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Biologically informed deep learning to query 
gene programs in single-cell atlases

Mohammad Lotfollahi    1,2,8, Sergei Rybakov1,3,8, Karin Hrovatin1,4, 
Soroor Hediyeh-zadeh1,5, Carlos Talavera-López1,6, Alexander V. Misharin    7 & 
Fabian J. Theis    1,2,3,4 

The increasing availability of large-scale single-cell atlases has enabled the 
detailed description of cell states. In parallel, advances in deep learning 
allow rapid analysis of newly generated query datasets by mapping them 
into reference atlases. However, existing data transformations learned to 
map query data are not easily explainable using biologically known concepts 
such as genes or pathways. Here we propose expiMap, a biologically 
informed deep-learning architecture that enables single-cell reference 
mapping. ExpiMap learns to map cells into biologically understandable 
components representing known ‘gene programs’. The activity of each 
cell for a gene program is learned while simultaneously refining them and 
learning de novo programs. We show that expiMap compares favourably 
to existing methods while bringing an additional layer of interpretability 
to integrative single-cell analysis. Furthermore, we demonstrate its 
applicability to analyse single-cell perturbation responses in different 
tissues and species and resolve responses of patients who have coronavirus 
disease 2019 to different treatments across cell types.

The progress and development of experimental technologies1–4 and 
computational tools5–9 for single-cell genomics have enabled the con-
struction of atlases with millions of cells serving as high-resolution 
coordinate systems10 for biological and therapeutic discoveries11–14. 
However, leveraging existing atlases poses a computational challenge 
known as reference mapping enabling rapid integration of newly gener-
ated datasets, denoted as a query. The transfer of knowledge from the 
reference to the query allows the rapid annotation of the query data7, 
imputation of missing modalities in the query8,15 and the discovery of 
novel populations8,15.

Single-cell reference mapping is growing in popularity8,15–18 to map 
query datasets by minimal modification of the reference atlas19. Existing 
reference mapping methods embed new query data into a reference 
latent space by removing technical differences, such as batch effects 
between the reference and the query, without access to reference 

data. However, the implicitly used latent dimensions for joint data 
representation are not directly interpretable.

An important trend in machine learning is the development of 
interpretable models, for example, by adding statistical assump-
tions to learned latent spaces or including prior information from 
validated mechanisms or other data20. As the former disentanglement 
approaches have not yielded sufficiently useful latent spaces in our 
context21–23, we hypothesize that using prior information may help 
identifiability. In particular, we aim to leverage known or newly learned 
gene programs (GPs) to contextualize query data by answering various 
questions, including ‘which GPs are disturbed in a disease query data 
compared with the healthy reference?’ and ‘which biological programs 
explain a novel population in the query?’ By thus making reference map-
ping interpretable, it can move beyond mere data alignment between 
query and reference and be used for further interpretation of query 
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dimension of the latent space can be explained using a weighted com-
bination of the input, such as gene expression. This interpretability 
comes at the cost of the model’s limited capacity (for example, only 
capturing linear relationships) to fit the data. In contrast, nonlinear 
methods using deep neural networks40,41 come with a larger capacity 
at the expense of reduced model interpretability.

Here we aim to design a system that can provide biologically 
interpretable answers to queries of an integrated representation of 
multiple (denoted by N) reference single-cell datasets and custom 
GPs. These can be gene lists from existing curated databases42,43, lists 
extracted from literature44 or individually curated gene sets (Fig. 1a). 
This knowledge is transformed into a binary GP matrix, in which each 
row is a GP. Each column denotes the membership of a gene in that 
program (Methods and Fig. 1b).

We wire the network weights using the GP matrix such that each 
latent variable contributes to the reconstruction of a set of genes 
defined by the GP similar to28,30. The model receives a gene expression 
matrix from N different single-cell studies (X) and an additional vector 
for corresponding one-hot encoded study labels (S1:N) for each cell, for 
example, the experimental laboratories or sequencing technologies 
(Fig. 1c). The adopted variational autoencoder architecture7,40 leverages 
a nonlinear encoder for flexibility and a linear decoder45 for interpret-
ability. The latent space dimension chosen is equal to the number of 
GPs. The weights from each latent dimension (that is, latent GP) to 
output are programmed according to the GP matrix so that a latent GP 
can only contribute to the reconstruction of genes in a particular GP 
(denoted as ‘fixed membership’ in Fig. 1c). As annotated GPs are often 
incomplete, we allow the inclusion of other genes in each GP by apply-
ing L1 sparsity regularization to genes not initially labelled to belong 
to that GP (denoted as ‘soft membership’ in Fig. 1c). This enables the 
model to leverage the sparse selection of other genes, which helps in 
the reconstruction and therefore accounts for incomplete domain 
knowledge, to refine ontologies and pave the way towards a data-driven 
alternative means to learn GPs (see later results).

However, the number of GPs may be very large, and potentially 
redundant, and not all are relevant for every atlas. To select only inform-
ative GPs, an attention-like mechanism is implemented with a group 
lasso regularization layer in latent space (Methods), which de-activates 
GPs that are redundant or do not contribute to the reconstruction error 
of the model. The model is trained end to end and can thus be used to 
construct reference atlases with interpretable embedding dimensions, 
which we can leverage to analyse integrated datasets.

On the basis of this pre-trained, interpretable reference model, 
we propose employing transfer learning, as outlined in architectural 
surgery15 (Methods), to map new datasets into the reference. We modify 
the strategy of fine-tuning conditional weights in scArches allow-
ing the model to learn new GPs that are not included in the reference 
model. This is achieved by adding new latent space dimensions, that 
is, nodes with trainable weights in the bottleneck layer of the model 
(Fig. 1d and Methods), while keeping the rest frozen. We implement 
two ways of learning these new GPs: either by learning GPs confined 
to pre-defined genes (denoted as ‘new constrained’ in Fig. 1d) that 
were not present or those that have been de-activated in the reference 
model. In addition, the model may also learn de novo GPs as realized by 
an L1-regularized gene before capture of new variations in the query 
data without pre-defined gene sets (denoted as ‘new unconstrained’ 
in Fig. 1d). The limited learning capacity of the model at the reference 
mapping stage, due to frozen weighting, enforces an information bot-
tleneck (that is, a reduced capacity to learn and store information), 
encouraging the new nodes to learn important and potentially disen-
tangled46 sources of variations in the query data. We further employ 
the Hilbert–Schmidt independence criterion (HSIC)22,47, a kernel-based 
measure of latent variable independence47, to further enforce inde-
pendence between old and new unconstrained GPs learned during 
query optimization (Fig. 1d).

data for example, in the case of disease perturbation versus a healthy 
atlas. Currently, the standard approach for identifying biological 
programs in query cells compared with a reference atlas is to test for 
differentially expressed genes and downstream gene set enrichment. 
However, the differential expression on an atlas consisting of cells from 
an arbitrary number of studies with variable degrees of biological and 
technical heterogeneity represents a challenge for statistical analysis. 
The currently accepted best practices24,25 suggest that differential 
expression should be performed on non-integrated expression data 
and not on the corrected expression values after integration; hence, 
statistical models should account for complex experimental designs 
and adjust for batch effects, which is further hampered by modelling 
constraints such as parameter identifiability. Instead of using simpler 
non-parametric statistical tests, both biologically relevant and irrel-
evant genes may be captured, which may compromise the accuracy 
of enriched gene set terms.

Collectively, it may be useful to have interpretable embeddings 
directly associated with validatable GPs in the context of atlas-wide 
comparisons to capture the relevant biological signals while account-
ing for nonlinear batch effects. This end-to-end approach is common in 
deep learning and has been shown to outperform classical approaches 
that use sequential regularization and analysis20. Interpretable refer-
ence mapping requires incorporating domain knowledge20, such as 
curated GPs, into the representation learning model to guide inter-
pretation and exploration. Including domain knowledge to design 
‘domain-informed’ deep learning architectures has been shown to 
improve the performance on challenging prediction tasks, from 
tumour type26 to protein structure27. Earlier works proposed incor-
porating regularized linear decodes to include domain knowledge 
into autoencoders for single-cell data28, with scalable and expressive 
embeddings compared with existing factor models, such as f-scLVM29. 
Recent approaches such as VEGA30, scETM31 and pmVAE32 also feature 
variational autoencoders with linear decoders or training separate VAEs 
for each GP yet connected via a global loss in the case of pmVAE. Yet, 
accounting for the incompleteness of domain knowledge and learning 
new knowledge de novo from the data, rather than being locked into 
prior-based feature design, are not fully addressed by existing methods. 
Finally, going beyond single dataset analysis towards large-scale data 
integration and reference mapping while injecting domain knowledge 
remains challenging.

In this Technical Report, to address these challenges, we propose 
to build a machine learning system that exploits the knowledge of the 
underlying biological phenomenon for single-cell representation learn-
ing (as outlined more generally in the idea of ‘differential programs’20 
recently). We construct an ‘explainable programmable mapper’ (expi-
Map) as an interpretable conditional variational autoencoder7,33,34 that 
allows the incorporation of domain knowledge by performing ‘archi-
tecture programming’, that is, constraining the network architecture 
to ensure that each latent dimension captures the variability of known 
GPs. We apply an attention-like mechanism35 to select the relevant GPs 
for each reference dataset. This helps with the prioritization of essential 
gene sets but also allows the inclusion of genes not initially included 
in annotated GPs, thereby addressing the incomplete nature of the 
knowledge database. To identify new variations unique to the query 
data, such as disease effects, we identify de novo GPs in addition to 
the known GPs in knowledge bases by learning disentangled latent 
representations. The framework can be used to automatically identify 
and explore biological processes in normal and disease states when 
mapping new query datasets to the atlas while maintaining comparable 
integration performance to existing data integration methods.

