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Abstract. Vision Transformers (ViTs) and Swin Transformers (Swin)
are currently state-of-the-art in computational pathology. However, do-
main experts are still reluctant to use these models due to their lack of
interpretability. This is not surprising, as critical decisions need to be
transparent and understandable. The most common approach to under-
standing transformers is to visualize their attention. However, attention
maps of ViTs are often fragmented, leading to unsatisfactory explana-
tions. Here, we introduce a novel architecture called the B-cos Vision
Transformer (BvT) that is designed to be more interpretable. It replaces
all linear transformations with the B-cos transform to promote weight-
input alignment. In a blinded study, medical experts clearly ranked BvTs
above ViTs, suggesting that our network is better at capturing biomed-
ically relevant structures. This is also true for the B-cos Swin Trans-
former (Bwin). Compared to the Swin Transformer, it even improves the
F1-score by up to 4.7% on two public datasets.
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1 Introduction

Making artificial neural networks more interpretable, transparent, and trust-
worthy remains one of the biggest challenges in deep learning. They are often
still considered black boxes, limiting their application in safety-critical domains
such as healthcare. Histopathology is a prime example of this. For years, the
number of pathologists has been decreasing while their workload has been in-
creasing [23]. Consequently, the need for explainable computer-aided diagnostic
tools has become more urgent.

As a result, research in explainable artificial intelligence is thriving [20]. Much
of it focuses on convolutional neural networks (CNNs) [13]. However, with the
⋆ Equal contribution.
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Fig. 1. Attention maps of ViT and BvT (ours) on the test set of (a) NCT-CRC-
HE-100K, (b) TCGA-COAD-20X, and (c) Munich-AML-Morphology. BvT attends to
various diagnostically relevant features such as cancer tissue, cells, and nuclei.

rise of transformers [31] in computational pathology, and their increasing appli-
cation to cancer classification, segmentation, survival prediction, and mutation
detection tasks [26,33,32], the old tools need to be reconsidered. Visualizing filter
maps does not work for transformers, and Grad-CAM [30] has known limitations
for both CNNs and transformers.

The usual way to interpret transformer-based models is to plot their multi-
head self-attention scores [8]. But these often lead to fragmented and unsat-
isfactory explanations [10]. In addition, there is an ongoing controversy about
their trustworthiness [5]. To address these issues, we propose a novel family of
transformer architectures based on the B-cos transform originally developed for
CNNs [7]. By aligning the inputs and weights during training, the models are
implicitly forced to learn more biomedically relevant and meaningful features
(Figure 1). Overall, our contributions are as follows:

• We propose the B-cos Vision Transformer (BvT) as a more explainable al-
ternative to the Vision Transformer (ViT) [12].

• We extensively evaluate both models on three public datasets: NCT-CRC-
HE-100K [18], TCGA-COAD-20X [19], Munich-AML-Morphology [25].

• We apply various post-hoc visualization techniques and conduct a blind
study with domain experts to assess model interpretability.

• We derive the B-cos Swin Transformer (Bwin) based on the Swin Trans-
former [21] (Swin) in a generalization study.
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Fig. 2. The model architecture of ViT and BvT (ours). We replace all linear transfor-
mations in ViT with the B-cos transform and remove all ReLU activation functions.

2 Related Work

Explainability, interpretability, and relevancy are terms used to describe the
ability of machine learning models to provide insight into their decision-making
process. Although these terms have subtle differences, they are often used inter-
changeably in the literature [15].

Recent research on understanding vision models has mostly focused on attri-
bution methods [20,13], which aim to identify important parts of an image and
highlight them in a saliency map. Gradient-based approaches like Grad-CAM [30]
or attribution propagation strategies such as Deep Taylor Decomposition [27]
and LRP [6] are commonly used methods. Perturbation-based techniques, such
as SHAP [22], are another way to extract salient features from images. Besides
saliency maps, one can also visualize the activations of the model using Activa-
tion Maximization [14].

