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Considerations for building and using 
integrated single-cell atlases
 

Karin Hrovatin    1,2,14, Lisa Sikkema    1,2,14, Vladimir A. Shitov    1,3, 
Graham Heimberg4,5, Maiia Shulman    1,2, Amanda J. Oliver6, 
Michaela F. Mueller1, Ignacio L. Ibarra    1, Hanchen Wang    5,7, 
Ciro Ramírez-Suástegui1,6, Peng He    8, Anna C. Schaar1,9, 
Sarah A. Teichmann    6,10,11,12, Fabian J. Theis    1,2,13   & Malte D. Luecken    1,3 

The rapid adoption of single-cell technologies has created an opportunity 
to build single-cell ‘atlases’ integrating diverse datasets across many 
laboratories. Such atlases can serve as a reference for analyzing and 
interpreting current and future data. However, it has become apparent 
that atlasing approaches differ, and the impact of these differences are 
often unclear. Here we review the current atlasing literature and present 
considerations for building and using atlases. Importantly, we find that 
no one-size-fits-all protocol for atlas building exists, but rather we discuss 
context-specific considerations and workflows, including atlas conceptua
lization, data collection, curation and integration, atlas evaluation and atlas 
sharing. We further highlight the benefits of integrated atlases for analyses 
of new datasets and deriving biological insights beyond what is possible 
from individual datasets. Our overview of current practices and associated 
recommendations will improve the quality of atlases to come, facilitating 
the shift to a unified, reference-based understanding of single-cell biology.

Understanding the cellular composition of tissues and its variability 
across individuals is critical for understanding health and disease. 
Single-cell technologies have spurred important progress in our under-
standing of cellular heterogeneity by enabling researchers to study 
tissues at unprecedented scale and resolution1–3. However, while the num-
ber of single-cell datasets and the number of cells sequenced per study 
steadily increase, currently the median number of individuals sampled 
per study still does not exceed 14 (Fig. 1). Moreover, individual studies 

have study-specific biases related to, for example, cohort characteristics, 
sample handling and choice of single-cell technology. Integrating many 
studies into a single resource, here termed ‘atlas’, enables researchers to 
overcome these study-specific biases as well as to capture a larger num-
ber of individuals and more comprehensively profile cellular diversity.

A number of research initiatives, including the Human Cell Atlas 
(HCA)4 and the Human Biomolecular Atlas Program (HuBMAP)5, aim to 
create such single-cell atlases of the human body. Currently available  
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opportunities for application. We also provide a perspective on how 
atlases may be extended and updated in the future to stay up to date 
with new discoveries. Finally, we present a comprehensive overview of 
atlas use cases. Together, we envision this work will advance the pro-
gress of atlas-focused initiatives such as the HCA, HubMAP and others, 
thus contributing to moving the single-cell field toward cross-dataset, 
population-level reference atlases.

Building an integrated reference atlas
Building an integrated atlas requires biological and computational 
domain expertise and iterative optimization of the atlas. This process 
can be categorized into the following steps (Fig. 2), which are discussed 
in detail below: preparation, including choosing the focus and selecting 
datasets; data preprocessing, including metadata harmonization and 
quality control; data integration; atlas evaluation and reannotation; 
and atlas sharing and extension.

Atlas preparation
The envisioned downstream use of an atlas determines what technical 
decisions should be made when building it, and the atlas’ goals should 
therefore already be taken into account during the preparation. For 
example, if one wants to build an atlas that enables modeling the effects 
of age on molecular phenotypes, it should ideally include pediatric 
samples. It is thus critical to determine the focus of the atlas before 
starting the building. Similarly, the included datasets should be selected 
carefully to align with the atlas focus and to maximize its quality. Below, 
we discuss important considerations in both of these processes.

Defining the focus. It might be desirable to make an atlas as general 
as possible, integrating data across technologies, organs or species. 
However, this may ultimately reduce its utility, as the removal of strong 
batch effects often also leads to excessive loss of biological variation43. 
Instead, the focus of the atlas must be chosen at the beginning to ensure 
that the final atlas will best be suited for the envisioned downstream 
applications. Whereas most atlases aim for a holistic understand-
ing of a single organ, cell-type-specific atlases provide insights into 
cell-type-specific diseases affecting multiple tissues6. Moreover, while 
some atlases are focused only on healthy adult samples (Supplemen-
tary Table 1), the inclusion of multiple conditions, such as diseases or 
developmental stages, is crucial for cross-condition comparison. Simi-
larly, atlases that include animal or in vitro model systems are vital for 
evaluating model utility, and can additionally be used to complement 
scarce human data. Finally, multi-omic atlases may increase resolu-
tion and reliability via a broader set of molecular features. We provide 
further guidance on defining atlas focus in Supplementary Note 1.

