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Transformers in single-cell omics: a review 
and new perspectives
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Recent efforts to construct reference maps of cellular phenotypes have 
expanded the volume and diversity of single-cell omics data, providing an 
unprecedented resource for studying cell properties. Despite the availability 
of rich datasets and their continued growth, current single-cell models are 
unable to fully capitalize on the information they contain. Transformers 
have become the architecture of choice for foundation models in other 
domains owing to their ability to generalize to heterogeneous, large-scale 
datasets. Thus, the question arises of whether transformers could set off a 
similar shift in the field of single-cell modeling. Here we first describe the 
transformer architecture and its single-cell adaptations and then present 
a comprehensive review of the existing applications of transformers in 
single-cell analysis and critically discuss their future potential for single-cell 
biology. By studying limitations and technical challenges, we aim to provide 
a structured outlook for future research directions at the intersection of 
machine learning and single-cell biology.

The emergence of single-cell omics has deepened our understanding 
of biological systems, offering a granular view of cellular heterogene-
ity and dynamics. This includes new insights into cell types, cell states 
and their changes during development, disease onset and therapeu-
tic response1–3. The vast volume and heterogeneity of the generated 
data present both opportunities and challenges. Current analytical 
methods fall short in capturing variation across diverse large-scale 
single-cell datasets, motivating the development of novel computa-
tional strategies.

In parallel, the machine learning landscape has witnessed the 
remarkable impact of transformers, initially designed for natural 
language processing (NLP) tasks and, more recently, used as the 
backbone of foundation models across domains4–6. A foundation 
model is a machine learning model trained on broad data, usually 
by self-supervision, that can be effectively adapted to a wide range 

of downstream tasks, often with minimal additional training6. 
Transformer-based foundation models have been successfully applied 
in numerous fields, including computer vision7, speech processing8 
and time series analysis9, as well as in categorically valued sequence 
modeling in genomics10 and proteomics11,12. The ability of transformers 
to leverage large-scale, heterogeneous datasets and to generalize to 
many tasks across domains positions them as potential game changers 
for single-cell omics analysis (Fig. 1). Nonetheless, a notable property of 
data in all these domains that is not present in the raw single-cell omics 
data is sequentiality, which poses unique challenges.

Overview of the transformer architecture
Deep learning has been widely applied in single-cell biology13–16. Most 
deep learning models regard the input as a vector to which they itera-
tively apply a series of learnable layers, where each layer usually consists 
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used for generating contextualized input embeddings per gene. Such 
embeddings capture the properties of a given gene and its expres-
sion level within the context of a given cell, taking into account the 
expression of other genes, which opens the possibility of addressing 
gene-level tasks, such as gene dosage sensitivity prediction in specific 
cells17. Decoder-only models as well as encoder–decoder transformers 
are used for sequence generation, enabling, for example, transcrip-
tomic cell profile simulation, but require representation of the RNA 
counts as a sequence. These substantial differences compared to com-
monly used single-cell models underscore the need for an in-depth 
description of single-cell transformers. In this section, we review the 
various parts of the transformer architecture together with recently 
proposed single-cell-specific adaptations. For a glossary of terms, 
see Box 1.

Representing single-cell input data
Transformers have been very impactful in the processing of sequen-
tial data, for which they were originally designed5, such as natural 
language18, DNA10 or protein sequences19. However, nonsequential 
single-cell omics data pose a challenge, because this requires embed-
ding the data into a format suitable for transformers. Transformers 
regard every input sample as a set S composed of embeddings xi. The 
number of the embeddings in S can vary across samples. In single-cell 
data, the input set S could, for instance, indicate a collection of cells 
within a tissue or donor with xi representing individual cells. Alter-
natively, S could correspond to a single cell with xi representing the 
attributes of individual genes, such as RNA counts. This is analogous 
to the tokenization in NLP, where text is segmented into subword units 
called ‘tokens’, where a unique subword has a corresponding embed-
ding that is learned during training. Transformers are invariant to the 
order of input embeddings, which motivates ‘positional encodings’, 
which are added to the token embeddings to indicate the position of 
the tokens within the input. xi is then defined as an element-wise sum of 
the token embedding and positional encoding of the same dimension-
ality5. Positional encodings are either calculated using a fixed formula 
or learned like token embeddings. Such encodings have been used in 
many transformer application domains, including in natural language5, 
computer vision7 and time series analysis9.

Notably, existing single-cell transformers primarily differ in the 
approach used to translate single-cell omics data into suitable trans-
former inputs. The most commonly used approaches can be classified 
into three main categories (Fig. 3), described below. For simplicity, we 
assume that the input sample, S, captures the transcriptional profile of 

of a linear transformation followed by an element-wise nonlinearity. In 
the context of single-cell genomics, the input vector may for instance 
represent a cell, with individual vector components corresponding to 
the RNA expression of individual genes. A common model architecture 
in single-cell applications is the autoencoder, as it does not rely on 
hard-to-obtain data annotations. As illustrated in Fig. 2a, autoencoders 
consist of an encoder and a decoder and are trained to map the input 
to a low-dimensional latent representation that constitutes a bottle-
neck from which the decoder attempts to faithfully reconstruct the 
input. An autoencoder trained on single-cell RNA counts can be used 
for dimensionality reduction of the cells’ transcriptomic profiles. As 
an autoencoder learns a fixed set of parameters that are used for all 
inputs (that is, all cells), the bottleneck compels the model to learn 
feature extractors that capture the globally most relevant patterns 
while filtering out noise, which ultimately results in a meaningful latent 
representation of cellular variation.

The transformer architecture, shown in Fig. 2, is a type of deep 
learning model using self-attention mechanisms to process input 
data represented as a set of embeddings. It shares some of the ideas 
underlying autoencoders but also departs from them in essential 
ways. For instance, similar to the autoencoder, the originally proposed 
transformer consists of an encoder and a decoder, and it can also be 
trained without the need for data annotations. However, there are 
important differences between the two architectures. First, unlike 
autoencoders, transformers adjust how they process a specific input 
feature based on all other input features in a data sample via the atten-
tion mechanism5. This, for example, allows a transformer to flexibly 
account for different gene interaction patterns depending on the cell 
type that it is currently processing. Second, transformers regard every 
input sample as a set of embeddings, which necessitates embedding 
of the cell’s transcriptomic profile into such a format before passing 
it to a transformer. For example, a cell can be represented by a set of 
gene embeddings that capture their respective RNA counts. Third, 
the encoder and decoder components in transformers are distinct in 
function and design compared to their counterparts in autoencoders. 
Whereas the encoder in an autoencoder maps the input to a bottleneck 
latent space and thus performs dimensionality reduction (Fig. 2a), 
the representation produced by the encoder in a transformer is not 
constrained by a bottleneck (Fig. 2b).