However, it is still controversial whether the above methods can correctly
reflect the behavior of the model and accurately explain the learned function
(model-faithfulness [17]). For example, it has been shown that some saliency
maps are independent of both the data on which the model was trained and
the model parameters [2]. In addition, they are often considered unreliable for
medical applications [4]. As a result, inherently interpretable models have been
proposed as a more reliable and transparent solution. The most recent contribu-
tion are B-cos CNNs [7], which use a novel nonlinear transformation (the B-cos
transformation) instead of the traditional linear transformation.

Compared to CNNs, there is limited research on understanding transformers
beyond attention visualization [10]. Post-hoc methods such as Grad-CAM [30]
and Activation Maximization [14] used for CNNs can also be applied to trans-
formers. But in practice, the focus is on visualizing the raw attention values (see
Attention-Last [16], Integrated Attention Maps [12], Rollout [1], or Attention
Flow [1]). More recent approaches such as Generic Attention [9], Transformer
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Fig. 3. Rollout, Attention-Last (Attn-Last), Grad-CAM, LRP, LRP of the second layer
(LRP-Second), LRP of the last layer (LRP-Last), and Transformer Attribution (TA)
applied on the test set of Munich-AML-Morphology. The image shows an eosinophil,
which is characterized by its split, but connected nucleus, large specific granules (pink
structures in the cytoplasm), and dense chromatin (dark spots inside the nuclei) [29].
Across all visualization techniques, BvT focuses on these exact features unlike ViT.

Attribution [10], and Conservative Propagation [3] go a step further and intro-
duce novel visualization techniques that better integrate the attention modules
with contributions from different parts of the network. Note that these methods
are all post-hoc methods applied after training to visualize the model’s reasoning.

On the other hand, the ConceptTransformer [28], achieves better explainabil-
ity by cross-attending user-defined concept tokens in the classifier head during
training. More recently, HIPT [11] combines multi-scale images and DINO [8]
pre-training to learn hierarchical visual concepts in a self-supervised fashion.
Unlike all of these methods, interpretability is already an integral part of our
architecture. Therefore, these methods can be easily applied to our models. In
Figure 3 and Figure 6, we show that the B-Cos Transformer produces superior
feature maps over various post-hoc approaches – suggesting that our architecture
does indeed learn human-plausible features that are independent of the specific
visualization technique used.

3 Methods

We focus on the original Vision Transformer [12]: The input image is divided
into non-overlapping patches, flattened, and projected into a latent space of di-
mension d. Class tokens [cls] are then prepended to these patch embeddings. In
addition, positional encodings [pos] are added to preserve topological informa-
tion. In the scaled dot-product attention [31], the model learns different features
(query Q, key K, and value V ) from the input vectors through a linear transfor-
mation. Both query and key are then correlated with a scaled dot-product and
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Table 1. F1-score, top-1, and top-3 accuracy from the test set of NCT-CRC-HE-
100K, Munich-AML-Morphology, and TCGA-COAD-20X. We compare ViT and BvT
(ours) trained with categorical cross-entropy (CCE) and binary cross-entropy (BCE)
loss using two model configurations: T/8 and S/8 (see Section 4).

NCT Munich TCGA
Models F1 Top-1 Top-3 F1 Top-1 Top-3 F1 Top-1 Top-3
ViT-T/8CCE 90.9 92.7 99.1 57.3 90.1 98.9 57.1 78.8 94.4
ViT-S/8CCE 89.2 91.1 99.5 56.3 93.1 99.0 56.3 78.6 92.9
BvT-T/8CCE 88.8 91.1 99.3 54.0 87.1 98.6 61.0 77.4 93.1
BvT-S/8CCE 88.4 90.1 99.4 52.9 89.8 98.6 60.2 76.3 92.9

ViT-T/8BCE 90.0 91.4 98.4 54.8 90.0 99.0 53.6 79.6 93.9
ViT-S/8BCE 90.2 92.2 99.3 55.4 92.8 99.0 54.1 77.0 88.9
BvT-T/8BCE 86.7 90.1 98.5 51.1 83.5 97.9 57.7 79.8 93.4
BvT-S/8BCE 87.5 90.4 99.4 52.4 85.0 98.3 59.0 74.5 88.9

normalized with a softmax. These self-attention scores are then used to weight
the value by importance:

Attention(Q,K, V ) = softmax
(
QKT

√
d

)
V. (1)

To extract more information, this process is repeated h times in parallel
(multi-headed self-attention). Each self-attention layer is followed by a fully-
connected layer consisting of two linear transformations and a ReLU activation.