Results
Interpretable single-cell reference mapping using expiMap
Linear methods, such as principal component analysis (PCA)36,37 or 
matrix factorization38,39, learn a representation of the data where each 
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The probabilistic representation learned by expiMap as a Bayesian 
model allows the performance of hypothesis testing on the integrated 
latent space of the query and the reference accounting for technical 
factors (Methods). The hypothesis testing is performed at the GP level, 
identifying differential GPs between two groups of cells by sampling 
from the group’s posterior distribution of the latent variables. The ratio 

between two hypothesis probabilities is reported by the Bayes factor. 
Later, we demonstrate how this ability helps to identify GPs associ-
ated with a perturbation in the query data compared with the healthy 
reference. When talking about the results of the expiMap Bayes test, 
we call the GPs ‘enriched’ if their absolute logarithmic Bayes score is 
greater than or equal to 2.3.
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Fig. 1 | Biologically informed reference mapping using expiMap.  
a,b, Domain knowledge from databases, articles and expert knowledge (a) is 
used to construct a binary matrix of GPs (b). c, The model is trained on reference 
data, received gene expression and study labels for each cell to encode a set of 
latent variables representing GPs. The GPs are pruned and enriched by the model 
using a group lasso and gene-level sparsity regularization, respectively, and fed 
into a linear decoder. The GP matrix is then used to program the neural network 
architecture by wiring the model parameters of the decoder to learn a specific 

GP for each latent dimension. d, The reference model is expanded and fine-tuned 
upon mapping query data using architecture surgery, whereas new learnable 
latent GPs are added and trained with the query data. The decoder architecture 
equals c with the difference that only highlighted weights of newly added GPs 
are trainable in the encoder and decoder. To make sure these newly learned 
unconstrained GPs do not overlap with reference GPs, we employ statistical 
independence constraints.
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Collectively, through expiMap, we propose an approach to learn-
ing interpretable, domain-aware representations of single-cell datasets 
for the integrative analysis of reference and query data. Further, we 
propose a modified version of architecture surgery that goes beyond 
pre-defined domain knowledge while retaining interpretability. This 
allows contextualizing the query data with the reference data within a 
specific GP to answer the user’s biological questions.

expiMap parses transcriptional response to IFN-β
One of the ultimate goals in building large, single-cell atlases is 
studying the effect of perturbations (for example, disease) and con-
textualizing it within a given healthy reference. To demonstrate the 
applicability of our model in this scenario, we constructed a human 
immune cell atlas from four studies of bone marrow48 and periph-
eral blood mononuclear cells (PBMCs)49–51. We then mapped a query 
PBMC dataset of samples from eight patients diagnosed with sys-
temic lupus erythematosus whose cells were either untreated (con-
trol) or treated with interferon (IFN)-β, a potent cytokine inducing a 
strong transcriptional response in immune cells52. Successful map-
ping should align untreated cells to matching cell types in the healthy 
reference while preserving the strong effect of IFN-β. The expiMap 
model trained with GPs extracted from the Reactome42,43 pathway 
knowledgebase successfully mapped the query untreated cells to the 

healthy reference while forming clusters indicative of the IFN-β-treated  
cells (Fig. 2a).

By testing between IFN-β and control conditions, we identified the 
top differential GPs, matching to previously reported GPs53,54 includ-
ing IFN-related pathways (Fig. 2b), which also separates the control 
reference and query cells from stimulated query cells (Fig. 2c). Fol-
lowing up with a cell-type-specific analysis, we identified differential 
GPs across cell types (that is, one versus all) or cell-type-specific IFN-β 
effects (that is, IFN-β versus control within a cell type). In particular, 
we detected a group of population-specific GPs that separated one cell 
type from the rest (Fig. 2d, first row). The population-specific GPs can 
be used together with perturbation-associated GPs (that is, obtained 
from IFN-β query cells versus control cells in both query and reference 
for that cell type) to resolve the heterogeneity of cell state for that cell 
type (Fig. 2d, second row; for all cell types, see Extended Data Fig. 1 
and Supplementary Figs. 1–3). We found that the general IFN GPs (for 
example, IFN signalling) are always induced in all cell types (Fig. 2e 
and Supplementary Figs. 2 and 3). In contrast, some GPs (for example, 
GPCR-related programs; their genes are provided in Supplementary 
Tables 1 and 2), including genes from the CXC chemokine family (for 
example, CXCL10), are present only in the myeloid lineage (for high-
lighted GPs, see Fig. 2e; for all extended figures, see Supplementary 
Figs. 2 and 3). Additionally, we detected carbohydrate metabolism 
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activity in CD14+ and CD16+ monocytes and dendritic cells (DCs), and 
active amino acid metabolism in CD14+ monocytes after IFN-β stimula-
tion (Supplementary Figs. 2 and 3). This is in agreement with previous 
observations in cancer and viral infection showing that amino acid, 
lipid and carbohydrate metabolic pathways contribute to the immune 
response55,56. Specifically, it is known that IFN-β engages with the amino 
acid metabolic pathway to produce polyamines and clear viral infec-
tions57. Still, a direct link to myeloid cells, as revealed by expiMap, has 
not been reported elsewhere.

Differential expression analysis on atlases is challenging due to the 
complex experimental designs and the probable presence of nonlinear 
batch effects that cannot be modelled by linear approaches. Gene 
set enrichment analysis (GSEA) is a classical approach for inferring 
the activity of GPs and involves the sequential pipeline of differential 
expression analysis and gene set enrichment test. To evaluate the 
robustness of expiMap’s integrated GP test, we hence compared it 
with the classical GSEA via limma-fry58,59 (Supplementary Note 1 and 
Extended Data Fig. 2). In our comparisons, we observed that, unlike con-
ventional gene set testing, which tends to detect general, non-specific 
terms, expiMap was able to identify specialized GPs. For example, in 
the B-cell population of both IFN-β-treated and control cells, expiMap 
detected B-cell receptor signalling and antigen presentation activity, 
which are more descriptive of B-cell biology than the general terms 
such as ‘adaptive immune response’ or ‘immune response’ that were 
found to be enriched in these cells by limma-fry (Extended Data Fig. 2c).  
We postulate that the increased variability in gene expression meas-
urements hinders the detection of specialized biological signals by 
standard gene set testing on cell atlases. This indicates that expiMap 
can extract biologically relevant GPs from a single-cell atlas consisting 
of many datasets while accounting for technical variations such as 
batch effects, which may not always be feasible with existing pipelines, 
owing to the presence of nonlinear batch effects.

To further analyse the contribution of individual genes in each GP, 
we introduce the gene importance score: the absolute value of decoder 
weights for genes in GPs (see also Methods), which can measure the 
comparative importance of genes within each GPs. Using the impor-
tance score, we analysed the dependence between the expression levels 
of genes and their importance scores in various GPs (Supplementary 
Note 2 and Extended Data Fig. 3). We also confirmed the robustness 
of the model under different data query dataset sizes (Supplemen-
tary Note 3 and Extended Data Fig. 4). Finally, we compared reference 
mapping and individual analysis of query data by applying expiMap 
on IFN-β dataset alone and repeated analogous analysis as shown in  
Fig. 2. We found the results similar (Supplementary Note 4 and 
Extended Data Fig. 5).

Biologically informed modelling improves the performance
As a means to benchmark the performance of expiMap’s reference 
mapping component, we compared it with scArches + scVI7, Seurat v48 
and Symphony18. Although expiMap and scVI both leverage scArches 
for reference mapping, scVI did not mix the untreated monocytes from 
the query data with healthy monocytes in the reference (dotted circle 
in Fig. 3a; for mixing of studies, see Supplementary Fig. 4), whereas 
expiMap successfully integrated them into the healthy reference (0.68 
versus 0.47 average batch correction scores; see further for a descrip-
tion of the metrics) while preserving the effect of IFN-β treatment in 
cells that should not be integrated with the rest. We attribute this to 
the explicit incorporation of the IFN-β-related GPs in the expiMap 
model, which helps differentiate the perturbed and control states while 
resolving the transcriptional similarities between control cells, leading 
to better mixing of control states. We investigated this by removing 
the top five GPs obtained from the IFN-β versus control comparison  
(Fig. 2b) and retraining the model. We observed that this led to the 
incorrect mixing of control and stimulated cells with the reference (Sup-
plementary Fig. 5). In this example, both scArches + scVI and expiMap 

had better performance than Seurat v4 and Symphony for integrating 
control query cells into control cells from the reference (Fig. 3b). We 
also quantitatively evaluated the integration of query control cells 
into the healthy reference using nine different metrics of biological 
preservation and mixing60.

We further benchmarked expiMap in de novo integration against 
scVI and non-amortized scVI (Fig. 3c), and linear-decoded variational 
autoencoder (LDVAE)45, a variation of scVI with a linear decoder 
(Extended Data Fig. 6a). Overall, we found that additional domain 
knowledge distilled into expiMap compensates for the lower model 
capacity compared with nonlinear models enabling it to achieve 
competitive performance (Supplementary Note 5). This is aligned 
with recent results2,20 demonstrating the improved performance of 
deep learning-based models by integrating domain knowledge into 
modelling.

Learning new GPs
Leveraging domain knowledge is crucial for the rapid and interpretable 
analysis of new query datasets within the context of a reference atlas. 
However, domain knowledge is not always comprehensive, complete 
and up to date for a novel phenomenon (for example, a new disease). 
Thus, the ability to learn new GPs to analyse query data containing 
new variations, such as new states or cell populations, is pivotal. We 
address this by allowing expiMap to learn novel GPs associated with 
the query data that exist in the knowledge base but are not detected 
previously in the reference model, as well as de novo programs that 
are not described in the knowledge base (Methods).

To evaluate the success of this strategy, we sought to remove GPs 
and cells containing information about IFN signalling and B cells dur-
ing reference training and assess if the model could de novo learn GPs 
of that type if the query data contain B cells and IFN-β-treated cells. 
To this end, we removed the general IFN-related GPs, including IFN, 
IFN-αβ (and GPs containing a superset of those) and cytokine signal-
ling in the immune system, from Reactome. We also removed B cells in 
the reference and the top two B-cell GPs containing information about 
B-cell receptor signalling and antigen presentation, as shown in Fig. 2d. 
Next, we trained the healthy reference PBMC model, as before, with the 
same studies as Fig. 2a, in which the model did not see GPs related to 
IFN pathway activity, B cells and their GPs in reference training. Further, 
we added a set of new nodes along with trainable weights at the query 
training stage; one was set with fixed gene membership to learn B-cell 
receptor signalling GP, and the other three were flexible and able to 
learn other variations in the data. In practice, we suggest initializing 
ten (as default) newly initialized unconstrained nodes for more com-
plicated query datasets, as redundant nodes will be switched off (all 
decoder weights set to zero) by L1 regularization. Ideally, we would like 
the model to learn GPs containing information about new variations 
in the query. We examined the distribution of the latent space values 
across different cell types (Fig. 4a). The node constrained with the B-cell 
GP learned the variations specific to B cells (Fig. 4a, first row). The B-cell 
node had 84 active genes, of which 66 genes are from the B-cell receptor 
signalling GP (Fig. 4b). While expiMap learned the pre-defined GP, it 
also added nine B-cell markers (for the full gene list, see Supplementary 
Table 3) obtained using differential testing (Wilcoxon rank-sum test 
in scanpy61) owing to the soft membership features in the model that 
were not initially in the pre-defined GP, demonstrating the ability of 
the model to incorporate extra information and enrich incomplete 
domain knowledge (Fig. 4b). Further, by looking at distribution plots, 
one of the newly learned nodes after in query training displayed a 
different distribution for myeloid cells/lineage (denoted as node 1 in  
Fig. 4a). In contrast, other cells had uniformly similar values. Another 
node (node 2 in Fig. 4a) had a bimodal distribution across all cell types, 
suggesting that the variation between control and IFN-β-stimulated 
cells is captured. We then sought to uncover the variations in the 
de novo learned nodes by comparing the top 50 genes influencing that 
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node using gene importance score (for details about gene importance 
score, see Methods) with GPs with a maximum number of overlapping 
genes and those from differentially expressed genes. We found that 
node 1 and node 2 learned variations related to myeloid and IFN-β  
(Fig. 4c). Specifically, node 1 is a new GP with minimal overlap with 
the top two previously identified programs (Extended Data Fig. 7a). 
This newly learned program also had a maximum gene overlap of 
24% with the top 50 genes influencing the GP with other existing GPs 
in Reactome (GPs that had maximum gene overlap are shown on the 
first row in Fig. 4c). The full distribution of overlaps between reference 
GPs and new unconstrained GPs is shown in Extended Data Fig. 7b. The 
only significantly overlapping GP is IMMUNE_SYSTEM, a very large and 
general GP with 491 genes. This demonstrates that the model learned a 
new program distinguishing myeloid cells from other cell types. Node 
2 also captured the program describing the IFN response observed 
only in the query data. When plotted against each other, we observe 
the separation of B cells and myeloid cells (Fig. 4d), IFN-β-treated cells 
and B cells (Fig. 4e,f). We also quantified GPs specificity with clas-
sification and statistical metrics corroborating visual and qualitative 