The transformer decoder, unlike its autoencoder counterpart, 
processes the output of the transformer encoder and generates a 
sequence, one element at a time. Transformer encoders and decoders 
are often used independently, with encoder-only models commonly 
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a cell. Note that other omics modalities have been parsed in a similar 
manner as well20.

 1. Ordering. The data are represented as a sequence of tokens similar  
to natural language input, which allows direct reuse of the well- 
studied NLP transformer methods. In iSEEEK21, Geneformer17 
and tGPT22, for example, each gene is a token with a correspond-
ing learnable embedding and the order of the gene tokens is 
determined by ranking them within a cell by normalized expres-
sion level (Fig. 3c). Positional encodings are added to the token 
embeddings just as in NLP. This method reduces data resolu-
tion, which results in information loss23.

 2. Value categorization. Each gene is represented by an embed-
ding, and its RNA counts per cell undergo value binning (Fig. 3d). 
Binning allows us to use methods designed for categorical data 
even when the raw input is continuous. Similarly to ordering, it 
reduces data resolution. In value binning, we define consecutive 
value intervals. Each value interval has a corresponding embed-
ding and xi is a sum of the gene embedding and value bin em-
bedding20,24. The intervals can be equally sized, as in a single-cell 
transformer scBERT24, or adaptively sized, as in scGPT20. In the 
latter, binning is performed per cell, where each interval rep-
resents an equal portion of all expressed genes in a single cell. 
Such adaptively sized bins retain the semantic meaning across 
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Fig. 2 | Single-cell transformer architecture. a, A typical autoencoder for single-
cell analysis. b, A transformer requires input preprocessing, where each gene of 
a cell’s genomic profile is mapped to a gene-embedding vector. Transformers 
are often pretrained by predicting masked parts of input. c, Multihead attention 
consists of several attention heads that process the input in parallel. Each 
attention head processes the entire input set of all embedding vectors using its 
own set of learnable parameters. d, The attention head uses three distinct FFNs to 

compute three sets of embedding vectors, denoted as keys, queries and values. 
Each individual key embedding is compared to all query embeddings, resulting 
in pairwise attention scores. Attention scores allow the transformer to focus 
on different gene interactions. e, Feed-forward layers process each embedding 
separately using the same set of parameters for all genes. f, Separate attention 
heads in the multihead attention layer may focus on specific gene interactions.
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sequencing batches, because the highest expression in a cell 
always corresponds to the highest-expression bin. In addition, 
scBERT’s24 equally sized bins were shown to in some cases result  
in nearly all of the values falling into a single bin, drastically  
reducing data resolution.

 3. Value projection. Another approach uses a projection of the 
input data. In the case where input data correspond to the tran-
scriptomic profile of a cell represented as a vector of gene ex-
pression values, xi is a sum of two components: a projection of 
the gene expression vector and a positional or gene embedding, 
where the projection is often linear25 (Fig. 3e). The advantage of 
this solution over ordering and value categorization is that it does 
not necessarily reduce the data resolution. However, it results in 
continuous embeddings, which differs from the successful NLP 
transformers, and its impact on model performance is unclear. 
The number of transformer input embeddings may or may not 
correspond to the number of genes in the input data. The num-
ber of output embeddings may correspond, for example, to the 
number of selected gene pathways, as in the model TOSICA25, 
where this choice was made to enhance model interpretability.

Additionally, transformers can incorporate extra layers of informa-
tion through special tokens. These tokens might represent, for exam-
ple, perturbations applied to a given cell or gene20,26, information about 
species26, data batches or data modalities20. Special token embeddings 
are either added to individual input embeddings xi, for token-level 
information (Fig. 3f), or added to the input set S for sample-level infor-
mation (Fig. 3g). Special token embeddings are often learnable, simi-
larly to gene or positional token embeddings.

In scenarios where S represents a collection of cells within a tis-
sue and xi denotes individual cells, xi can be modeled as a sum of the 
positional encoding and the cell’s expression profile embedding. The 
positional encoding is derived from the spatial coordinates of a cell, 
reflecting its location within the tissue structure. The embedding of the 
cell’s expression profile can be calculated as a sum of learnable gene 

embeddings, each weighted by the gene’s expression level in the cell. 
Such a representation allows for modeling of cell–cell relationships but 
limits the ability to analyze individual gene interactions27.

Given that single-cell transformers were introduced only recently, 
there are few evaluations of the impact of nonsequential omic data 
encoding methods. We expect the field to converge on best practices 
once these are established.

Gene and cell attention
A transformer layer consists of two subsequent layers, an attention layer 
that transforms every element xi via ‘attending’ to other elements in S, 
followed by a classical feed-forward network (FFN) that processes the 
elements xi individually. The attention mechanism is a key component 
of a transformer and allows it to capture dependencies between input 
embeddings and to generate contextualized embeddings5. For details 
on attention computation, see Box 2. In transformers for single-cell 
omics in which input embeddings correspond to genes, this implies 
that attention over genes may allow transformers to capture the under-
lying gene regulatory network (GRN). So-called multihead attention 
allows each attention layer to capture multiple facets of gene–gene 
relationships; for instance, each attention head could capture a dif-
ferent cellular mechanism, such as cell cycle, apoptosis, metabolism 
or DNA repair (Fig. 2f).

While in most current transformers input embeddings correspond 
to genes17,20–22,24, modeling interactions between cells within a tissue 
where input embeddings correspond to cells has been proposed as 
well27,28. Attention over cells may leverage spatial positional information 
from cells to encode intercellular relationships and capture cell–cell 
communication. Despite the promising aspects of modeling groups 
of cells, this review primarily focuses on gene-centric attention within 
single cells, due to its prevalence and more established position.