We propose to replace all linear transforms in the original ViT (Figure 2)

Linear(x,w) = wTx = ∥w∥∥x∥c(x,w), (2)

c(x,w) = cos(∠(x,w)), ∠...angle between vectors (3)

with the B-cos* transform [7]

B-cos*(x;w) = ∥ŵ∥︸︷︷︸
=1

∥x∥|c(x, ŵ)|B × sgn(c(x, ŵ)), (4)

where B ∈ N. Similar to [7], an additional nonlinearity is applied after each B-
cos* transform. Specifically, each input is processed by two B-cos* transforms,
and the subsequent MaxOut activation passes only the larger output. This en-
sures that only weight vectors with higher cosine similarity to the inputs are
selected, which further increases the alignment pressure during optimization.
Thus, the final B-cos transform is given by

B-cos(x;w) = max
i∈{1,2}

B-cos*(x;wi). (5)

To see the significance of these changes, we look at Equation 4 and derive

∥ŵ∥ = 1 ⇒ B-cos*(x;w) ≤ ∥x∥. (6)
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Fig. 4. We compute the central kernel alignment (CKA), which measures the repre-
sentation similarity between each hidden layer. Since the B-cos transform aligns the
weights with the inputs, BvT (ours) achieves a more uniform representation structure
compared to ViT (values closer to 1). When trained with the binary cross-entropy loss
(BCE) instead of the categorical cross-entropy loss (CCE), the alignment is higher.

Since |c(x, ŵ)| ≤ 1, equality is only achieved if x and w are collinear, i.e., if they
are aligned. Intuitively, this forces the weight vector to be more similar to the
input. Query, key, and value thus capture more patterns in an image – which the
attention mechanism can then attend to. This can be shown visually by plotting
the centered kernel alignment (CKA). It measures the similarity between layers
by comparing their internal representation structure. Compared to ViTs, BvTs
achieve a highly uniform representation across all layers (Figure 4).

4 Implementation and Evaluation Details

Task-based evaluation: Cancer classification and segmentation is an im-
portant first step for many downstream tasks such as grading or staging. There-
fore, we choose this problem as our target. We classify image patches from the
public colorectal cancer dataset NCT-CRC-HE-100K [18]. We then apply our
method to TCGA-COAD-20X [19], which consists of 38 annotated slides from
the TCGA colorectal cancer cohort, to evaluate the effectiveness of transfer
learning. This dataset is highly unbalanced and not color normalized compared

Fig. 5. In a blinded study, domain experts ranked models (lower is better) based on
whether the models focus on biomedically relevant features that are known in the
literature to be important for diagnosis. We then performed the Conover post-hoc test
after Friedman with adjusted p-values according to the two-stage Benjamini-Hochberg
procedure. BvT ranks above ViT with p<0.1 (underlined) and p<0.05 (bold).
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Table 2. Results of Swin and Bwin (ours) experiments on the test set of NCT-CRC-HE-
100K and Munich-AML-Morphology. We report F1-score, top-1, and top-3 accuracy.

NCT AML
Models F1 Top-1 Top-3 F1 Top-1 Top-3
Swin-TCCE 89.1 92.1 99.0 48.2 94.1 98.8
Swin-TCCE (modified) 89.8 92.0 99.6 49.1 94.2 98.9
Bwin-TCCE 91.5 93.5 99.5 53.0 93.9 98.6
Bwin-TCCE (modified) 92.5 94.3 99.6 53.3 93.8 98.7

to the first dataset. Additionally, we demonstrate that the B-cos Vision Trans-
former is adaptable to domains beyond histopathology by training the model on
the single white blood cell dataset Munich-AML-Morphology [25], which is also
highly unbalanced and also publicly available.