comparisons (Extended Data Fig. 7c–e and Supplementary Table 4). 
Finally, the last node (node 3 in Fig. 4a) was de-activated for most 
of the training but started to capture the signal related to DC cells  
(Fig. 4g–i). The most important gene for node 3 is TMSBX4 (for a ranked 
list of important genes in node 3, see Supplementary Table 5), which 
has higher expression levels for DC cells (Fig. 4h). The scores of node 3 
also have comparatively higher values for DC cells (Fig. 4g).

We further confirmed the independence of newly learned GPs 
(Supplementary Note 6 and Supplementary Table 6). Finally, we 
showed our model is robust in learning new GPs and existing GPs across 
different data subsampling scenarios and model hyperparameters 
(for detailed analysis, see Supplementary Note 6 and Supplementary  
Tables 7–12). Overall, we demonstrated that expiMap can learn 
pre-defined GPs not in the reference GP matrix for populations present 
only in the query data during query training while having the ability to 
enrich the pre-defined GPs with new genes (see also Supplementary 
Note 7 and Extended Data Fig. 7f, g), not in the program. In addition, 
we demonstrated that expiMap is not restricted to pre-defined GPs and 
can learn de novo GPs without any user supervision or prior knowledge.
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Interpreting treatment responses of patients with COVID-19
To demonstrate the medical use of interpretable atlas querying, we 
focused on the cellular response to infection during coronavirus disease 
2019 (COVID-19) and the effect of immunosuppressive interventions. 
We leveraged the integrated immune PBMC atlas to map IFN-β dataset 
(as in Fig. 2a) and a new dataset from two patients (P1 and P2) at differ-
ent COVID stages (severe disease and during the remission process: 
D1, severe COVID-19 on day 1; D5 and D7, remission on days 5 and 7, 
respectively). Both patients were treated with tocilizumab, an immuno-
suppressive drug targeting the interleukin-6 receptor62. The integrated 
dataset (Fig. 5b,c) was re-annotated using canonical markers identifying 
20 cell states from the myeloid and lymphoid compartments, including 
rare populations such as megakaryocytes and erythroid progenitors, 
as well as a population of CD10+ B cells (Fig. 5c). From the integrated 
embedding produced by expiMap, we could observe that some cellular 
states are associated with disease severity, which may be related to 
differences in the cellular response to tocilizumab.

Our analyses pointed us towards CD8+ T cells and monocytes  
(Fig. 5c) in both severe and remission stages that did not integrate into 
the healthy reference, unlike other populations from the same patients. 
We investigated this by performing a differential GP test between 
severe query cells and control cells to identify GPs that could explain 
this separation. We identified transcriptional programs of antiviral 
response at different clinical stages of COVID-19 and in specific PBMC 
cell types. Pathogen recognition receptor (PRR) RIG-I/MDA5 and GPCR 
pathways displayed differential behaviour in CD8+ T cells (Fig. 5d) and 
CD14+ monocytes (Fig. 5e) in severe COVID-19 (D1) and during remission 
(D5 and D7). RIG-I/MDA5 and GPCR pathways initiate the innate immune 
response and modulate the adaptive immune responses during viral 
infections63 and are reported to coordinate the inflammatory dynam-
ics during COVID-19 (refs. 64,65). These findings suggest that a complex 
cellular communication circuit may be differentially activated in both 
patients and may be related to the differences in treatment response 
at the cellular level.
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Next, we estimated underlying cellular communication pathways 
using CellChat66 and compared them at different clinical stages in our 
integrated Immune atlas. This analysis revealed that the annexin path-
way displayed differential transcriptional behaviour in the severe and 
remission stages of P1 and P2, involving CD14+ and CD16+ monocytes, 
natural killer (NK) cells and CD8+ T cells (Fig. 5f and Supplementary  
Fig. 6). Annexins are structural proteins that participate in the regu-
lation of inflammatory responses and homeostasis67 and have been 
associated with disease severity in COVID-19 (refs. 68,69). In this circuit, 
CD14+ and CD16+ monocytes show the potential to receive signals from 
NK cells and CD8+ T cells for P1D1. In P1D5, the annexin pathway switches 
completely to signalling between CD16+ monocytes and CD4+ T cells. In 
stark contrast, P2D1 is characterized by the annexin pathway focusing 
on CD14+ monocytes, which continues throughout the remission stage 
(P2D5), with the addition of CD16+ monocytes persisting towards D7 
of remission (P2D7) (Supplementary Fig. 6).

Although expression levels of annexins have been described as 
biomarkers for the prediction of disease severity69, our analysis using 
expiMap is the first to describe the expression of ligand–receptor 
pairs from the annexin pathway at the cellular level with the potential 
to interact between monocytes (CD14+ and CD16+), NK cells and T cells 
in COVID. The differences observed between patients in the expression 
of annexin-related interaction circuits may be related to the capability 
of viral clearance in each patient62 and the early expression of FPR1 by 
CD16+ monocytes, which is associated with the early detection of patho-
genic molecules and tissue damage70. Interestingly, our analysis shows 
the expression of IFNG for P2D7 by NK and CD8+ T cells (Extended Data 
Fig. 8), which may indicate a more complex antiviral response than in P1, 
independent of the symptomatic resolution attained by tocilizumab. 
Moreover, when contrasting our results with the annexin circuit in the 
data from IFN-stimulated cells, we observed that the inferred cell–cell 
interactions using the annexin pathway were dominated by the expres-
sion of ANXA1 in DCs rather than FPR1 in CD14+ monocytes (Extended 
Data Fig. 8). Our results do not illustrate the same circuit; however, this 
may indicate a lung-specific interaction operating in the lungs after the 
monocytes migrate to the affected lung tissue.

Although both these patients recovered after treatment with 
tocilizumab, clinical studies demonstrate that this behaviour is not 
consistent, and other factors, such as tocilizumab posology, may 
affect the clinical outcome71. At the cellular level, expiMap identifies 
transcriptional and cell–cell interaction circuits with the potential 
to be druggable, such as RIG-I/MDA5 and annexins, to help suppress 
cytokine storm syndrome in patients with COVID-19, which results in 
hospitalization.

expiMap resolves disease heterogeneity in Pancreas
As a final use case, we asked whether expiMap could assist with inter-
pretable cell type annotation and the analysis of cell state heteroge-
neity. We used expiMap to integrate three non-type 2 diabetes (T2D) 
pancreatic datasets72–75 (Methods and Supplementary Note 8) differ-
ing in multiple biological factors, including sex, age and stress status, 
using PanglaoDB marker sets to enable cell type identification76,77 and 
Reactome pathways to identify molecular processes78 differentially 

active between biological conditions. Before integration, we removed 
immune cells from the reference to assess whether new cell types in 
the query could be successfully integrated. We projected a new data-
set (query) that included healthy and T2D cells into this reference  
(Fig. 6a,b). On the integrated embedding (Fig. 6b), a separation between 
studies is observed. This is expected due to biological differences 
between the integrated mouse models, such as disease state and age. 
We also performed integrations with scArches + scVI, Seurat V4 and 
Symphony (Extended Data Fig. 9a) and assessed the integration qual-
ity using scIB metrics (Extended Data Fig. 9b), showing that expiMap 
is one of the top-performing methods.

Next, we automatically transferred cell type annotations from 
reference to query (Fig. 6d, Supplementary Fig. 7 and Methods). Ana-
lysing expiMap-generated scores of pancreatic cell type-associated 
PanglaoDB GPs (Supplementary Fig. 7c) helped with the annotation 
of ambiguous cell clusters (Supplementary Fig. 7b). For example, 
expiMap scores helped to resolve potential doublets (for example, 
immune–endocrine doublets) and small cell populations (for exam-
ple, acinar cells) that were marked as unknown or wrongly annotated  
(Fig. 6d and Supplementary Fig. 7b,c). As automated cell type anno-
tation methods often produce unreliable results in challenging cell 
populations, such as doublets, rare cell types or transitional cell states, 
manual assessment of marker expression is still required. However, 
expression can be affected by batch effects76, while expiMap scores are 
directly comparable. Furthermore, when specific cell types are missing 
from the reference, the annotation transfer cannot be performed, such 
as for the immune cells that were present only in the query (Fig. 6a and 
Supplementary Fig. 7a). In such a case, expiMap enables GP-enrichment 
analysis to provide insights into cell types. Similarly, expiMap scores 
can resolve coarsely annotated cell types. We show that the GP cell type 
scores for the immune cell subpopulations (Fig. 6d) provide similar 
information as the manually curated markers (Supplementary Fig. 8). 
As online marker databases often contain multiple putative markers, 
often of insufficient quality, manual selection of markers becomes 
challenging79,80. Indeed, we tried to use the top PanglaoDB markers for 
B-cell annotation (Ebf1, Cd74 and Cd52 out of 110 markers). However, 
they lacked sufficient specificity and sensitivity, while expiMap score 
based on all PanglaoDB markers correctly annotated B-cell lineage, cor-
responding to the B-cell lineage marker Cd79a81 as well as non-activated 
B cell (Cd19 and Ms4a1) and activated plasma B cell (Jchain) markers 
(Supplementary Fig. 8). This can be explained by the prioritization of 
informative genes within expiMap for data-specific cell reconstruction 
to create a single batch-corrected GP score, helping to resolve ambigui-
ties and challenges of automatic reference-based classifiers79. We also 
show that expiMap scores explain why the diabetes model and healthy 
beta cells do not overlap in integration, as indicated by differential 
activity of identity and maturation GPs (Fig. 6c, Extended Data Fig. 9 
and Supplementary Note 8).