Selecting datasets. Once the goal of the atlas is clear, the datasets to 
be included must be selected, which importantly determine the atlas’ 
quality and utility. For some atlases, data scarcity necessitates leniency 
during dataset selection, while in other cases, not all datasets that fit 

single-cell atlases6–34 cover various tissues from mice, humans or  
both, and are almost exclusively composed of transcriptomic data 
(see Supplementary Table 1 for an overview of available atlases and 
their characteristics). These atlases have been used to address a range 
of biological questions and research challenges. For example, they 
serve as a consensus on cell-type definitions and disease-specific cell 
states9,15–17, reveal heterogeneity in the population at a large scale11,17,35, 
aid in the analysis of new datasets11,13,15,17 and give guidance in study 
design6,12,17. Existing single-cell atlases thus already show their promise 
of advancing our understanding of human tissue in health and disease36.

To serve as a community resource, integrated single-cell reference 
atlases should adhere to specific criteria. First, an atlas is meant to serve 
as a basis for community discussion on cell-type nomenclature and 
should, therefore, represent the current cell-type definition consensus 
as well as possible. Second, findings derived from the atlas need to be 
generalizable and should represent a consensus across studies, which 
requires the inclusion of numerous and diverse datasets encompassing 
a large set of individuals. Thus, recent large-scale efforts based on indi-
vidual datasets37–39 will in the future present a great basis for building 
multi-dataset atlases. Generalizability also requires that dataset-related 
or sample-related biases, such as data generation location and proto-
cols, are documented and if possible, removed from the atlas. Third, 
atlases need to include extensive cell annotations and sample and 
subject metadata for future studies and analyses. Finally, atlases should 
be reliable, such that findings derived from the atlas are not based on 
artifacts in the data or mistakes in annotations, mandating stringent 
quality assessment. Such atlases could thus, similarly to reference 
genomes and other omics references40–42, serve as the ‘normal’ basis 
against which new datasets are compared to address central questions 
in molecular biology and medicine (Box 1).

Despite the complexity and demands of the atlas building process, 
a clear overview of atlas building steps and associated considerations 
is currently lacking. Moreover, the potential applications of atlases in 
research are just starting to be explored. Here we review how previous 
reference atlases have been built and lay out guiding principles for the 
construction and sharing of future atlases to ensure quality and broad 

2016
2017
2018
2019
2020
2021
2022*
2023*

24
34

70
130

199
166

97
26

0 50 150100 200
N papers

102

N cells per study
103 104 105 106 100

N individuals per study
101 102 103

Fig. 1 | Single-cell dataset size trends over time. Left, total number of papers with 
single-cell data published in each year; middle, number of cells per dataset over 
time; right, number of individuals included per single-cell paper (Supplementary 
Methods). The list of publications was obtained from a curated database of  

single-cell studies194. Data after 2021 (asterisks) are likely not comprehensive; 
thus, the number of papers is likely underestimated. For both box plots, the boxes 
indicate the median and interquartile range. Whiskers extend to the furthest non-
outlier data point. Individual data points are shown as dots.

BOX 1

Key quality standards for 
atlases

	• Represent consensus cell-type nomenclature across the field
	• Findings should be based on observations that hold true across 
datasets

	• Availability of high-quality data and metadata
	• Reliability ensured by stringent quality assessment
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the goal of the atlas are suitable for inclusion. Here we discuss key 
considerations for selecting datasets.

Number and technical diversity of datasets. Including a large number 
of datasets is important not only to capture the variability in cell types 
and in tissue phenotypes, but also to cover a diverse range of technical 
variability, such as sample handling protocols and sequencing tech-
nologies. This will likely broaden the range of cell types covered, as dif-
ferent technologies better capture different cell types17,44, will provide 
integration methods with more training data to distinguish between 
biological and batch effects and will enable assessing reproducibility 
of findings across studies during downstream analysis. A large number 
of datasets also allows for the removal of datasets that later on turn 
out not to integrate well without substantially reducing the size of the 
atlas. However, increasing the number of datasets will lead to longer 
data curation and preprocessing times and might eventually lead to 
prohibitive computational resource requirements.

Metadata availability. Sample-level metadata (such as the age or health 
status of individuals) and cell-level metadata (such as cell-type labels) 
are important for many steps in the atlas building process, as well as for 
its use. Metadata related to technical variables such as tissue sampling 
technique (for example, samples from autopsy and biopsy) will help 
distinguish experimental bias from biologically driven signal during 
atlas building and evaluation. Moreover, detailed donor metadata 
(for example, age, sex, body mass index, smoking history or disease 
stage and treatment history) will make the atlas more widely usable, 
particularly for understanding interindividual differences. Similarly, 
the availability of cell-level metadata, mainly cell-type labels, can aid 
in the atlas building process in several ways, including during quality 
control (for example, labels of doublets), integration (for methods 
using cell-type labels17,43,45,46) and atlas evaluation and use.