Domain-expert evaluation: Our primary objective is to develop an exten-
sion of the Vision Transformer that is more transparent and trusted by medical
professionals. To assess this, we propose a blinded study with four steps: (i)
randomly selecting images from the test set of TCGA-COAD-20X (32 samples)
and Munich-AML-Morphology (56 samples), (ii) plotting the last-layer attention
and transformer attributions for each image, (iii) anonymizing and randomly
shuffling the outputs, (iv) submitting them to two domain experts in histology
and cytology for evaluation. Most importantly, we show them all the available
saliency maps without pre-selecting them to get their unbiased opinion.

Implementation details: In our experiments, we compare different vari-
ants of the B-cos Vision Transformer and the Vision Transformer. Specifically,
we implement two versions of ViT: ViT-T/8 and ViT-S/8. They only differ in
parameter size (5M for T models and 22M for S models) and use the same patch
size of 8. All BvT models (BvT-T/8 and BvT-S/8) are derivatives of the cor-
responding ViT models. The B-cos transform used in the BvT models has an
exponent of B = 2. We use AdamW with a cosine learning rate scheduler for op-
timization and a separate validation set for hyperparameter selection. Following
the findings of [7], we add [1−r, 1−g, 1−b] to the RGB channels [r, g, b] of BvT.
This allows us to encode each pixel with the direction of the color channel vector,
forcing the model to capture more color information. Furthermore, we train mod-
els with two different loss functions: the standard categorical cross-entropy loss
(CCE) and the binary cross-entropy loss (BCE) with one-hot encoded entries.
It was suggested in [7] that BCE is a more appropriate loss for B-cos CNNs. We
explore whether this is also true for transformers in our experiments. Additional
details on training, optimization, and datasets can be found in the Appendix.

5 Results and Discussion

Task-based evaluation: When trained from scratch, all BvT models un-
derperform their ViT counterparts by about 2% on NCT-CRC-HE-100K and 3%
on Munich AML-Morphology (Table 1). However, when we use the pre-trained
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Fig. 6. Attention maps of the last layer of the modified Swin and Bwin (ours). Bwin
focuses on cells and nuclei, while Swin mostly focuses on a few spots.

weights from NCT-CRC-HE-100K and transfer them to TCGA-COAD-20X for
fine-tuning, BvT outperforms ViT by up to 5% (Table 1). We believe this is
due to the simultaneous optimization of two objectives: classification loss and
weight-input alignment. With a pre-trained model, BvT is likely to focus more
on the former. In addition, we observe that models trained with BCE tend to
perform worse than those trained with CCE. However, their saliency maps seem
to be more interpretable (see Figure 3).

Domain-expert evaluation: The results show that BvTs are significantly
more trustworthy than ViTs (p < 0.05). This indicates that BvT consistently
attends to biomedically relevant features such as cancer cells, nuclei, cytoplasm,
or membrane [24] (Figure 5). In many visualization techniques, we see that BvT,
unlike ViT, focuses exclusively on these structures (Figure 3). In contrast, ViT
attributes high attention to seemingly irrelevant features, such as the edges of
the cells. A third expert points out that ViT might overfit certain patterns in
this dataset, which could aid the model in improving its performance.

6 Generalization to Other Architectures

We aim to explore whether the B-cos transform can enhance the interpretability
of other transformer-based architectures. The Swin Transformer (Swin) [21] is a
popular alternative to ViT (e.g., it is currently the SOTA feature extractor for
histopathological images [33]). Swin utilizes window attention and feed-forward
layers. In this study, we replace all its linear transforms with the B-cos transform,
resulting in the B-cos Swin Transformer (Bwin). However, unlike BvT and ViT,
it is not obvious how to visualize the window attention. Therefore, we introduce
a modified variant here that has a regular ViT / BvT block in the last layer.

In our experiments (Table 2), we observe that Bwin outperforms Swin by
up to 2.7% and 4.8% in F1-score on NCT-CRC-HE-100K and Munich-AML-
Morphology, respectively. This is consistent with the observations made in Sec-
tion 5: When BvT is trained from scratch, the model faces a trade-off between
learning the weight and input alignment and finding the appropriate inductive
bias to solve the classification task. By reintroducing many of the inductive biases
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of CNNs through the window attention in the case of Swin or transfer learning
in the case of BvT, the model likely overcomes this initial problem.