The variant of attention described here is called self-attention. 
The output of attention is a transformed set S′ of embeddings x′i that 
has the same number of embeddings as S and the output embeddings 
most often have the same dimensions as xi.

Box 1

Glossary
Transformer: deep learning architecture based on parallel attention 
mechanism5

Autoencoder: neural network that consists of an encoder and a 
decoder that learns a compressed representation of the input data 
through unsupervised learning

Embedding: numerical representation of data as a vector
Token: a distinct element of the input data. In single-cell omics, 
tokens may, for example, correspond to individual cells, genes, or 
other molecular features

CLS token: a special token used in some transformers for aggregating 
information across all input tokens (that is, input sample)

Attention mechanism: a data-adaptive neural network component 
that dynamically focuses on the relevant information in the input to 
compute the output5,98

Self-attention: a type of attention mechanism that focuses solely on 
the relationships between the input embeddings, unlike traditional 

attention mechanisms that focus on the relationship between the 
input and output embeddings as well. In this work, we relate to 
self-attention whenever attention is mentioned

Key, query and value: components of the attention mechanism 
in transformer models. Queries are elements for which the model 
seeks relevant information. Keys are compared to queries to 
produce attention scores and values are the actual content that the 
model retrieves, which is finally weighted based on the query–key 
comparison (Fig. 2d)

Multihead attention: a neural network composed of multiple 
attention mechanisms (heads), each with a separate set of 
parameters5

Foundation model: a machine learning model trained on a large 
quantity of data that can be effectively adapted to a wide range of 
downstream tasks6

Large language model (LLM): deep learning model that is trained on 
text to perform NLP tasks

http://www.nature.com/naturemethods


Nature Methods | Volume 21 | August 2024 | 1430–1443 1434

Perspective https://doi.org/10.1038/s41592-024-02353-z

Figure 2d illustrates the computation of attention. x′i is a weighted 
average of the linear projections of all input elements xj from S. Impor-
tantly, the weights, which we call attention scores, depend on the ele-
ments in S themselves and are computed by the attention function. 
For simplicity, we described above what would be referred to as a 
single attention head, that is, attention with a single set of learnable 
parameters for attention computation. Transformers use multihead 
attention (Fig. 2c) across multiple transformer layers5.

The computational complexity and memory requirements of the 
attention function grow quadratically, 𝒪𝒪(n2), with the number of input 
embeddings, due to their pairwise interactions. This can be problem-
atic when the number of input elements in S is large, for example, when 
the input embeddings correspond to more than a few thousand genes24. 
More efficient ways to compute attention were developed to tackle 
this issue, such as FlashAttention29, Performer30, sparse attention31 and 
iterative attention32.

Efficient computation of attention and attention approximations 
as well as general deep learning acceleration frameworks, such as 
DeepSpeed33, are still active areas of research and development, which, 
from a mere computational perspective, will presumably allow future 
models to be scaled up in terms of both model capacity (the number 
of model parameters) and input dimensionality (for example, the 
number of genes). Recent innovations in optimization libraries such as 
in DeepSpeed (used in Geneformer17), efficient computation of atten-
tion such as in FlashAttention29 (used in scGPT20 and Cell2Sentence23) 
and efficient attention approximations such as in Performer30 (used 
in scBERT24) have already been incorporated in various transformer 
models for single-cell applications.

The magnitude of the attention scores can be used to infer the 
relative importance of the input embeddings, by essentially acting as 
weighing factors to the value embedding. However, multiple layers 
and multiple attention heads in each layer require attention score 

aggregation (for example, summation), which reduces interpretability. 
Attention scores and feature importance have been shown to not always 
correlate34 and are hence not necessarily reliable tools for identifying 
which input elements are responsible for an output.

Encoder and decoder
Transformers were originally conceived as a combination of an encoder 
and a decoder, where the transformer encoder and decoder are com-
posed of a stack of several identical layers5. The encoder (Box 3) pro-
cesses the input data and generates latent representations, and the 
decoder outputs a sequence based on these representations. The 
encoder and decoder have slightly different architectures, both based 
on multiple layers of attention and FFNs. The decoder differs from 
the encoder only by the attention components, using masked atten-
tion and encoder–decoder attention in place of the encoder’s atten-
tion. Masked attention restricts the attention mechanism such that 
each output can be influenced only by the preceding elements in the 
sequence (Fig. 4c,d). While encoder attention operates solely on the 
input sequence, encoder–decoder attention allows the decoder to 
attend to the encoder’s outputs in add ition to the decoder’s own input 
elements. This mechanism enables the decoder to align its generated 
output with the input embeddings produced by the encoder.

So far, most single-cell transformers rely on the encoder-only17,24,26 
architecture, which enables masked language modeling (MLM), an 
effective pretraining strategy detailed in the following section. tGPT22 
and scMulan35, which use a decoder-only model, stand out as the excep-
tions. Decoder-only models allow for generation of conditional data, 
for example, a transcriptomic profile given a cell type, donor age or 
sequencing technology35,36. Certain models use variants of transformer 
layers that are based on the encoder or decoder. For example, scGPT20 
uses customized masked attention inspired by decoder attention  
masking, allowing autoregressive generation.
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Training transformers
If sufficiently annotated data are available, transformers can be trained 
directly on the task of interest. However, although single-cell datasets 
with millions of observations are readily available37, the cell annota-
tions are often limited and inconsistent across datasets38. This makes 
self-supervised learning (SSL) as implemented by masked-token 
or next-token prediction (NTP) attractive for single-cell modeling, 
because it relies on the inherent structure in the data instead of human 
annotations. A very common strategy for self-supervised pretrain-
ing is called MLM. The MLM strategy is to replace parts of the input 
tokens with the MASK token embedding and predict the masked tokens 
from the final embedding (transformer output)4. MLM is used in many 
single-cell transformers17,20,24,26,39,40. An alternative form of pretrain-
ing used in transformer decoder and transformer encoder–decoder 
models is the NTP task. This task assumes that the input is a sequence, 
and the model is trained to predict the next token given the preceding 
tokens. While some models show improvement after self-supervised 
pretraining4, others achieve state-of-the-art results even without it8. 
Similarly, certain single-cell transformers leverage SSL pretraining17,20,24, 
as shown in Fig. 4a,b, while others are trained only on the task of inter-
est in a supervised manner25. Moreover, it has been shown that SSL 
pretraining may not improve performance on certain tasks41.