Demographic diversity. For a truly comprehensive representation of a 
given tissue, an atlas should cover the diversity of the human population 
in terms of age, sex, genetic ancestry and other demographic variables. 

The same holds for other types of biological variation, such as multiple 
mouse models or strains and various environmental conditions. Increas-
ing the diversity of samples makes atlas-based findings more generaliz-
able, and might enable stratification into, for example, patient groups.

Cell-type coverage. An atlas ideally represents the full diversity of cell 
types that are part of the organ or cellular compartment of interest, 
which can be achieved by diversifying the selected datasets in several 
ways. When cell-type composition differs widely in different parts of 
an organ, different anatomical locations should be covered. Similarly, 
the way a tissue is sampled (for example, with a brushing, biopsy or 
surgical resection) affects the cell types that are captured in a sample, 
as do dissociation protocols, with certain cell types only being detected 
using specific protocols11,17,47. Spatial assays, not biased by tissue dis-
sociation protocols, can be used to determine which cell types should 
be detected in a tissue.

Study design. When building an atlas, untangling batch-related variables 
from biological signals of interest is key to fruitful downstream analyses. 
However, without proper study design, batch correction methods can 
unintentionally remove biological signals along with batch effects. For 
example, if one dataset is made up only of samples from donors with a 
disease not seen in any other dataset, integration could inadvertently 
mistake this disease-specific biology for a dataset-specific batch effect 
and remove this signal from the integration. Therefore, ideally each 
biological group of interest is represented in multiple datasets, and 
each dataset includes multiple conditions so that dataset-specific batch 
effects can be separated from effects of interest.

Data quality. Including datasets of high quality in the atlas will enhance 
the reliability of downstream analyses and will moreover ease the data 
integration process. Datasets can differ substantially in quality, for 
example, in terms of sequencing depth, fraction of mitochondrial reads 
per cell and detail of cell-type annotation. Datasets with lower cellular 
resolution, for example, due to low sequencing depth, have been shown 
to integrate more poorly with other datasets48 (Box 2).
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Data harmonization and preprocessing
For datasets to be jointly analyzed, the metadata of subjects, sam-
ples and cells that are provided with each dataset must be encoded 
consistently across datasets and count data should be computation-
ally preprocessed in similar or identical ways. Individual datasets are 
typically preprocessed in different ways and use different metadata 
nomenclature, contributing to batch effects and hampering down-
stream interpretation, respectively. While metadata must always be 
unified, it is not yet clear how specific differences in preprocessing 
affect the final atlas. Below we discuss considerations in prioritizing 
different atlas building steps for harmonization.

Data preprocessing. Preprocessing of FASTQ sequencing data into 
count matrices is the first step in preprocessing single-cell sequencing 
data. Atlases are often built from count matrices rather than raw FASTQ 
files, as these are easier to share and combine, but inconsistencies 
in how the count matrices were generated can lead to batch effects 
in the data49. Whereas realignment of all data might not always be 
feasible, using gene identifiers rather than gene names could already 
mitigate batch effects. Once count matrices have been generated, 
low-quality droplets need to be removed from the data. In some cases, 
this will already have been done by dataset generators, and the exact 
method by which low-quality droplets have been removed from the 
data might result in differences between datasets. Moreover, the deci-
sion to instead only annotate but not remove low-quality droplets 
from the atlas can enable quality-control transfer to new datasets, 
although it may also affect the integration. Finally, counts should be 
normalized and corrected for, for example, ambient RNA, in the same 
way across datasets, taking into account suitability and scalability of 
the normalization methods. Preprocessing-related considerations are 
further detailed in Supplementary Note 2.

Harmonizing sample and subject metadata. Sample and subject 
metadata are essential for both the atlas building process and for down-
stream analyses on the atlas. However, often inconsistent nomencla-
tures across datasets can make them challenging to use. Therefore, all 
metadata from individual datasets should be mapped to standardized 
categories. For many forms of metadata, standardized nomenclature 
already exists in the form of ontologies, such as for disease50, ancestry51 
or single-cell protocols52. As these existing ontologies have been con-
structed by specialists, adhering to them will in most cases give a better 
classification and naming system than a manually set-up categorization 
would. Moreover, it will ease future communication and comparison 

within the field. Single-cell data platforms such as CELLxGENE53 and the 
HCA Data Repository54 already conform to these ontologies.

For human metadata, one should ideally also track if these data are 
based on self-report, assignment by physicians or genomic informa-
tion. As standards regarding ethnicity and genetic ancestry categori-
zation are still evolving, it is useful to collect these data in ‘raw’ form 
before harmonizing them into predefined, possibly broader groups. 
Alternatively, data-driven methods for sex or ancestry inference from 
raw sequencing data55 can complement the reported metadata.

