observed batch composition within the neighborhood of cell n is consistent
with the global batch composition. These p-values are aggregated across all cells to assess the overall
presence of batch effects in the dataset. The kBET statistic is:

kBET =
1

N

N∑
n=1

1(pn<α) (48)

where N is the number of neighborhoods tested, pn is the p-value from a chi-squared test, and α is
the significance threshold.

This method was evaluated using peripheral blood mononuclear cells (PBMCs) from healthy donors,
effectively distinguishing cell-type-specific inter-individual variability from changes in relative
proportions of cell populations. kBET is crucial for evaluating the effectiveness of batch effect
correction methods in single-cell transcriptomics. The kBET tool and its detailed implementation are
available on the kBET GitHub repository.

H.11 Graph Connectivity

Graph connectivity evaluates whether the kNN graph of integrated data effectively connects all
cells with the same identity. For each cell identity label, a subset kNN graph is created. The graph
connectivity score is then computed as the average size of the largest connected component relative
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to the number of nodes with that cell identity [56]. This metric ensures that cells of the same type
remain connected post-integration, a critical aspect for evaluating graph-based methods. Despite its
importance, calculating graph connectivity can be computationally intensive for large datasets.

In single-cell genomics, graph connectivity assesses the robustness of cell interaction networks. The
formula for graph connectivity is:

Graph Connectivity =
1

|C|
∑
c∈C

|LCC(G(Nc, Ec))|
|Nc|

(49)

where C is the set of cell identity labels, LCC(G(Nc, Ec)) is the largest connected component of the
graph for cells with labelc, and|Nc| is the number of nodes with cell identity c.

H.12 Coefficient of determination in VAE

The R2 Reconstruction metric, often referred to as the coefficient of determination, is a statistical
measure used to evaluate the performance of VAEs in reconstructing input data. This metric quantifies
how well the reconstructed outputs from a VAE approximate the original inputs, indicating the
proportion of variance in the data that is captured by the model. R2 Reconstruction is particularly
useful in the evaluation of VAEs because it provides a clear metric to gauge the accuracy of data
reconstructions, facilitates comparison between different VAE architectures or configurations on the
same dataset, helps identify areas where the model might be lacking, guiding further refinements.
This metric is critical for researchers and practitioners using VAEs to ensure that their models not
only generate new data that is statistically similar to the input data but also effectively reconstruct
specific instances of input data [29, 38].

In the context of VAEs, the R2 Reconstruction is defined as:

R2 = 1−
∑NC

n=1 ∥xn − x̂n∥2∑NC

n=1 ∥xn − x̄∥2
(50)

where xn represents the original input data, x̂n represents the reconstructed data produced by the
VAE, and x̄ is the mean of the original input data.

The R2 value ranges from 0 to 1, where a higher value indicates that the model has effectively
captured more of the variance in the input data through its reconstructions. An R2 value of 1 signifies
perfect reconstruction, whereas a value close to 0 indicates that the model performs no better than a
model that would simply predict the mean of the input data for all outputs.

H.13 Coefficient of determination for Differentially Expressed Genes in VAE

In computational biology, the evaluation of VAEs reconstruction often focuses on differentially
expressed genes (DEG), which show significant changes in expression under different conditions,
are critical for understanding biological processes and disease mechanisms. The R2 Reconstruction
metric is adapted in this context to specifically assess how well VAEs can reconstruct the expression
patterns of these DEG. Refer to Appendix H.12 for details of R2 reconstruction score [29, 38].

The R2 Reconstruction for DEG is defined as:

R2
DEG = 1−

∑NC

n=1 ∥xn − x̂n∥2∑NC

n=1 ∥xn − x̄DEG∥2
(51)

where xn represents the expression levels of DEG in the original data, x̂n represents their recon-
structed levels from the VAE, and x̄DEG is the mean expression level of DEG.

Focusing on DEG, the R2 Reconstruction metric specifically evaluates how effectively the VAE
captures the variability and regulatory patterns in gene expression that are most biologically relevant
and likely to be impacted by experimental conditions. A high R2 value indicates that the VAE has
effectively learned to model the critical aspects of gene expression relevant to the study’s goals.

Reconstructing differentially expressed genes is inherently more difficult yet more critical than
reconstructing overall gene expression due to several factors:
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(i) Biological Relevance DEG often carry more biological significance than stably expressed
genes, directly reflecting the cellular responses to biological stimuli or disease states.

(ii) High Variability DEG typically exhibit high variability in expression levels, making accurate
reconstruction a complex challenge that tests the model’s sensitivity and precision.

(iii) Data Reduction By concentrating on DEG, researchers can reduce the dimensionality of the
data, focusing computational resources and analytical efforts on the most informative parts
of the dataset.

(iv) Improved Sensitivity Models tuned to capture changes in DEG can be more sensitive to
subtle but biologically important changes that might be overlooked when considering all
genes.

Evaluating VAE performance using the R2 Reconstruction metric on DEG provides insights into the
model’s ability to handle the most critical and dynamic components of biological data, facilitating the
development of more accurate and biologically informative models.

H.14 Principal Component Regression

The principal component regression (PCR) quantifies batch removal by calculating the variance
contribution of the batch effect per principal component (PC) [56]. The variance contribution of the
batch effect is computed as the product of the variance explained by each PC and the corresponding
R2 value from a linear regression of the batch variable onto each PC. Mathematically, it is expressed
as:

Var(C|B) =
G∑

g=1

Var(C|PCg)×R2(PCg | B) (52)

where Var(C|PCg) is the variance of the data matrix C explained by the gth principal component
and R2(PCg|B) is the coefficient of determination for the batch variable B. This metric provides
a quantitative measure of batch effects, allowing for direct comparison between methods, and is
essential for assessing how well integration methods remove technical variability, particularly in
large-scale multi-batch studies. However, it may not fully capture non-linear batch effects.

H.15 Local Inverse Simpson’s Index

The graph local inverse Simpson’s index (LISI) is a metric for evaluating batch mixing (iLISI) and
cell-type separation (cLISI) in integrated single-cell datasets. It uses graph-based distances and the
inverse Simpson’s index to measure diversity within neighborhood compositions. Scores are rescaled
from 1 to the total number of batches to a range of 0 to 1, where 0 indicates minimal integration
or separation, and 1 indicates optimal mixing or segregation. This metric is especially useful for
graph-based integration methods and allows for cross-method comparisons, although it requires
careful parameter tuning and interpretation [46, 56].

cLISI assesses the integration of diverse cell types within a combined dataset. For each cell, its kNN
are identified, and the composition of cell types within this neighborhood is analyzed. The diversity
is quantified using the Inverse Simpson’s Index:

DcLISI =
1∑NC

n=1 p
2
n

(53)

where pn is the proportion of the n-th cell type in the neighborhood, and NC is the total number of
distinct cell types. The average cLISI score across all cells indicates how well cell types are mixed,
with high values showing effective mixing and low values indicating poor mixing.

iLISI measures dataset mixing within the local neighborhood of each cell, quantifying how well cells
from different datasets are integrated. iLISI close to the number of datasets suggests good mixing,
meaning datasets are well integrated where cLISI close to 1 indicates good preservation of cell types,
meaning different cell types remain well separated.
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Balancing iLISI and cLISI ensures datasets are integrated effectively while preserving distinct cell
type identities. Graph LISI’s unified measure for both batch mixing and cell-type separation makes
it a valuable tool for single-cell data integration studies, providing a standardized framework for
comparing integration methods and identifying optimal strategies.
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