Applications of single-cell transformers
Transformers have so far been applied to various single-cell tasks, 
such as cell annotation, cell and gene representation learning, and 
single-cell modality prediction, for a chosen condition or perturba-
tion17,20,36. Figure 5 shows use cases of single-cell RNA sequencing 
(scRNA-seq) transformers. We provide a list of selected single-cell 
transformers and their applications in Table 1 and an extended 

comprehensive and categorized list at https://github.com/theislab/
single-cell-transformer-papers.

While some transformers were developed for a single task, such as 
cell type annotation or cross-modality prediction25,42, others attempt 
to solve various tasks. The hope is that a model trained on sufficiently 
diverse data (often by SSL) will acquire foundational knowledge about 
cell biology, allowing it to perform well on a wide range of tasks related 
to cell functions. Technically, solving different tasks is achieved by 
either using the model in a zero-shot fashion or adapting the final layer 
and fine-tuning the model to a chosen task17,20.

Challenges in modeling single-cell data
There are several major challenges in modeling single-cell data that 
need to be accounted for. These challenges include43:

•	 Noise. Single-cell data are affected by different technical factors. 
For example, these data contain sequencing noise, such as dropout 
and cell variation, that cannot be attributed to naturally occurring 
cell states but that is rather a consequence of technical effects 
during processing, such as stress. Arguably, seeing many more 
cells than a typical single-dataset model can improve learning of 
general noise characteristics in transformer-based models. Some 
transformers also attempt to improve signal quality by preprocess-
ing the data with value categorization20,24.

•	 Batch effects. Data generated across different experiments, condi-
tions or laboratories can have systematic differences, known as 
batch effects, which can confound analysis. Some transformers 
attempt to explicitly correct batch effects, for example, through 
batch tokens20, while others rely on the ability of the models to 
better generalize after exposure to heterogeneous datasets17.

•	 Sparsity. Many single-cell readouts, for example, single-cell 
assay for transposase-accessible chromatin using sequencing 
(scATAC-seq) and scRNA-seq44, have a high degree of sparsity, 
with a large fraction of the measurements having a value of zero. 
Machine learning models need to account for this to be effective 
and avoid excessive computation. Many single-cell transformers 
deal with sparsity by either processing only nonzero values17 or 
grouping features into pathways25.

Box 2

Attention computation
The attention mechanism is a key component of a transformer 
that allows it to capture dependencies between individual input 
embeddings and contextual information defined by the rest of 
the input embeddings5. An attention layer computes a weighted 
average of linear projections of all input elements xj of the input set 
S, where the weights (attention scores) depend on the elements in 
S. Computation of the attention layer for a single element x′i in the 
output set S = {x′1, …, x′n} can, in general, be written as

x′
i =

n
∑
j=1

a(S)i,j ×Wvxj

a(S)i,j = softmax((WkX)TWqxi/√dk)
j

In the equations above, X is a matrix made up of stacked input 
embeddings xi. Wv, Wq and Wk are value, query and key projection 
matrices, respectively, and dk corresponds to the dimensionality of 
the projection matrices. a(S)i,j is the attention function computed 
between the query element i and element j.

We call the products Wvxi, Wqxi and Wkxi the value, the query 
and the key vectors. The key vectors of dimension dk are used to 
determine the relevance of different parts of the input in relation 
to a given query vector. The value vectors represent the actual 
representation of the input data. The query vectors represent the 
current context or the information being sought. The attention 
mechanism computes a weighted sum of the value vectors based 
on the similarity of the key vectors to the query vector.

Box 3

Transformer encoder layer
Transformers are composed of a transformer encoder, a transformer 
decoder or both. In single-cell applications, a transformer 
encoder-based architecture is the most popular choice. A 
transformer encoder is composed of a series of self-similar 
transformer encoder layers. Each layer is composed of an attention 
module, an FFN, residual connections99 and layer normalization 
(LayerNorm)5,100, which can be represented in the following manner:

H = LayerNorm(Attention(X ) + X )

X′ = LayerNorm(FFN(H ) + H )

where X and X′ represent, respectively, the input and output of a 
transformer layer. Residual connections are implemented by adding 
the input X to the output of the attention module and, similarly, 
adding H to the output of the FFN. This approach helps in preserving 
information from the input throughout the layers and facilitates the 
training of deeper networks. Layer normalization stabilizes training 
by normalizing the outputs of each layer to have a mean of zero and 
a standard deviation of one.
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Gene representation
Transformers applied to single-cell data usually encode gene expres-
sion (or other gene-related omic modalities) as input embeddings, 
which give rise to gene-level representations. Such gene embeddings 
vary depending on the context provided by the expression of other 
genes in a cell, making them context specific. Context specificity is 
achieved by applying attention between genes (or other omic features) 
within a cell17,20. Context-specific embeddings can be used in various 
tasks that have, until now, relied on fixed gene representations, for 
instance, identification of functionally similar genes, gene function 
prediction and prediction of changes in gene function in different 
conditions (through, for example, changes in a gene embedding after in 
silico treatment)17,20. Contextualized gene embeddings can provide new 
insights by comparing the similarity scores of such embeddings across 
cells. For example, the gene embeddings from pretrained scGPT20 
were used to construct similarity networks that grouped functionally 
related genes, identifying known pathways, including some that are not 
revealed in coexpression networks. In addition, fine-tuning the gene 
embeddings in Geneformer17 was shown to be effective when predicting 
chromatin states and distinguishing central versus peripheral factors 
within gene networks in particular cell types.

Embeddings generated by transformers can also be used to inform 
other models that rely on predefined gene embeddings26,39,45, such 
as the perturbation response prediction model GEARS46. Similarly, 
while most cross-species analyses currently use fixed gene orthology 
information (that is, gene identifiers (IDs) matched across species), 
the predefined ortholog mapping may lack functional gene infor-
mation, relying solely on protein sequence similarity, and is context 
agnostic47. Thus, multispecies transformers26 could provide improved 
context-specific orthology mapping.

Interactions between omic features
Omic features encompass the diverse data obtained from the study of 
various ‘omics’ fields, such as genomics, epigenomics, transcriptomics,  
proteomics and metabolomics. These features include, but are not 
limited to, genes, transcripts, proteins, metabolites and accessible 
chromatin regions. The interactions among omic features are impor-
tant to understanding cellular and organismal biology. For example, 
paired transcriptomic and chromatin accessibility profiling is used to 
describe interactions between genes48, which has important implica-
tions for disease prevention49.