Moreover, we would like to emphasize that the modified models have no
negative impact on the model’s performance. In fact, all metrics remain similar
or even improve. The accumulated attention heads (we keep 50% of the mass)
demonstrate that Bwin solely focuses on nuclei and other cellular features (Fig-
ure 6). Conversely, Swin has very sparse attention heads, pointing to a few spots.
Consistent with the BvT vs ViT blind study, our pathologists also agree that
Bwin is more plausible than Swin (p < 0.05).

7 Conclusion

We have introduced the B-cos Vision Transformer (BvT) and the B-cos Swin
Transformer (Bwin) as two alternatives to the Vision Transformer (ViT) and
the Swin Transformer (Swin) that are more interpretable and explainable.
These models use the B-cos transform to enforce similarity between weights
and inputs. In a blinded study, domain experts clearly preferred both BvT and
Bwin over ViT and Swin. We have also shown that BvT is competitive with
ViT in terms of quantitative performance. Moreover, using Bwin or transfer
learning for BvT, we can even outperform the original models.

Acknowledgements. M.T. and S.J.W. are supported by the Helmholtz As-
sociation under the joint research school "Munich School for Data Science".

References

1. Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. In: 58th ACL.
pp. 4190–4197. Association for Computational Linguistics (2020)

2. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity
checks for saliency map. In: 32th NeurIPS. pp. 1–11. Curran Associates, Inc. (2018)

3. Ali, A., Schnake, T., Eberle, O., Montavon, G., Müller, K.R., Wolf, L.: XAI
for transformers: Better explanations through conservative propagation. In: 39th
ICML. pp. 435–451. PMLR (2022)

4. Arun, N., Gaw, N., Singh, P., Chang, K., Aggarwal, M., Chen, B., Hoebel, K.,
Gupta, S., Patel, J., Gidwani, M., Adebayo, J., Li, M.D., Kalpathy-Cramer, J.:
Assessing the trustworthiness of saliency maps for localizing abnormalities in med-
ical imaging. Radiology: Artificial Intelligence 3(6), 1–12 (11 2021)

5. Bibal, A., Cardon, R., Alfter, D., Wilkens, R., Wang, X., François, T., Watrin,
P.: Is attention explanation? an introduction to the debate. In: 60th ACL. pp.
3889–3900. Association for Computational Linguistics (2022)

6. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R., Samek, W.: Layer-wise
relevance propagation for neural networks with local renormalization layers. In:
25th International Conference on Artificial Neural Networks (ICANN). pp. 63–71.
Springer Nature (2016)

7. Böhle, M., Fritz, M., Schiele, B.: B-cos networks: Alignment is all we need for
interpretability. In: 2022 IEEE/CVF CVPR. pp. 10329–10338. IEEE (2022)



10 M. Tran et al.

8. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: 2021 IEEE/CVF
ICCV. pp. 9650–9660. IEEE (2021)

9. Chefer, H., Gur, S., Wolf, L.: Generic attention-model explainability for interpret-
ing bi-modal and encoder-decoder transformers. In: 2021 IEEE/CVF CVPR. pp.
397–406. IEEE (2021)

10. Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond attention visu-
alization. In: 2021 IEEE/CVF CVPR. pp. 782–791. IEEE (2021)

11. Chen, R.J., Chen, C., Li, Y., Chen, T.Y., Trister, A.D., Krishnan, R.G., Mahmood,
F.: Scaling vision transformers to gigapixel images via hierarchical self-supervised
learning. In: 2022 IEEE/CVF CVPR. pp. 16144–16155. IEEE (2022)

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An image is worth 16x16 words: Transformers for image recognition at scale. In:
9th ICLR. pp. 1–21. ICLR (2021)

13. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine learning. Commu-
nications of the ACM 63(1), 68–77 (01 2020)

14. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features
of a deep network. Technical Reports University of Montreal 1341(3), 1 (2009)

15. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: An overview of interpretability of machine learning. In: 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA. pp.
80–89. IEEE (2018)