To search for molecular changes between the healthy control and 
T2D-model beta cells from the STZ study, we used the expiMap Bayes 
test with the Reactome GPs (Supplementary Table 13). We demonstrate 
that there is only a small overlap between the genes of the enriched 
GPs (Fig. 6e), simplifying the interpretation. We observed differences 

Fig. 5 | expiMap analysis highlights the importance of the annexin gene 
family communication pathway during moderate and severe COVID-19.  
a, Illustration of the integrated datasets from PBMCs of healthy controls, patients 
with severe COVID treated with tocilizumab, and patients in the remission stages, 
and in vitro IFN-stimulated PBMCs. Figure made with BioRender. b, Integrated 
manifold using expiMap showing combined healthy PBMCs (n = 32,484), two 
query datasets including two patients with COVID-19 (n = 18,752) and the IFN-β 
dataset (n = 13,576) (ref. 18). c, Detailed cell type annotation of the integrated 
PBMC datasets. Red circles highlight cells not merged with the healthy PBMC cell 
atlas. ModDC, monocyte-derived dendritic cells; CD14+ Mo, CD14+ monocytes; 
CD16+ Mo, CD16+ monocytes; pDC, plasmacytoid dendritic cells; pB, plasma B 

cells. d,e, Distribution plots for differential GP activities were obtained using 
expiMap for CD8+ T cells and CD14+ monocytes, highlighting the antiviral 
transcriptional programs for RIG-I/MDA5 and GPCRs in each population. ILS, 
interleukins. Scatter plots are latent GPs representations of highlighted GPs for 
each cell type. f, Annexin communication pathways in different stages of COVID. 
In the severe stage (P1D1), CD14+ and CD16+ monocytes participate in a dynamic 
communication activity via annexins with NK and CD8+ T cells. This circuit 
converges to focused signalling to CD16+ monocytes during COVID remission 
(P1D5). In P2, CD14+ monocytes receive focused annexin signalling from NK, CD8+ 
and CD4+ T cells in the severe stage (P2D1), and later converge to signalling to 
CD14+ monocytes from the same lymphoid effectors during remission (P2D5).
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in energy metabolism, unfolded protein response (UPR) and islet 
communication, as previously reported in the original study (Supple-
mentary Note 9 and Supplementary Table 14). To identify whether the 
enriched GPs separate cells into multiple populations within samples, 
we analysed the distributions of Reactome GP scores. The score of 
interactions between lymphoid and non-immune cells (Fig. 6f) had 
a multimodal distribution within T2D-model beta cells treated with 
insulin, potentially indicating the presence of multiple cell states within 
individual samples. For scores from other enriched GPs, we did not 
observe such distinct multimodal patterns within individual samples.

One of the key dysfunction processes in T2D, also identified in our 
enrichment analysis, is the UPR, which results from pro-insulin synthe-
sis rate that exceeds the protein processing capacity of cells, leading 
to beta-cell dysfunction and death82,83. Thus, we compared scores of 
enriched GPs associated with UPR and protein synthesis and processing 
across individual cells (Fig. 6g). As expiMap produces batch-corrected 
GP scores we could also perform cross-study comparison with refer-
ence. We observed a high correlation between the UPR and asparagine 
N-linked glycosylation GP scores (absolute correlation coefficient of 
0.93) across all datasets with extreme GP scores in T2D-model cells 
(Fig. 6g). An increase in N-linked glycosylation had been previously 
implicated in diabetes, although the regulatory background is not 
clear84,85. We further support the implication of N-linked glycosylation 
in T2D and its potential association with immune response (Fig. 6h, 
Supplementary Fig. 9 and Supplementary Note 10). We also assessed 
how multiple genes contribute to GP scores and how GP rather than 
gene-level comparison reduces noise (Supplementary Note 10).

Finally, we applied expiMap on another Pancreas dataset capturing 
mouse endocrinogenesis86 to demonstrate the model’s applicability 
on continuous developmental processes (Supplementary Note 11 
and Extended Data Fig. 10). Overall, our results demonstrate that the 
expiMap GP activity analysis captures a complex differentiation and 
perturbation process in Pancreas.

Discussion
We introduced expiMap for interpretable single-cell reference map-
ping. Our model embeds domain knowledge in the form of GPs into 
the deep learning architectures used for reference mapping and can 
further complement these GPs with newly discovered unconstrained 
GPs for query datasets. The interpretability of the model allows the 
users to generate immediate inferences about the query once mapped 
to a reference within the context of GPs. This contrasts with the existing 
analysis pipelines, which involve multiple steps and, without end-to-end 
learning, necessarily aggregate processing errors from previous steps. 
Interestingly, in a comparison across five different organ atlases, we 
found that the constrained expiMap model did not lose expressiveness 
versus an unconstrained conditional variational autoencoder model; 
indeed, prior constraints appeared to improve reference mapping and 

de novo data integration performance, confirming the earlier concepts 
of adding ‘differentiable programs’20. Through various applications, 
we demonstrated the interpretability of the model.

Reference mapping with expiMap provides a new perspective on 
data integration and reference mapping. In scenarios with significant 
differences in the datasets, such as cross-species mapping, the query 
data might not be fully aligned in the reference owing to the substantial 
biological and technical differences dominating the overall repre-
sentation obtained by existing methods. This phenomenon makes it 
challenging to distinguish shared and unique signals between datasets. 
expiMap enables the integration of datasets along the axes of varia-
tions explained by a single or multiple GPs, where the datasets share 
variations and are mixed. This mixing stems from the commonality of 
the datasets in those programs. Such insights could not be obtained 
by, for example, looking at the overall uniform manifold approxima-
tion and projection (UMAP), which would be influenced by all genes, 
might be misleading and could obscure such commonalities. As we 
demonstrated when mapping COVID-19 patient data, CD8+ T cells from 
patients with COVID-19 were separate from IFN-β-treated CD8+ T cells 
in the global representation obtained from all GPs in UMAP (Fig. 5b,c). 
At the same time, they are integrated within specific GPs, capturing 
shared signals in two different cell states (Fig. 5d). Overall, expiMap 
can provide more insights into data integration by contextualizing it 
within GPs.

Our model leverages domain knowledge to improve the inter-
pretability of deep learning models useful for single-cell genomics. 
With increasing availability87,88 of curated domain knowledge, expi-
Map can be trained on multiple databases while pruning irrelevant 
information. However, selecting the relevant knowledge to include in 
the model can affect the model’s performance. As we demonstrated, 
including IFN-related knowledge can improve the performance in 
reference mapping (Fig. 2), while excluding it can lead to poor map-
ping of the query (Supplementary Fig. 4). Another limitation concerns 
the interpretation and validation of newly learned GPs that capture 
new variations in the query data. As we demonstrated, looking at 
distribution plots and visualizing the embedding can decipher the 
variations. However, the validation at the gene level requires further 
expert knowledge for each biological system. Another limitation is 
the modelling hierarchies in unsupervised settings, starting from 
single genes to GPs and to higher-level biological processes. Previ-
ous work, such as knowledge-primed neural networks89, P-net26 and 
visible neural networks90 employed hierarchical modelling, but in 
supervised settings, to predict tumour type or cell states. Using a 
similar strategy in an unsupervised model would add another layer of 
analysis to mapping data, not only to GPs but also to biological pro-
cesses, and potentially improve the performance. A final limitation of 
general deep learning models may be data hunger. To determine the 
sensitivity of our model to dataset size, we trained models of increasing 

Fig. 6 | Reference mapping of pancreatic islet cells using expiMap.  
a, Pancreatic islet cell analysis. The expiMap model was trained on 
heterogeneous non-T2D mouse pancreatic islet cells from different datasets. 
A dataset containing healthy and treated T2D-model cells was mapped to this 
reference. expiMap was trained with GPs from PanglaoDB to evaluate cell type 
annotation and scores from Reactome to determine metabolic differences 
between healthy and T2D-model beta cells. b, expiMap-integrated UMAP 
coloured by dataset shows three reference Pancreas datasets (45,178 cells) and 
one query dataset (36,899 cells). c, Healthy and T2D-model beta cells from the 
reference and query separate on UMAP. d, The expiMap score for immune B cells 
highlights a subpopulation of cells previously annotated under the umbrella 
term of immune cells. The score for acinar cells helps annotate the small acinar 
cell type cluster, which was not annotated in automatic cell type transfer owing 
to low classifier certainty. e, Low redundancy of the top differential Reactome 
pathways between healthy and T2D-model query beta cells. Genes (columns) 
associated with each GP (rows) are marked in white; the absence of a gene in 

a GP is indicated by dark colour. The displayed matrix was clustered both by 
genes and GPs. f, The immune interaction GP scores in insulin-treated T2D-
model beta cells from the query are bimodally distributed. g,h, Beta-cell scores 
of selected GPs differentially active in T2D-model beta cells. Comparison of 
UPR and protein synthesis and processing GP activites (g) and comparison of 
N-linked glycosylation and immune GP activity (h). Legend is shown in c. On the 
first subplot, circles mark the T2D-model population with relatively high scores 
in UPR and mRNA metabolism compared with healthy control from the query, 
whereas other non-T2D cells from the reference show high mRNA metabolism 
without a high UPR score. The circle indicates the T2D-model population with 
extreme UPR and asparagine N-linked glycosylation scores. ref: reference 
datasets, other samples are from the query; STZ: streptozotocin T2D model; 
STZ_GLP-1: STZ treated with GLP-1; STZ_estrogen: STZ treated with oestrogen; 
STZ_GLP-1_estrogen: STZ treated with GLP-1-oestrogen conjugate; STZ_insulin: 
STZ treated with insulin; STZ_GLP-1_estrogen+insulin: STZ treated with GLP-1-
oestrogen conjugate and insulin; control: healthy control.
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quality by incrementally including more training samples in the refer-
ence building task (Extended Data Fig. 6b). We observed that expiMap 
outperformed the linear baseline of a non-biologically informed lin-
ear decoder model (LDVAE) in a low-data regime. The more complex 

non-amortized scVI achieved the best results with increased number 
of training samples, while expiMap outperformed scVI and LDVAE. 
Overall, these results suggest that incorporating prior knowledge leads 
to more sample-efficient learning in the presence of fewer samples 
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than non-biologically informed models with similar complexity (for 
example, LDVAE). Further, when more training samples are available 
to learn GP activities efficiently, expiMap performs with complex 
nonlinear models.