Transformers introduce a novel methodology for examining mul-
timodal interactions through attention mechanisms between omic fea-
tures, producing a learnable data relation map. Thus, attention scores 
between cell and omic feature tokens can be used for the identification 
of cell type marker genes, genes associated with specific cell phenotypes 
and genes associated with biological processes, such as developmental 
regulators and genes associated with specific cell phenotypes22,25,50. 
Similarly, attention can be used to predict interactions between omic 
features and to identify hub genes—genes that regulate or are regulated 
by a large number of other genes17,51. For example, gene attention scores 
in Geneformer17 were shown to focus on transcription factors and hub 
genes, revealing cellular regulatory mechanisms. Attention values are 
context specific, so incorporating ATAC-seq and RNA-seq data may 
reveal context-specific (for example, cell state-specific) gene regula-
tion based on the expression of co-binding transcription factors and 
chromatin accessibility. This approach to model interpretability and 
biological insight discovery has been explored, for instance, in TOSICA25. 
Using pathway embeddings, TOSICA operates on pathway attention 
scores as cell representations that capture cellular trajectories and link 
changes in the trajectory to specific pathways or regulons, highlighting 
the regulatory networks driving disease progression. Furthermore, 
scGPT20 uses gene attention scores not only to infer GRNs, but also 
to analyze the impact of genetic perturbations on these networks, 
showcasing the variety of insights that can be extracted from attention 
scores in single-cell transformers. Despite these successes, the utility of 
attention scores for interpretability is nuanced. As noted above, trans-
formers’ attention scores have been shown not to correlate with feature 
importance in some cases34, which highlights the need for caution in 
generalizing their reliability as tools for feature importance attribution.

Cell representation
High-quality representation of individual cells in low-dimensional 
spaces is a critical component of various downstream single-cell  
analyses52. Essential to this is the preservation of biological variations, 
such as cell type and cell state, while minimizing technical confounding, 
such as batch effects, between datasets53. However, discerning between 
unwanted batch effects and relevant covariates when integrating data 
from multiple studies, tissues and even organisms is challenging and 
often context dependent54. Transformers offer a promising solution 
to the problem through batch-unaware pretraining, which has been 
shown to be robust to certain batch effects. For example, Universal 
Cell Embeddings (UCE)55 and GeneCompass26 have been used to inte-
grate at-scale molecular profiles of cells across studies, tissues and  
species, which allowed UCE to transfer cell type annotations to data from  
species not seen by the model.
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the predicted output and the masked ground truth. b, In NTP tasks, the model 
predicts what output should appear next in the sequence. The loss function 
depends on the difference between the output and ground-truth next tokens. 
c,d, Training of the transformer encoder and transformer decoder makes them 
effective at different sets of tasks. c, The task of single-cell data imputation can be 
cast similarly to masked-input prediction. d, Data simulation can be cast similarly 
to NTP, by iteratively feeding the subsequent predicted embeddings back  
to the input.
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Transformer-based embeddings differ in many ways from other 
techniques. In contrast to popular models based on variational 
autoencoders (VAEs)56 such as scVI13 and scArches57 or recently pro-
posed SCimilarity14 that explicitly learn low-dimensional embed-
dings, transformers do not produce low-dimensional cell embeddings 
through the commonly used pretraining tasks alone. Instead, cell 
embeddings can be achieved either by pooling the output embed-
dings of a transformer for an individual cell, which could correspond 
to contextualized gene embeddings17,45, or by introducing a special 
cell token (CLS) into the inputs, which is trained on a task that cap-
tures cell properties20,25. Moreover, while VAE-based models typi-
cally explicitly learn the impact of batch covariates by passing them 
alongside the input features, such as the cell’s gene expression13, some 
transformers are claimed to be robust to batch-dependent technical 
artifacts despite not explicitly using batch covariate information17,26. 
In addition, some transformers were also able to generalize to bulk 
data, producing meaningful bulk embeddings22,39. Furthermore, the 
flexibility of transformer input tokens facilitates the use of multi-
modal features for cell representation. For example, scGPT20 treats 
individual features across omic layers as separate tokens, thus ena-
bling paired and mosaic integration20, and was shown to capture 
immune cell subgroups not identified by other state-of-the-art mul-
tiomic integration methods. Other applications of transformers’ cell 
embeddings include identifying therapeutic targets by analyzing the 
shift in cell embeddings as a result of a perturbation. For example, 
in Geneformer17, the shift in cell embeddings for cardiomyocytes 
from patients with hypertrophic or dilated cardiomyopathy toward 
embeddings corresponding to a nonfailing heart state after in silico 
gene deletion indicated genes whose inhibition could improve car-
diomyocyte function. The predicted effects were experimentally 
validated, demonstrating the utility of single-cell transformers.

Single-cell modality generation
Transformers have been applied to various tasks that are based on the 
prediction of gene expression or other omic modalities in individual 

cells. We call such tasks single-cell modality generation. This includes 
prediction of gene expression under perturbation, achieved through 
simulation of a perturbation (for example, knockout or knockdown) 
of individual input genes or introduction of a perturbation condition 
such as cell exposure to a small molecule17,20,58,59, read depth enhance-
ment39, data imputation36 and cross-modality prediction, which uses 
a known modality or modalities to predict the missing ones42,51. For 
instance, in a task of predicting a perturbed cell’s expression profile 
when given a control cell’s state as input, scGPT was fine-tuned on a 
subset of genetic perturbations from Perturb-seq datasets, with spe-
cial tokens indicating which genes were perturbed. The model was 
then shown to accurately predict gene expression responses to unseen 
perturbations. In addition, generative transformers could potentially 
simulate data directly, for example, with only conditions specified as 
input without the need for any omic features36. Once such models are 
developed, they could be used for perturbation modeling and predic-
tion of control datasets in contexts where obtaining matched control 
tissue is challenging, including for studies involving invasive biopsies 
or phase 1 clinical trials.