16. Hollenstein, N., Beinborn, L.: Relative importance in sentence processing. In: 59th
ACL and the 11th International Joint Conference on Natural Language Processing
(IJCNLP). pp. 141–150. Association for Computational Linguistics (2021)

17. Jacovi, A., Goldberg, Y.: Towards faithfully interpretable NLP systems: How
should we define and evaluate faithfulness? In: Proceedings of the 58th ACL. pp.
4198–4205. 2020 (Association for Computational Linguistics)

18. Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A.,
Gaiser, T., Marx, A., Valous, N.A., Ferber, D., Jansen, L., Reyes-Aldasoro, C.C.,
Zörnig, I., Jäger, D., Brenner, H., Chang-Claude, J., Hoffmeister, M., Halama, N.:
Predicting survival from colorectal cancer histology slides using deep learning: A
retrospective multicenter study. PLOS Medicine 16(1), 1–22 (01 2019)

19. Kirk, S., Lee, Y., Sadow, C.A., Levine, S., Roche, C., Bonaccio, E., Filiippini, J.:
Radiology data from the cancer genome atlas colon adenocarcinoma [tcga-coad]
collection. the cancer imaging archive. Tech. rep., University of North Carolina,
Brigham & Women’s Hospital Boston, Roswell Park Cancer Institute (2016)

20. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable ai: A review of
machine learning interpretability methods. Entropy 23(1), 1–45 (12 2020)

21. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: 2021 IEEE/CVF
ICCV. pp. 9992–10002. IEEE (2021)

22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: 31th NeurIPS. pp. 4765–4774. Curran Associates, Inc. (2017)

23. Märkl, B., Füzesi, L., Huss, R., Bauer, S., Schaller, T.: Number of pathologists in
germany: comparison with european countries, usa, and canada. Virchows Archiv
478, 335–341 (07 2021)

24. Matek, C., Krappe, S., Münzenmayer, C., Haferlach, T., Marr, C.: Highly accurate
differentiation of bone marrow cell morphologies using deep neural networks on a
large image data set. Blood 138(20), 1917–1927 (11 2021)



B-Cos Transformer 11

25. Matek, C., Schwarz, S., Spiekermann, K., Marr, C.: Human-level recognition of
blast cells in acute myeloid leukemia with convolutional neural networks. Nature
Machine Intelligence 1(11), 538–544 (11 2019)

26. Matsoukas, C., Haslum, J.F., Sorkhei, M., Söderberg, M., Smith, K.: What makes
transfer learning work for medical images: Feature reuse & other factors. In: 2022
IEEE/CVF CVPR. pp. 9225–9234. IEEE (2022)

27. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining
nonlinear classification decisions with deep taylor decomposition. Pattern Recog-
nition 65, 211–222 (05 2017)

28. Rigotti, M., Miksovic, C., Giurgiu, I., Gschwind, T., Scotton, P.: Attention-based
interpretability with concept transformers. In: 10th ICLR. pp. 1–16. ICLR (2022)

29. Rosenberg, H.F., Dyer, K.D., Foster, P.S.: Eosinophils: changing perspectives in
health and disease. Nature Reviews Immunology 13(1), 9–22 (11 2013)

30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
2017 IEEE/CVF CVPR. pp. 618–626. IEEE (2017)

31. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: 31st Conference on Neural Infor-
mation Processing Systems (NIPS). p. 6000–6010. Curran Associates, Inc. (2017)

32. Wagner, S.J., Reisenbüchler, D., West, N.P., Niehues, J.M., Veldhuizen, G.P.,
Quirke, P., Grabsch, H.I., Brandt, P.A., Hutchins, G.G., Richman, S.D., et al.:
Fully transformer-based biomarker prediction from colorectal cancer histology: a
large-scale multicentric study. arXiv preprint arXiv:2301.09617 (2023)

33. Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., Han, X.:
Transformer-based unsupervised contrastive learning for histopathological image
classification. Medical Image Analysis 81(102559), 1–21 (10 2022)


	B-Cos Aligned Transformers Learn Human-Interpretable Features