Although we demonstrated expiMap by using single-cell RNA 
sequencing data, the model is naturally extendable to multimodal91–93 
datasets. Recent technological advances in single-cell biology allow 
the simultaneous capture of chromatin accessibility, gene expression 
and protein levels in single cells4. This makes it possible to learn the 
hierarchy of connected representations by distilling domain knowledge 
about regulatory elements, transcription and translation, covering 
multiple cellular processes into the representation learning methods. 
Another potentially exciting direction is the combination of the expi-
Map architecture with in vitro perturbation modelling approaches5,6,33 
to model in vitro perturbations of GPs. Finally, given the availability 
of spatial transcriptomics data94, it is possible to adapt expiMap to 
include information about cell-to-cell communication95 in the learned 
representations to gain further insights into cellular communications 
and signalling.

Researchers in the field of single-cell genomics are moving towards 
using reference mapping to analyse new query datasets. We envision 
that expiMap will further advance the applicability of reference map-
ping methods by bringing a new layer of interpretability and mecha-
nistic understanding to integrative single-cell data analysis facilitating 
biological hypothesis generation and discovery.
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Methods
expiMap model
Our model builds upon the framework of (conditional) variational 
autoencoders34,96. The log-likelihood of the data for expiMap can be 
written as

logpθ (X|W,C )p (W ) = log∫
Z

pθ (X|Z,W,C )p (Z )p (W )dZ (1)

pθ (X|Z,W,C ) = NB (g ([Z,C] [W, L]T) ,CD) , (2)

where g (x) = softmax (x) × S is a softmax function that is multiplied by 
the library size S of each cell. Alternatively, g(x) could also be a softplus 
or exponential function. Further, X is a random variable representing 
gene expression, C indicates conditions (for example, batch ID) and 
pθ (X ∣ Z,W,C) is the output distribution, also called a decoder in the 
setting of variational autoencoders, used to model X given the latent 
variable Z.

NB (⋅, ⋅) in equation (2) denotes the mean and dispersion para-
metrized negative binomial distribution, [⋅, ⋅] means a column-stacked 
matrix, W and L are matrix parameters for latent variables Z and one-hot 
encoded conditions C, respectively; and D  is a matrix of 
condition-specific dispersion parameters for each gene. W is a n × m 
matrix with n corresponding to the number of genes and m correspond-
ing to the number of GPs provided as an input.

The prior p(w) in equation (1) is defined as:

logp (W∶, j) = log∫
τ2
p (W∶,j|τ2)p (τ2|α)dτ2 = −α ‖‖W∶,j

‖
‖2 ,

logp (W ) = −α∑
j

‖
‖W∶, j

‖
‖2

p (W∶,j|τ2) = 𝒩𝒩 (0, τ2I) ,p (τ2|α) = Gamma ( n+1
2
, α

2

2
)

The constants were omitted because they do not affect the opti-
mization. We use a hierarchical Bayesian prior on the columns of W 
with the parameter τ2 integrated out as in oi-VAE97, resulting in the 
lasso regularization term. The lasso regularization allows the model 
to de-activate the GPs that do not contribute to the reconstruction 
loss in the model. α is a hyperparameter specifying the strength of the 
group lasso regularization.

The evidence lower bound (ELBO) is a part of our total loss to train 
the model. During the model training, the posterior distribution 
pθ (Z|X,C) is approximated by the variational distribution qϕ (Z|X,C), 
which includes a deep neural network parameterized with ϕ; it is also 
called an encoder. The ELBO can be written as:

log∫
Z

pθ(X|Z,W,C)p(Z)p(W)dZ ≥ ∫
Z

qϕ(Z|X,C)log
pθ(X|Z,W,C)p(Z)p(W )

qϕ(Z|X,C)
dZ

= 𝔼𝔼qϕ(Z|X,C) [logpθ (X|Z,W,C)] − 𝕂𝕂𝕂𝕂 (qϕ (Z|X,C) ∥ p (Z )) + logp (W )

= ELBO (θ,ϕ,W)

(3)

where θ and ϕ are parameters of the decoder and the encoder, 
respectively.

GP matrix
We use tab-delimited text files where the rows represent gene sets as 
an input to construct masks for W (see the previous section). The first 
column is reserved for the name of the gene sets and the other columns 
should contain the names of genes. Gene matrix transposed files (.gmt 
file format) could be directly used in our API as an input.

A database could be also passed to the model in the form of a binary 
matrix B with columns corresponding to GPs and rows corresponding 

to genes, with Bi,j = 1 if the ith gene is in the jth GP and 0 otherwise. Such 
a matrix is actually always constructed from the files described above 
before passing to the model. We refer to matrix B as the GP matrix.

Defining hard/soft gene membership
The decoder network in equation (2) consists of a linear layer 
H = [Z,C] [W, L]T, in which the output is then transformed to a negative 
binomial means by the nonlinear function g(H). The GP matrix B speci-
fies GPs and the gene memberships for these programs. The matrix B 
is used as a mask for the matrix of the decoder weights W, where the 
parameters for inactive genes in each GP are set to zero and do not 
change during training if the hard mask is used.

Wi,j = {
0 ifBi,j = 0,

wi,j otherwise
(4)

In the case of a soft mask, we add a regularization term that forces 
gene weights for genes that are not originally part of a GP to become 
zero, but also allows them to become active (non-zero) if they contrib-
ute to the reconstruction:

Rγ (W) = γ∑
j

‖
‖W∶, j ⊙M∶, j

‖
‖1 (5)

Mi,j = {
1 ifBi,j = 0,

0otherwise
(6)

Some columns of M can be set to a vector of ones M∶,k = ⃗1 by setting 
B∶,k = 0⃗ to allow the introduction of sparse GPs.

Both variants (hard and soft masks) force the elements of Z to 
correspond to the GPs encoded in W.

Learning new GPs
To allow new GPs to be learned, the model can be extended with addi-
tional nodes in reference training or query projection. For this, the 
last layer of the encoder is expanded with additional nodes connected 
to the existing nodes from the previous layer and producing the new 
vector Znew; in the decoder, the additional matrix Wnew is concatenated 
to W (now denoted by Wold), resulting in:

p (X|Zold,Znew,Wold,Wnew,C) = NB (g ([Zold,Znew,C] [Wold,Wnew, L]
T) ,CD)

In addition, L1 regularization is added to Wnew, which is equivalent 
to the Laplace before this matrix. In addition, for each element of the 
vector Znew the sample estimate of HSIC between the element and  
the other elements of Zold and Znew is added as a regularization term to 
the loss22. Also Wnew can be constrained with hard gene membership or 
regularized with soft gene membership (see the previous section) as 
Wold using an additional GP database. In this case we do not use HSIC 
regularization for these new constrained nodes.

Training
We use the stochastic proximal gradient descent to optimize the ELBO 
loss (equation (3)) with additional regularization terms. We also mul-
tiply the Kullback–Leibler (KL) divergence in the ELBO loss by the regu-
larization coefficient β. Excluding the group lasso Rα (W) = −logp (W) 
and soft mask term Rγ(W) that appear in the proximal update step 
(discussed further), the loss function of the model can be written as:

F (θ,ϕ,W) = 1
N

N
∑
i
𝔼𝔼qϕ(Zi |Xi ,C) [−logpθ (Xi|Zi,W,C)] + β𝕂𝕂𝕂𝕂 (qϕ (Zi|Xi,C) ∥ p (Zi))

+νRHSIC
ϕ (Zold,Znew)

(7)
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where RHSIC
ϕ (Zold,Znew) is a sample estimate of the HSIC regularization 

term. In addition, Znew and Zold are the old (existing in reference model) 
and new (learned in query training) unconstrained programs, 
respectively.

Then, to minimize the objective function we use the update 
scheme

θ(t+1) = θ(t) − η∇θ ̂F (θ,ϕ,W)

ϕ(t+1) = ϕ(t) − η∇ϕ ̂F (θ,ϕ,W)

W(t+1) =
Prox

ηRα + ηRγ
(W(t) − η∇W ̂F (θ,ϕ,W))

(8)

where ̂F (θ,ϕ,W) denotes an estimate of the function (equation (7)) over 
a mini-batch of samples (as in the standard stochastic gradient descent 
algorithm), t is the step in the gradient descent algorithm and η is the 
learning rate.

(Rα + Rγ) (W ) = α∑
j

‖
‖W∶, j

‖
‖2 + γ∑j

‖
‖W∶, j ⊙M∶, j

‖
‖1

is the lasso and soft mask regularization term and its proximal opera-
tor is

Prox

ηRα + ηRγ
(V ) = argminL [

1
2 ‖L − V‖

2
F + ηα∑

j
‖L∶, j‖2 + ηγ∑

j
‖L∶, j ⊙M∶, j‖1]

(9)

The hard mask variant implies γ = 0. The proximal operator above 
has a closed-form expression (see the next section for the derivation), 
so it is easy to apply it after the stochastic gradient descent update.  
The gradient for the expectation terms is obtained with the repara-
metrization trick, as is common in the VAE framework96.

Proximal operators for expiMap
To derive the closed form of the proximal operator described in the 
previous section, we need two theorems.
Theorem 1. (Proximal operator of separable functions.)

Suppose that f ∶ E1 × E2 ×…× Em → (−∞,∞] is given by

f (x1,x2,… ,xm) =
m
∑
i=1
fi (xi)

xi ∈ Ei, i = 1, 2,… ,m

Then for any x1 ∈ E1, x2 ∈ E2,… , xm ∈ Em,

Prox

f
(x1,x2,… ,xm) =

Prox

f1
(x1) ×

Prox

f2
(x2) × … ×

Prox

fm
(xm)

where Ei denotes a vector space and × is a Cartesian product. The proof 
of this theorem can be found in ref. 98.
Theorem 2. (Decomposition of the proximal operator.)

A sufficient condition for Proxf + g = Prox
f ∘ Prox

g  is

∀x ∈ H∂g (
Prox

f
(x)) ⊇ ∂g (x)

where f and g are closed (or, equivalently here, continuous), convex 
functions; H denotes a Hilbert space; and ∂g stands for a subgradient 
of g. The proof of the theorem can be found in ref. 99.