Cell annotation
Many single-cell transformers are designed for the task of single-cell 
annotation, primarily using cells’ transcriptomic profiles. The main 
focus of annotation is cell type prediction, with models such as scBERT24 
and TOSICA25 focusing on this task alone. Generalist single-cell trans-
formers are often evaluated on cell type annotation as well17,20,26,40, 
and self-supervised pretraining by masked-input modeling on large 
datasets has been shown to improve their classification capabilities17,20. 
Transformers show a promising ability to generalize to unseen data-
sets36, which is crucial to leverage reference datasets with consensus 
annotations to annotate new datasets. For example, TOSICA was shown 
to predict cell types effectively even in datasets unseen in training, 
overcoming batch effects25. In addition, the UCE model was used to 
transfer cell type annotations to unseen species55. Still, non-deep learn-
ing cell type predictors are often difficult to outperform. For example, 
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Table 1 | Selected transformers for single-cell omics

Model Omic  
modalities

Pretraining 
dataset no. of 
cells/diversity

Input embedding Architecture SSL tasks Supervised tasks Zero-shot tasks

Geneformer17 scRNA-seq 30 million/
cross-tissue, 
human

Ordering: rank based Encoder MLM with CE loss, 
gene ID prediction

Gene function 
prediction, cell 
annotation

Cell clustering, 
GRN inference, 
genetic 
perturbation 
effect

Universal Cell 
Embedding55

scRNA-seq 36 million/
cross-tissue, 
cross-species

Other: ESM-2 (ref. 11)- 
based gene 
embeddings. Gene 
embeddings are 
sampled according to 
expression levels and 
order is determined 
by position on 
chromosomes

Encoder Modified MLM Cell annotation Cell clustering, 
cross-species 
integration

scGPT20 scRNA-seq 
(scATAC-seq, 
CITE-seq, spatial 
transcriptomics; 
not for 
pretraining)36

33 million/
cross-tissue, 
human, 
nondisease

Value categorization: 
value binning

Other, 
attention 
masking in 
encoder

Iterative MLM 
variant with 
MSE loss, cell 
token expression 
prediction, 
gene expression 
prediction

Cell type annotation, 
genetic perturbation 
effect prediction, 
reverse perturbation 
prediction, cell 
clustering, multimodal 
embedding, gene 
function prediction

Cell clustering, 
GRN inference, 
simulation, 
gene expression 
imputation

scBERT24 scRNA-seq 1 million/
cross-tissue, 
human

Value categorization, 
binning

Encoder MLM with CE loss, 
gene expression 
prediction

Cell type annotation, 
unseen cell type 
detection

None

TOSICA25 scRNA-seq None Value projection Encoder None Cell type annotation None

scMoFormer42 scRNA-seq, 
scATAC-seq, 
CITE-seq

None Other: based on 
singular value 
decomposition

Encoder 
and graph 
transformers

None Cross-modality 
prediction

None

tGPT22 scRNA-seq 22 million/
cross-tissue, 
cross-species, 
disease and 
nondisease, 
organoids

Ordering Decoder NTP with CE loss, 
gene ID prediction

None Cell clustering, 
trajectory 
inference

SpaFormer28 Spatial 
transcriptomics

None Cells as tokens, value 
projection

Encoder Modified MLM 
with MSE loss, 
gene expression 
prediction

Gene expression 
imputation

Cell clustering

scFoundation39 scRNA-seq 50 million/
cross-tissue, 
human, disease 
and nondisease

Value projection Other: two 
encoders

Modified MLM 
with MSE loss, 
gene expression 
prediction

Drug response 
prediction, genetic 
perturbation effect 
prediction

Read depth 
enhancement, 
cell clustering

CellLM96 scRNA-seq 1.8 million/
cross-tissue, 
human, disease 
and nondisease

Value categorization Encoder Contrastive loss, 
MLM with CE loss

Nondisease versus 
cancer prediction, cell 
type annotation, drug 
response prediction

None

scCLIP97 scRNA-seq, 
scATAC-seq

377,000/
cross-tissue, 
human fetal

Value projection Encoder Contrastive loss, 
CE matching 
modalities

None Multimodal 
embedding

GenePT70 scRNA-seq Natural language Other, embedding 
from LLM

Closed source Closed source Gene function 
prediction

Cell clustering, 
GRN inference

GeneCompass26 scRNA-seq 126 million/
cross-tissue, 
human and 
mouse, disease 
and nondisease

Ordering: rank based Other: two 
encoders

MLM with CE and 
MSE loss, gene ID 
and expression 
prediction

Cell type annotation, 
drug response 
prediction, gene 
function prediction

Cross-species 
integration, 
genetic 
perturbation 
effect prediction, 
GRN inference

CellPLM27 scRNA-seq, 
spatial 
transcriptomics

11 million/
cross-tissue, 
human, disease 
and nondisease

Cells as tokens, value 
projection

Encoder Modified MLM 
with MSE loss and 
Kullback–Leibler 
divergence losses, 
gene expression 
prediction

Gene expression 
imputation, cell type 
annotation, genetic 
perturbation effect 
prediction

Cell clustering, 
scRNA-seq 
denoising

The categories used in the table are defined in sections ‘Overview of the transformer architecture’ and ‘Applications of single-cell transformers’. CE and MSE denote cross entropy  
and mean squared error loss, respectively. CITE-seq denotes joint transcriptomic and surface protein single-cell data. The extended table is available at  
https://github.com/theislab/single-cell-transformer-papers.
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in organ-specific cell type annotation, logistic regression is often on 
par with more complex nonlinear predictors41,60,61. In cross-organ cell 
type annotation, a nontransformer model, scTab, was shown to out-
perform both non-deep learning state-of-the-art cell type predictors 
and scGPT62. Moreover, while the abundance of data with cell type 
annotations facilitates evaluation on cell type annotation tasks, the 
annotations across datasets often do not agree with one another and 
the reliability of cell type annotations has been called into question38. 
Hence, the task of cell type annotation may not be a reliable measure 
of a model’s performance.