We use the two theorems above to find the closed form of the 
proximal operator (equation (9)). The explicit form of the regulariza-
tion function is:

Rα,γ (W ) = (Rα + Rγ) (W) = α∑
j

‖
‖W∶, j

‖
‖2 + γ∑j

‖
‖W∶, j ⊙M∶, j

‖
‖1 (10)

The sums in the regularization function are made over columns of 
W; thus, this function is clearly separable in columns, and the theorem 1 
is applicable here. This means that we only need to calculate the proxi-
mal operator for a column, as we can find the full proximal operator as 
a Cartesian product of the proximal operators for different columns. 
This is the same as using its own proximal operator for each column 
of W separately.

The regularization summand for a separate column k of W can 
be written as

Rkα,γ (W ) = (Rkα + Rkγ) (W ) = α ‖‖W∶, k
‖
‖2 + γ

‖
‖W∶, k ⊙M∶,k

‖
‖1 (11)

The regularization summand (equation (11)) has the form of a sum, 
so the theorem 2 has to be used.

For the group lasso part α ∥ ⋅ ∥2 the proximal operator can be imme-
diately obtained (from ref. 98) as

Prox

ηRkα
(v) = {

v − ηα v
‖v‖2

, if ‖v‖2 > ηα

0, if ‖v‖2 ≤ ηα
(12)

It should be noted that in the case when the mask’s column equals 
a vector of ones M∶, k = ⃗1 the proximal operator for the second summand 
in equation (11) γ ∥ ⋅ ∥1 is just a proximal operator for a standard L1 regu-
larization and can be written98 as

𝒯𝒯γ (y) =
⎧⎪
⎨⎪
⎩

y − γ, if y ≥ γ

0, if |y| < γ

y − γ, if y ≤ γ

Prox

γ ∥ ⋅ ∥1
(v) = 𝒯𝒯γ (v1) × 𝒯𝒯γ (v2) × … × 𝒯𝒯γ (vG)

(13)

In addition, the subgradient ∂ (γ ∥ v ∥1) (from ref. 98, rewritten) is

sgnγ (y) =
⎧⎪
⎨⎪
⎩

γ, if y > 0

[−γ, γ] , if y = 0,

−γ, if y < 0

∂ (γ ∥ v ∥1) = sgnγ (v1) × sgnγ (v2) × … × sgnγ (vG)

(14)

The proximal operator Prox
α ∥ ⋅ ∥2

(v) is equal to equation (12) (without 

η). By direct calculation for v∗ = Prox
α ∥ ⋅ ∥2

(v)  the following holds 

∀i = 1,… ,G: if vi = 0, then v∗i = 0; if vi < 0, then v∗i ≤ 0; if vi > 0, then v∗i ≥ 0.
This basically means that sgnγ (v∗i ) ⊇ sgnγ (vi). It immediately follows 

from the form of the subgradient (equation (14)) that

v∗ =
Prox

α ∥ ⋅ ∥2
(v)

∂ (γ ∥ v∗ ∥1) ⊇ ∂ (γ ∥ v ∥1)

Using this and the theorem 2 we can conclude that

Prox

γ ∥ ⋅ ∥1 +α ∥ ⋅ ∥2
(v) =

Prox

α ∥ ⋅ ∥2
(

Prox

γ ∥ ⋅ ∥1
(v)) (15)
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Therefore, the closed form of the proximal operator for the case 
M∶, k = ⃗1 is:

Prox

ηRkα,γ
(v) =

Prox

ηα ∥ ⋅ ∥2
(

Prox

ηγ ∥ ⋅ ∥1
(v)) (16)

Moreover, the closed forms of Prox
ηα ∥ ⋅ ∥2

(v) and Prox
ηγ ∥ ⋅ ∥1

(v ) are  

given in equations (12) and (13), respectively.
For the case M∶, k ≠ ⃗1, similar reasoning can be applied. First, the 

closed form of the proximal operator Prox
γ ∥ ⋅ ⊙ M∶, k ∥1

(v) for L1 norm of 

the vector of genes (gene weights in the factor) that are inactive in the 
annotation for the factor k can be written as

𝒜𝒜g,k
γ (y) = {

y, ifMg,k = 0

𝒯𝒯γ (y) , ifMg,k = 1

Prox

γ ∥ ⋅ ⊙M∶, k ∥1
(v) = 𝒜𝒜1,k

γ (v1) × … ×𝒜𝒜G,k
γ (vG)

(17)

where 𝒯𝒯γ (y) is the same as in equation (13).
The subgradient ∂ (γ ∥ v ⊙ M∶, k ∥1) can be written as

𝒮𝒮g,kγ (y) = {
0, ifMg,k = 0

sgnγ (y) , ifMg,k = 1

∂ (γ ∥ v⊙M∶, k ∥1) = 𝒮𝒮1,k
γ (v1) × … × 𝒮𝒮G,kλ1 (vG)

(18)

where sgnγ (y) is the same as in equation (14).
Using the same reasoning as in the derivation of the proximal 

operator for sparse unannotated factors, we see that

v∗ =
Prox

α ∥ ⋅ ∥2
(v)

∂ (γ ∥ v∗ ⊙ M∶, k ∥1) ⊇ ∂ (γ ∥ v ⊙ M∶, k ∥1)

This means that we again can use the theorem 2 and obtain the 
closed form of the proximal operator (with the learning rate η) for the 
column k of W, which corresponds to the annotated factor k

Prox

ηRkα,γ
(v) =

Prox

ηα ∥ ⋅ ∥2
(

Prox

ηγ ∥ ⋅ ⊙ M∶, k ∥1
(v)) (19)

In addition, the closed forms of Prox
ηα ∥ ⋅ ∥2

(v) and Prox
ηγ ∥ ⋅ ⊙ M∶, k ∥1

(v) 

are given in equations (12) and (17), respectively.
Theorem 1 allows calculation of the output of the joint proximal 

operator Prox
ηRα + ηRγ (

⋅)  in equation (8) by applying the proximal 

operators (equations (12), (16) or (19)) on each column of the input of 
the joint operator independently.

Reference mapping
The projection of a query dataset to a reference dataset is performed 
using the single-cell architectural surgery (scArches) approach15. After 
training a conditional VAE model for multiple batches of the reference 
dataset, the trained weights are transferred to a new model with addi-
tional conditional nodes used to map new query batches to the refer-
ence. Further, additional nodes for new learnable GPs can be added at 
this stage (see the learning new GP section). During the training of the 
expanded model for query projection, only the conditional weights 
connecting new batches and the weights for new GPs (if any) in both 
encoder and decoder are tuned; the rest of the weights are frozen. 

Projecting with scArches preserves the latent representation of the 
reference and projects the query data to the same latent space while 
correcting for batch effects between the query and data.

Differential testing for GPs
To test the hypothesis H0 ∶ Zi,a > Zi,b versus H1 ∶ Zi,a ≤ Zi,b, where Zi,a,Zi,b 
are the dimension i of the latent variables for the cells from the groups 
a and b respectively, we use the logarithm of the Bayes factor:

logK = logp (H0)
p (H1)

= log p (H0)
1 − p (H0)

(20)

where p (H0) and p (H1) are the probabilities of the hypotheses H0 and 
H1, respectively.

We can compute P (H0) as:

p (H0) = p (Z1,i > Z2,i|G1 = a,G2 = b)

= 𝔼𝔼p(X1 ,C1 |G1=a)p(X2 ,C2 |G2=b) [p (Z1,i > Z2,i|X1,X2,C1,C2)]
(21)

where G1 and G2 denote the independent group variables for X1 and 
X2, respectively.

The probability p (Z1,i > Z2,i|X1,X2,C1,C2) inside the expectation in 
equation (21) can be estimated with the approximate posteriors 
qϕ (Z1,i|X,C) and qϕ (Z2,i|X,C), as follows:

p (Z1,i > Z2,i|X1,X2,C1,C2) ≈ 𝔼𝔼qϕ(Z1,i |X1 ,C1)qϕ(Z2,i |X2 ,C2) [I (Z1,i > Z2,i)] (22)

where the expectation could be approximated by sampling or calcu-
lated from the closed form. When qϕ (Zi|X,C) is Gaussian, we can calcu-
late the expectation by

𝔼𝔼qϕ(Z1,i |X1 ,C1)qϕ(Z2,i |X2 ,C2) [I (Z1,i > Z2,i)] =
1
2
erfc (− μi(X1 ,C1)−μi(X2 ,C2)

√2(σ2i (X1 ,C1)+σ2i (X2 ,C2))
) (23)

The probabilities (equation (22)) can be averaged over many cells 
from both groups as in scVI40, to obtain the approximate value for 
equation (21).

Through the examples in the paper, we refer to the results obtained 
as ‘expiMap test results’ and at the threshold ||logK|| ≥ 2.3 as the ‘enriched 
results’, and call such GPs ‘differential GPs’ in the comparison of interest 
in this work.

Gene importance score
Gene importance score for a gene in a GP is the absolute value of the 
decoder weight for the gene in the GP. Each column of the weight matrix 
W in the decoder (2) corresponds to a GP and each row corresponds to 
a gene. Because of the linearity of the decoder, a change in the latent 
score of the ith GP Zi affects the reconstruction of gene counts more 
for those genes with higher absolute values of the weights in W:,i. Con-
sequently, we can rank genes in each GP by the absolute values of their 
weights in W. This ranking reflects the relative importance of a given 
GP for each gene; a higher ranking means that this gene is affected 
more by the GP.

Latent scores directions
The signs of latent scores of GPs do not necessary correspond to up- or 
downregulation of these GPs. However, in some cases, it is possible to 
determine whether an increase in a latent score corresponds primarily 
to an increase or decrease in the expression of genes of a correspond-
ing GP. This can be determined by analysing the decoder gene weights 
in the column corresponding to the GP (as described in the previous 
section). If most of the gene weights in the column of W correspond-
ing to the GP are positive, then the higher positive latent score implies 
upregulation; in the opposite case of mostly negative weights, a lower 
negative score also means upregulation.

http://www.nature.com/naturecellbiology
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For the jth GP, the direction Dj of predominant upregulation (nega-
tive or positive) can be calculated heuristically by several methods. We 
use two methods:

sum ∶Dj = sign (∑
i
Wi,j)

counts ∶Dj = sign (∑
i
sign (Wi,j))

Then, we can multiply the latent score of the GP by this direction 
Z̃j = Zj × Dj, so that a higher positive value of Z̃j always corresponds to 
predominant upregulation of the GP and a lower negative value to 
downregulation. These normalized scores can then be used for plotting 
or testing.

Metrics for integration and evaluation
Integrations were evaluated with methods implemented in scIB. We 
evaluated biological conservation through graph cLISI, normalized 
mutual information (NMI), adjusted Rand index (ARI) and average 
silhouette width (ASW) for cell type; and batch correction through 
principal component regression, ASW for batch, kBET, graph con-
nectivity and graph iLISI. All metrics are further described in the scIB 
paper60. The overall score was computed as the average of all scores.

We assessed the dominance of genes in a GP for Extended Data 
Fig. 3e by normalized entropy. The normalized entropy is calculated by 
dividing the entropy of the distribution of gene importance scores of 
the GP by the entropy of the uniform discrete distribution of the same 
size. The distribution of gene importance scores is obtained by dividing 
each score by the total sum of the scores. The normalized entropy scale 
is from 0 (absolutely concentrated) to 1 (uniformly spread weights).

Choice of hyperparameters for expiMap training
Reference training and integration. The main hyperparameter that 
affects the quality of integration for the reference training is alpha_kl, the 
value of which is multiplied by the kl divergence term in the total loss. If the 
visualized latent space looks like a single blob after the reference training, 
we recommend to decrease the value of alpha_kl. If the visualized latent 
space shows bad integration quality, we recommend to increase the value 
of alpha_kl. The good default value in most cases is alpha_kl = 0.5. The 
required strength of group lasso regularization (alpha) depends on the 
number of used GPs and the size of the dataset. For 300–500 GPs, we 
recommend to use alpha = 0.7 and increase for larger numbers of GPs.

Reference mapping. We recommend to use 200 epochs and early_
stopping = True for the query to reference mapping. Smaller datasets 
tend to require more epochs of training to map the query into the 
reference well. If you observe that the query is not integrated into the 
reference, we recommend to try longer training for the query mapping.

When using new unconstrained GPs, we recommend to start with 
ten of them or more. This ensures that all new significant sources 
of variation in the query would be covered by the new GPs. We also 
recommend to use L1 regularization for the new GPs (the gamma_ext 
parameter), it will make them sparser, and thus more interpretable, and 
also can de-activate redundant new GPs completely, which is important 
when the number of new unconstrained GPs is high.

If you use new constrained GPs with soft masks, it is important 
to monitor share of de-activated inactive genes of the soft masks in 
the constrained GPs. Set print_stats = True during the training, and 
check that at the end of the training process ‘Share of de-activated 
inactive genes in extension terms’ log show a number higher than 0.9. 
If this number is lower, it means that some of the constrained GPs lost 
their specialization given by the soft mask and added a lot of irrelevant 
genes. If this happens, it is better to increase the alpha_l1 parameter 
and retrain the model.

Non-amortized scVI
We compared the integration performance of expiMap with scVI and 
non-amortized scVI. Non-amortized scVI is a VAE model similar to scVI, 
where the neural network encoder was replaced by a per cell vector of 
parameters for each cell in a dataset.

For each cell i there are vectors μi ∈ ℝZ and σ2
i ∈ ℝZ with the size of 

the latent space. The jth latent variable for the cell i is obtained by 
sampling independently from the Gaussian distribution 
Zi,j ∼ 𝒩𝒩 (μi, j,σ2i, j). The decoder is the same as in the standard scVI model. 
The non-amortized scVI model is trained by minimizing the negative 
ELBO in batches with a gradient descent algorithm as a standard VAE 
model.

GSEA using limma-fry
Read counts were normalized using the trimmed mean of M-values 
(TMM)100 with singleton pairing implemented in edgeR101 to account 
for sparsity in the single cell RNAseq data. The fry test (Fast Approxi-
mation to ROAST)59 in limma58 R/Bioconductor package was applied to 
log counts per million (logCPM) values obtained by voom transforma-
tion102 to test for the enrichment of the gene set terms in the Reactome 
pathway database78. The Reactome database was obtained from the 
Molecular Signature Database (MSigDB)103,104.

Datasets and pre-processing
All the cell type labels and metadata were obtained from original pub-
lications unless specifically stated below.

Immune healthy atlas. The immune dataset includes samples 
from bone marrow cells and peripheral blood cells from different 
human samples. The bone marrow data were collected from Oetjen 
et al.48 and PBMC samples were obtained from 10x Genomics (https://
support.10xgenomics.com/single-cell-gene-expression/data-
sets/3.0.0/pbmc_10k_v3), Freytag et al.49 and Sun et al.50. The detail 
of the retrieval path and the pre-processing can be found in Luecken 
et al.60 and Lotfollahi et al.15 We used the Reactome pathway database 
for annotations78 from MsigDB103,104; we also removed all pathways with 
fewer than 12 genes. The genes that were not in the GPs database were 
filtered out, reducing the total number of genes from approximately 
11,000 to 3,690. Then 2,000 highly variable genes were selected for 
training.

PBMC IFN-β. This dataset contains cells from eight patients with Lupus 
treated with IFN-β or left untreated for 6 h (ref. 105). The pools from the 
IFN-β and control cells were mixed together and loaded to a 10x kit. 
The dataset was obtained from the Seurat tutorial (https://satijalab.
org/seurat/articles/integration_introduction.html). We have used the 
same genes as in the reference (Immune atlas).

PBMC COVID-19. The dataset62 contains five peripheral blood samples 
from two patients with severe COVID-19 at three different timepoints, 
consisting of severe remission during treatment with tocilizumab. 
The blood samples were collected on day 1, within 12 h of tocilizumab 
treatment, and on day 5 for both patients. An additional blood sample 
was collected from patient 2 because the patient remained COVID-19 
positive. The cell types were annotated using markers provided by the 
authors in the original study. We have used the same genes as in the 
reference (Immune atlas). The dataset is available on Gene Expression 
Omnibus (GEO); the accession number is GSE150861.

We used the integrated dataset to analyse cell–cell interac-
tions using the CellChat package66. For this analysis, we used the 
non-integrated shared gene space between all the integrated data-
sets after removing those genes supported by fewer than five counts, 
for a total of 10,851 genes ready for analysis. We then ran CellChat on 
each subset using the curated database for interactions in human 
samples. The gene expression of each ligand–receptor pair was 
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visualized using a dotplot generated using Scanpy 1.8.1 (ref. 61) and 
anndata 0.7.6 (ref. 106). The scripts for the analyses, as well as the pack-
age version used in the analysis, can be found in the ‘covid’ section of  
the repository.

Pancreas. The datasets are publicly available on GEO and further 
described in Supplementary Table 15. We removed low-quality 
cells (high mitochondrial fraction and low number of genes) using 
a study-specific threshold. For cell type annotation, we removed 
genes expressed in fewer than 20 cells in each study and normalized 
the expression in each study to 1 × 106 total counts, excluding highly 
expressed genes, and subsequently applied a log transformation. We 
merged datasets across studies using Ensembl IDs and retaining the 
genes expressed in all studies. We used merged data across studies, 
followed by the identification of highly variable genes, z-normalization 
and the computation of top PCA components. We clustered the data 
and plotted known pancreatic islet cell type markers to annotate cell 
types cluster-wise.

For integration, we separated the datasets into reference and 
query, as described in Supplementary Table 15. From the reference data, 
we removed immune cell types and their doublets. We removed genes 
expressed in fewer than 20 cells in the reference data. We used gene sets 
from PanglaoDB107 release from March 2020 and Reactome78 v4.0 and 
mapped them to mouse genes using Ensembl108 V103 orthologues. We 
used only gene sets with at least three genes and at most 200 genes. We 
excluded genes that were not present in these gene sets. With expiMap, 
we integrated the reference datasets using samples as batches and pro-
jected query samples. We also performed matched integrations with 
Seurat109, Symphony18 and scVI40. We evaluated different integrations, 
as described in the integration evaluation section. We used reference 
query split as batches and excluded non-healthy query samples as they 
were not expected to be integrated into the healthy reference owning 
to biological differences. For the downstream interpretation analysis, 
we used directed expiMap scores.

We used multiple methods to evaluate PanglaoDB cell type scores. 
We plotted the PanglaoDB cell type scores of expected pancreatic cell 
types on query UMAPs and visually compared the results to cell type 
annotation. We used the PanglaoDB gene set scores as features for the 
annotation transfer from reference to query with weighted k-nearest 
neighbour (kNN), as described in ref. 15. We evaluated the annotation 
transfer with F1 score and by visual evaluation of prediction accuracy 
and certainty on UMAP.

For gene-level analyses on integrated data we normalized expres-
sion with Scanpy using functions normalize_total and log1p.

Integration benchmark datasets. We leverage datasets from five dif-
ferent tissues including PBMCs (n = 161,764) (ref. 109), heart (n = 18,641) 
(ref. 11), lung (n = 65,662) (ref. 13), colon (n = 34,772) (ref. 110) and liver 
(n = 113,063) (ref. 111). All datasets, except heart, were obtained from the 
Sfaira database112, which includes cell type labels. Heart was obtained 
from the scVI package. For the expiMap training for each dataset, we 
used the Reactome pathway database, selected only pathways that 
contain more than 12 genes and filtered out all genes that are not pre-
sent in any pathway, and then we selected 2,000 HVG for training. For 
the other models, we used the same lists of genes.

Mouse endocrinogenesis. We used the developmental dataset from 
mouse endocrinogenesis (n = 25,919) (ref. 86). The raw dataset is avail-
able at the GEO under accession number GSE132188. Cell type labels 
were obtained from an adata object provided by the authors of scVelo113. 
We used the Reactome pathway database version 7.5.1 for annotations78 
from MsigDB103,104. Days 14.5 and 15.5 were used as a reference, and 
days 12.5 and 13.5 as a query. For the reference dataset, we removed all 
pathways with fewer than 13 genes. The genes that were not in the GPs 
database were filtered out, reducing the total number of genes from 

approximately 28,000 to 10,000. Then 4,000 highly variable genes 
were selected for training. For the query, we used the genes obtained 
after pre-processing the reference dataset. RNA velocities were calcu-
lated using scVelo.

Methods for the query to reference benchmarks
scVI: we used the setup from the scarches tutorial for query to refer-
ence mapping with scVI (https://scarches.readthedocs.io/en/latest/
scvi_surgery_pipeline.html).

Symphony: we used the parameters recommended in the reposi-
tory (https://github.com/immunogenomics/symphony).

Seurat: we adapted the Seurat reference mapping tutorial (https://
satijalab.org/seurat/articles/integration_mapping.html), but used 
supervised principal component analysis(sPCA) instead of PCA.