Spatial omics
Transformers have also shown promise in spatial omics applica-
tions27,28,36. In this work, we consider only models that are applied 
directly to spatial omics data, excluding those that work on slide images. 
Nicheformer showed promising results in spatial neighborhood cell 
density prediction and neighborhood composition prediction. Further-
more, it enabled transfer learning between spatial and RNA-seq assays, 
allowing prediction of the spatial context of dissociated cells based 
on their gene expression63. scGPT36, SpaFormer28 and CellPLM27 were 
shown to be effective at the task of spatial transcriptomic gene expres-
sion imputation, but only SpaFormer and CellPLM process multiple 
cells (instead of genes) at a time to model intercellular relationships. 
These two are also the only models at the time of writing that include 
spatial information in the model input, using positional encodings to 
encode cells’ spatial coordinates. In addition, CellPLM performs well 
at denoising scRNA-seq data by leveraging the expression of similar 
cells within the same tissue. The rapid growth of the field of spatial 
transcriptomics64,65 and the ability of transformers to parse spatial 
coordinates in other domains7 make the integration of these technolo-
gies a promising frontier.

LLMs for single-cell analysis
In addition to transformers being trained on molecular data, there 
have been efforts to model single-cell data using transformers trained 
on text, that is, large language models (LLMs). Note that we restrict 
LLM to the context of modeling natural language, while some sources 
use the term to describe any transformer on sequential data. Some 
methods use language models directly, while others encode molecular 
data as text for further fine-tuning. Such approaches have been moti-
vated by the success of LLMs such as GPT-4 (ref. 66), which is reported 
to be able to solve diverse and difficult tasks in various domains67. 
GPT-4, having been trained on general language datasets, exhibits 
promise in cell type annotation68 and various other biomedical tasks69 
without task-specific training. Moreover, embeddings from general-
ist LLMs have been shown to be useful for certain single-cell tasks, 
including batch integration, cell type classification and gene prop-
erty prediction70, which suggests that LLMs encode some single-cell 
knowledge. Early attempts have tried to build on LLM capabilities 
by fine-tuning pretrained language models on single-cell data after 
converting single-cell omics data to text23. Models that integrate text 
with transcriptomic data, such as Cell2Sentence23, typically repre-
sent a cell’s transcriptomic profile as a sequence of genes ordered 
by their expression level. This does not differ from the rank-ordering 
method for embedding transcriptomic data but allows for additional 
textual cell descriptors. In addition to integrating text with omics 
data, a specialized multimodal transformer that, after pretraining on 
general text, was trained on biomedical text, imaging and genomic 
data demonstrated significant performance improvement over its 
generalist counterpart in multiple biomedical tasks71. These results 
show promise in leveraging generalist language models as a founda-
tion for specialized single-cell models. Yet, the challenge of effec-
tively merging textual data and text-centric models with single-cell 
omics data, which significantly differs from natural language,  
remains open.

Foundation models
A ‘foundation model’ is a recently coined term describing a category 
of artificial intelligence (AI) systems trained on large, diverse data-
sets to learn patterns without human annotations6. Training on large 
unannotated datasets allows them to be adapted to various tasks with 
much less data than would be needed to train a model from scratch. 
Transformers are the architecture of choice for foundation models. 
Some examples are the BERT4 and GPT-4 (ref. 66) natural language 
transformer architectures, Whisper8 for speech recognition and Vision 
Transformer7 for image recognition. Recent work has explored the 
possibility of developing foundation models using alternative architec-
tures, including graph neural networks (GNNs)72,73. GNNs show prom-
ise in applications such as modeling GRNs, molecule structures74 and 
intercellular communication in spatial transcriptomics75. However, 
they have yet to demonstrate the scalability across large and diverse 
datasets that transformers have achieved. Transformers are suitable 
when the relationships between entities are unknown, as is common in 
biological data modeling. While models combining the advantages of 
transformers with GNNs are under active development, the flexibility 
and efficient implementations of transformers have made them the 
dominant architecture for the development of foundation models6,72,73.

A single-cell foundation model is a machine learning model trained 
on a large quantity of data that can be effectively adapted to a wide 
range of applications relevant for single-cell studies. A number of 
recent single-cell models have been pretrained on large datasets and 
are claimed to be foundation models, including autoencoder-based 
SCimilarity14 and multiple transformers20,26,39. GeneCompass26, with its 
12-layer transformer architecture and over 100 million parameters, is 
notable for using the largest pretraining dataset so far, comprising over 
120 million single-cell transcriptomes. On the other hand, UCE55 trained 
on 36 million cells is the largest single-cell transformer as of writing 
in terms of reported parameter count, with 650 million parameters 
across 33 layers. In comparison, these models are still much smaller 
than NLP models. PaLM, for example, has 112 layers and about 540 
billion parameters76. Despite the scale of the single-cell transformers 
and their training datasets, independent benchmarks suggest that 
the current single-cell foundation models are often outperformed by 
simpler, task-specific models that require significantly less training 
data and compute resources36,41,77.

Current limitations and evaluation of model 
capabilities
While the promise of transformers in single-cell genomics is clear, the 
field is currently young and facing a series of limitations. For example, 
it is unclear where the sequential structure needed for straight-forward 
transformer application is coming from. Current solutions such as 
rank ordering of genes to transform tabular data into sequences17,21 or 
ordering genes along their position on chromosomes55 are probably 
preliminary.

To discern the added value of transformers in single-cell omics, 
a rigorous evaluation is essential. This would help to answer multiple 
methodological questions, such as what the optimal data encoding, 
architecture and training procedure are, and to assess the utility of 
transformers in biologically relevant single-cell applications that 
extend beyond existing methods. For instance, while transformers 
may be trained on vast datasets, it is crucial to ascertain whether 
nontransformer-based approaches, when trained on similar datasets 
and with similar compute resources, yield comparable or superior 
results. Thus, multiple benchmarks of transformer models have been 
performed36,41,77–79. Preliminary results suggest that, while single-cell 
transformers may be able to generalize across datasets, state-of-the-art 
task-specific models as well as simpler models such as logistic regres-
sion often outperform them, even on tasks with few annotations, and 
that zero-shot performance of the current transformers is question-
able36,41,77. Notably, SCimilarity14, despite its autoencoder architecture, 
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has shown potential in integrating diverse single-cell datasets after 
training on large datasets. Therefore, transformers cannot yet be 
viewed as the method of choice for the future.