Statistics and reproducibility
The details for pre-processing of the datasets used for the model train-
ing are provided in the section ‘Datasets and pre-processing’. If not 
indicated otherwise in that section or in the legends, no data were 
excluded from training and analysis. The hyperparameters chosen 
for model training for all experiments are listed in Supplementary 
Note 12: hyperparameters. The details of statistical tests employed 
for differential testing of GPs are provided in the sections ‘Differential 
testing for GPs’ and Supplementary Note 1: comparison with limma-fry. 
Metrics for integration used in the paper are described in the section 
‘Metrics for integration and evaluation’. Robustness of query to refer-
ence mapping for different query dataset sizes is analysed in Supple-
mentary Note 3: robustness of the model under different data query 
dataset sizes. Reproducibility and robustness of newly learned GPs are 
discussed in Supplementary Note 6: disentanglement and robustness 
of newly learned GPs.

Protocol
A step-by-step protocol for installing the software, training the model 
and downstream analysis can be found on Nature Protocol Exchange114.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Immune healthy atlas, PBMC IFN-β, PBMC COVID-19, mouse endo-
crinogenesis datasets and the heart dataset used for the integration 
benchmark are public, referenced and downloadable at https://github.
com/theislab/expiMap_reproducibility. The Pancreas datasets are pub-
licly available and can be accessed with the following GEO codes: STZ 
(GSE128565), Fltp_P16 (GSE161966), NOD (GSE144471), spikein_drug 
(GSE147203/GSE142465 (GSM4228185–GSM4228199)) and NOD_elimi-
nation (GSE117770). The PBMCs, lung and colon liver datasets used in 
the integration benchmark are public, referenced and can be obtained 
from the sfaira database112 (https://theislab.github.io/sfaira-portal/). 
The data supporting the findings of this study can be reproduced 
using codes and notebooks available at https://github.com/theislab/
expiMap_reproducibility. All other data supporting the findings of 
this study are available from the corresponding author on reasonable 
request. Source data are provided with this paper.

Code availability
The software is available as a part of https://scarches.readthe-
docs.io/en/latest/. The code to reproduce the results is available at  
https://github.com/theislab/expiMap_reproducibility.
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Extended Data Fig. 1 | Differential GP analysis results for cell types from the integrated query and reference PBMCs with five datasets. Differential GP analysis 
results between cell types (one vs all test) for cell types in the query data. The x-axis is the ranking of GPs; the y-axis denotes the significance (absolute log-Bayes factor) 
of each GP.
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Extended Data Fig. 2 | Comparison of expiMap Bayes Factors with GSEA 
–log_10(FDR). For comparison, we show Bayes factors from expiMap and 
FDR from fry. (a) Overall stimulated vs control tests (all cell types are pooled 
together). (b) Results for CD14+ monocytes stimulated vs control tests. (c) B cells 
vs the rest of the cell types. (d) CD16+ monocytes vs the rest of the cell types, 
(e) CD14+ monocytes vs the rest of the cell types. The x-axis shows the negative 
logarithm of the false discovery rate (-log10FDR) from fry; the y-axis shows the 

absolute value of the logarithm of the Bayes Factor (|loge(Bayes Factor)|) from 
the expiMap test. The size of the circles is proportional to the size of the gene 
set. We observed an overall agreement between expiMap and conventional 
GSEA results; however, expiMap detected more specific gene programs in some 
comparisons, while being computationally efficient with regard to runtime as the 
differential gene expression and enrichment testing steps no longer have to be 
repeated for every individual comparison.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Analysis of GPs characteristics and their relationship 
to genes. (a) Distribution of correlation between mean expression value and 
gene importance score for each gene. X-axis: number of top-scored genes, and 
the Y-axis denotes the Pearson correlation of mean log-normalized expression 
for top n genes denoted in x-axis in each GP with their importance scores (each 
dot represents an active GP, n = 247). (b-d) - Scatter plots demonstrating the 
relation between mean gene expression and gene importance scores from 
expiMap for GPs, selected from the highlighted group in (a). Example of a GP 
with a high positive correlation (b), a GP with a correlation near zero (c), and a 
GP with a negative correlation (d). The X-axis shows the mean log-normalized 
expression of genes, y - gene importance score in a GP. Correlations are shown 

for the top 20 genes by gene importance scores. Each dot is a gene. (e) Box plot 
for the entropies of normalized importance scores of the top 50 genes for each 
active GP (n = 247) divided by the maximal entropy (of uniform distribution). The 
normalized entropy scale is from 0 (absolutely concentrated) to 1 (uniformly 
spread weights). Box plot statistics: lower quartile = 0.89, upper quartile = 
0.94, median = 0.916, lower whisker = 0.83, upper whisker = 0.998, min = 0.75, 
max = 0.998. (f ) Histogram of importance score for top 50 genes in MHC II 
ANTIGEN PRESENTATION, this GP has normalized entropy 0.799. (g) Histogram 
of importance score for top 50 genes in SIGNALING BY GPCR, this GP has 
normalized entropy of 0.988.
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Extended Data Fig. 4 | Results for expiMap model trained with downsampled 
query dataset (IFN-β dataset). (a) UMAP plot for the latent spaces of reference 
and downsampled query across different query dataset sizes. (b) Average of the 

integration metrics assessing the integration of reference and control query for 
all query sizes. (c) Results of the expiMap Bayes tests between control (reference 
+ query) and IFN-β stimulated (in query).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Results for expiMap model trained on IFN-β dataset 
alone. (a) UMAP plot of expiMap latent space control and IFN-β stimulated cells 
from eight patients (n = 13,576 cells), used before as a query dataset. Colors 
demonstrate cell type (left), and condition (right). (b) Differential GP analysis 
results between IFN-β stimulated and control cells. The x-axis shows the ranking 
of GPs; the y-axis denotes the significance (absolute log-Bayes factor) of each 

GP. (c) Scatter plot of the scores of the top two most significant expiMap GPs in 
(b). Each dot shows the latent score of each cell. (d) Visualization of the scores 
for various GPs, delineating cell types or perturbation states for B cells and 
CD14 + /16+ monocytes. (e) Differential GP analysis results for CD14 + Monocytes 
only between IFN-β stimulated and control CD14+ monocyte cells, for both IFN-β 
dataset only and reference mapping.
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Extended Data Fig. 6 | Benchmarking the reference building and assessing 
subsampling effects on data integration. (a) Comparison of the reference 
building performance by benchmarking across five different tissues, PBMCs 
(n = 161,764), heart (n = 18,641), lung (n = 65,662), colon (n = 34,772), and liver 
(n = 113,063), and four different methods. (b) Subsampling effect on data 

integration. The overall integration accuracy for different subsamples of PBMCs 
(n = 161,764)8 data across different models. The x-axis denotes the proportion 
of the data used for training each model; the y-axis is the overall average score 
across nine integration metrics measuring both biological preservation and 
batch removal, as introduced in Fig. 3b.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Learning new GPs for query data and benchmarking 
expiMap for enriching predefined GPs. (a) Comparison of the top influential 
genes dominating the variance in node 1 with genes from the top GPs for 
CD14 + /16+ monocytes from Fig. 2d. (b) Distribution of the number of 
overlapping genes between top 50 influential genes of new unconstrained 
nodes and the reference GPs for Fig. 4. Y-axis - number of shared genes between 
the top 50 genes of the unconstrained new nodes indicated in the x-axis and 
the reference GPs (n = 276). Each point is the number of shared genes with one 
reference GP. (c-e) Quantifying separations in Fig. 4. (c) Results of the differential 
expiMap test between IFN-β stimulated cells and control cells and B cells and the 
rest (d). (e) Results of the differential expiMap test between Myeloid cells and 
the rest. In (c-e) x-axis - is the rank of the GP, y-axis - is the absolute value of the 
log Bayes score. (f-g) Benchmarking expiMap for enriching predefined GPs. The 

expiMap model was trained on the PBMCs dataset from Kang et al. (n = 13,576), 
with [CYTOKINE_SIGNALING_IN_IMMUNE_S’, ‘INTERFERON_ALPHA_BETA_
SIGNALING’, ‘ANTIVIRAL_MECHANISM_BY_IFN_STI’, ‘INTERFERON_GAMMA_
SIGNALING’, ‘IMMUNE_SYSTEM’] removed from GPs obtained from the Reactome 
database and only ‘INTERFERON_SIGNALING’ was kept for training. The x-axis 
shows the number of deleted top genes in the ‘INTERFERON_SIGNALING’ 
program, while the y-axis shows the percentage of those genes added to the top 
30 genes in the ‘INTERFERON_SIGNALING’ program after training. The colors 
show the different values of L1 sparsity for each experiment. (f ) The x-axis is the 
same as in (g); the y-axis demonstrates the percentage of the original interferon-
related genes among the top 30 genes in the ‘INTERFERON_SIGNALING’ program 
after training. When the y-axis value is smaller than 1.0, it means that a 1–y 
percentage of false-positive genes was added to the GP.
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Extended Data Fig. 8 | Transcriptional activity of cellular communication 
circuits occurring in severe COVID. Transcriptional activity of genes associated 
with cell-cell communication pathways and interferon-gamma (IFNG) in different 

cell types and conditions. The cell-cell communication pathways represented are 
annexins (ANXA1, FPR1), THBS (THBS1, CD36, CD47), ICAM (ICAM1, ICAM2, ITGAL, 
SPN, ITGAX, ITGAM, ITGB2), LCK, and CCL (CCL3, CCL4, CCL5).
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Extended Data Fig. 9 | Comparison of integration results across different 
integration methods. (a) UMAPs of integrated embeddings obtained with 
different integration methods, (b) comparison of integration quality across 
methods, (c) PAGA of integrated beta cells indicates that the connection of 
reference cells with query control cells is the strongest, the connection of 
T2D-model query cells treated with insulin is moderate, and the connection 

with other T2D-model cells is the weakest. (d) expiMap term scores in beta 
cells correspond to the known loss of beta cell identity, dedifferentiation, 
and transdifferentiation in diabetes. Left, loss of beta cell identity (x-axis) vs 
dedifferentiation-related (y-axis) expiMap terms; right, loss of beta cell identity 
(x-axis) vs transdifferentiation-related (y-axis) expiMap terms.
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Extended Data Fig. 10 | Developmental dataset from mouse 
endocrinogenesis. (a) UMAP plot of the latent space of expiMap for mouse 
endocrinogenesis dataset (n = 25,919) when mapping embryonic day (E) 12.5 
and E13.5 to reference containing population from E14.5 and E15.5 colored 
by cell types. (b) UMAP plot of the latent space colored by the latent scores 

corresponding to the Reactome GP Cell Cycle (b), Developmental Biology 
(c), and regulation of Beta cell development (d). Developmental Biology 
and Regulation of Beta cell development GPs were inferred from differential 
GP analysis across cell types. (e-g) Scatter plots of different latent GP scores 
highlight the separability of different populations.
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