Despite the importance of model evaluation, there are multi-
ple issues in the design of the existing benchmarks. First, a recurring 
problem is the inadequate evaluation of competing models. Com-
parisons often skip hyperparameter tuning of the competing models 
and overlook state-of-the-art models, such as XGBoost80 and logistic 
regression for classification or principal-component analysis81 and 
VAEs such as scVI13 for dimensionality reduction and representation 
learning. All models that can leverage pretraining would need to be 
pretrained on the same dataset. Second, many biological tasks, such as 
prediction of perturbation effects, do not have universally recognized 
metrics and benchmarks. Third, the lack of evaluation on large and 
diverse datasets may be an issue when assessing the performance of 
models that are claimed to have attained broad single-cell capabili-
ties. Such a large-scale benchmark has recently been proposed for cell 
type classification62. Fourth, dataset leakage, especially in large-scale 
single-cell models, is an emerging concern that warrants attention. 
Namely, because the models leverage large datasets in the pretraining 
phase, it may be hard to ensure that the data that models are evaluated 
on, or other highly similar datasets, have not previously been seen and 
memorized by the model. Lastly, benchmarking itself is complicated 
due to resource intensity and a lack of easy access to the datasets, code 
and model weights used for model training and evaluation in original 
publications.

Aside from models that model omics measurements directly, the 
evaluation of generative language models on single-cell tasks poses 
unique challenges. Namely, the output of these models may not con-
form to the desired format due to their training on text generation. 
Moreover, many state-of-the-art language models are not publicly 
available and results obtained through the provided interfaces may 
change over time23,68. Therefore, the evaluation of LLMs on single-cell 
tasks warrants special adaptations.

Currently, discrepancies in the evaluation of single-cell trans-
formers contribute to a confusing picture. Therefore, the field would 
benefit from comprehensive evaluations, as is commonly done in other 
domains82. A transparent public leaderboard open to contributions 
would further increase the credibility of model comparisons83.

Conclusions and outlook
We have reviewed current approaches for transformers in single-cell 
genomics. Here we will close with a few points on upcoming topics.

Toward a multimodal foundation model of cellular variation
Ongoing efforts aim to build comprehensive reference atlases of all 
human and model organism cells84–86. Nonetheless, despite the grow-
ing volume of single-cell data, the issue of jointly modeling cells across 
different studies, tissues, conditions and species remains unresolved. 
At present, the predominant strategy for dataset integration creates 
low-dimensional, batch-corrected cell embeddings for selected data-
sets of interest, often confined to a single organ and a single species, 
and relies on the learned representations for downstream analyses87,88. 
Single-cell transformers offer an alternative approach. They have the 
capacity for pretraining on a diverse array of datasets, potentially 
encompassing all of the generated single-cell omics data across modali-
ties. Joint modeling of omics data, including from transcriptomics, 
epigenomics, proteomics and spatial organization of cells, could allow 
transformers to accurately encode cell biology by integrating the dif-
ferent views that each omics modality offers. A multiomics view of 
cells is necessary for a fundamental understanding of the molecular 
hierarchy from genome to phenome. For example, joint profiling with 
epigenomics and transcriptomics enabled new insights into the role 
of DNA methylation in cell differentiation89. While current single-cell 
transformers integrate multiple modalities, they use only a small 

number of studies with readouts other than scRNA-seq. Therefore, 
development of a large-scale multiomic transformer remains an aspi-
ration for future research20. Diverse input and pretraining techniques 
could capture biological phenomena at different scales, including at 
the subcellular, cellular and tissue level, making the transformer a 
viable architecture for the development of a single-cell foundation 
model. Such a multimodal foundation model may have the poten-
tial to accurately model the gene regulatory structure of a cell as well 
as interactions on the tissue level in a true multiscale fashion. How-
ever, multimodal foundation models present a significant challenge 
in terms of computational resource requirements, as incorporating 
more modalities may require longer input sequences. To mitigate the 
memory and computational demands of increased context length, 
models may adopt sparse data representation techniques, such as 
considering only nonzero features or grouping the raw omic features 
into meaningful units, such as pathways.

An ongoing general discussion in the wider machine learning 
community is whether the future will hold a single multimodal model, 
broadly applicable across all domains and use cases. Such a ‘universal 
foundation model’ would link all kinds of modalities, including text, 
images and audio, across domains—with examples such as general 
conversations, medical diagnosis and scientific experiments—all inter-
faced by natural language. An alternative to this are individual domain 
or even modality-specific foundation models trained on massive but 
domain-specific datasets. Recent proposals of multimodal biomedi-
cal foundation models90 focus on the latter, and the first examples 
have also emerged in single-cell genomics and many other fields91–93. 
In parallel, work on textual representations23 of cellular profiles could 
potentially contribute to the development of a universal text-based 
foundation model across multiple scientific areas, including biology, 
medicine and chemistry.

Modeling the perturbation landscape
Recent perspectives on cell representation underscore the necessity to 
go beyond using a snapshot of a cell’s molecular features to describe a 
cell, advocating for capturing the cell’s responses to perturbation58,94. 
As perturbation datasets become more comprehensive, we expect that 
future single-cell transformers will be pretrained on rich perturba-
tion screens in addition to the currently used omics snapshots, which 
would allow us to get closer to a holistic understanding of cellular 
states and GRNs94. If generative transformers were to achieve such a 
detailed understanding of single-cell data, they could become universal 
single-cell data simulators. Such models could be used to synthesize 
desired cell omics data for specified cell characteristics95.

Conclusion
Application of transformers in single-cell omics holds great potential 
but warrants caution until a thorough evaluation is in place. Currently, it 
is unclear whether transformers are the right architecture to model non-
sequential omics data and whether they surpass existing approaches 
in the domain. Nevertheless, unlike other machine learning models, 
transformers have demonstrated improvements on a wide range of 
tasks after pretraining on large, diverse and unannotated datasets. 
Effective self-supervised pretraining makes them likely to benefit from 
the growing availability of large omics datasets and potentially appli-
cable to a wide range of data and downstream tasks. However, while 
the aspiration to develop a general, foundational transformer that 
encapsulates all known single-cell biology is compelling, such a model 
is far from being realized. Despite transformers’ success across diverse 
modalities in other fields, their applications to modeling single-cell 
omics data are still emerging. Combined with general work regarding 
metrics for interpreting learned models and their attention scores, it 
will be exciting to follow developments in this rapidly growing field. 
An extended list of categorized single-cell transformer papers can be 
found at https://github.com/theislab/single-cell-transformer-papers.
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