Harmonizing cell-type annotations and annotating unlabeled 
datasets. Preliminary, author-provided, cell-type annotations can 
be beneficial in many ways. Firstly, they can help with the data inte-
gration itself, as some data integration methods allow for the use of 
cell-type labels to guide the integration45,46,56. Secondly, these labels 
aid in evaluating the quality of the atlas once the data are integrated, 
although it must be ensured that the same labels are not used for both 
integration and its evaluation to prevent evaluation biases. Thirdly, 
the comparison with original labels enables evaluating the impact 
of the consensus reannotation in an atlas (see section ‘Exploring the 
information within the atlas’).

For the above tasks, it is crucial to have a consistent set of cell-type 
labels. As studies are often inconsistent in cell-type nomenclature and 
annotation resolution16,17, it is helpful to map all annotations to a com-
mon, cell-type nomenclature reference 57. When original annotations 
are of sufficient resolution, this may already result in a good-quality 
preliminary atlas annotation10,12,17. The cell-type reference can be ‘hier-
archical’, thus accommodating annotations from different datasets 
at different resolutions. As manual harmonization of cell-type labels 
is laborious, automated construction of such cell-type hierarchies 
could aid in the process, for example, using CellHint58. Furthermore, 
community resources such as the Cell Annotation Platform (CAP59) 
are being developed to facilitate author-guided, consensus-based 
cell annotation and to define label synonyms for cell types and states.

If author-provided, cell-type annotations are unavailable or of 
insufficient quality, one can annotate the data specifically for the 
atlas60,61. Because manual annotation of each dataset individually is 
very time-consuming, it can instead be done for only a representative 
dataset subset15. Alternatively, automated annotation62,63 combined 
with manual curation can be used to annotate individual datasets 
before integration64,65, which can be combined with preexisting anno-
tations24 (Box 3).

Data integration
The core of any atlas building project is the integration of the data, 
involving the computational removal of batch-related variation, which 
can be attempted with a variety of methods43. Integration enables joint 
analysis of all data in a shared space, based on biological signals rather 
than batch-specific transcriptomic artifacts. Below we describe several 
important aspects of atlas-level data integration.

Determining the level of integration by setting the batch  
covariate. All data integration methods aim to identify and subse-
quently remove batch-specific transcriptomic shifts based on a prede-
fined batch covariate. The choice of batch covariate will greatly affect 
which variation is removed from the atlas and how the integrated atlas 
will look. It should be noted that the variation determined as ‘batch 
effect’ is inherently subjective and is a reflection of what the atlas 
builder deems unwanted. Thus, the choice of batch covariate should 
be in line with the scope of the atlas.

Batch effects can occur at the level of the dataset, subject or 
even sample. Many experimental and preprocessing factors vary pre-
dominantly at the dataset level, such as tissue dissociation protocol, 
single-cell chemistry or reference genome. Therefore, batch correction 
at the dataset level can already remove a large part of the variation 

BOX 2

Key takeaways
	• A specific atlas focus should be defined, such as a selected 
tissue and selected biological conditions. The broader the focus 
of an atlas, the more complex the integration process is likely 
to be, which can result in increased loss of information during 
integration.

	• The datasets to be included in the atlas should be selected 
according to its focus.

	• Biological conditions of interest should ideally be represented 
in multiple datasets, to untangle biological from batch effects 
during atlas integration and evaluation. Similarly, datasets 
should ideally span multiple conditions (for example, disease 
and control).

	• Sample-level and cell-level metadata availability should be 
considered for each dataset as it is key for atlas building, 
evaluation and use.
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caused by technical factors. Even when all dataset-level batch effects are 
removed from the data, additional sources of transcriptomic variation 
due to artifacts can exist at the sample and subject levels. For example, 
samples might have undergone different sample handling causing 
distinct transcriptomic changes, and cells that are sequenced on the 
same lane, which can originate from a single tissue sample or multiple 
tissue samples (for example, when multiplexing), may have specific 
technical effects. Moreover, individuals might display subject-specific 
batch effects, for example, due to different postmortem intervals66. To 
remove these sources of batch effects, sample and/or subject would 
need to be set as the batch covariate. Notably, some methods enable 
the use of multiple batch covariates at once, thus enabling nested (data-
set–sample) or combinatorial (dataset–assay) batch effect designs46,67.

The extent to which technical covariates contribute to batch 
effects can vary. For example, if a study has samples generated in mul-
tiple institutes, they might or might not show institute-specific batch 
effects. Similarly, batch covariates may affect individual cell types with 
different strengths68. The covariate contribution to batch effects can 
be approximated quantitatively by computing the percentage of vari-
ance explained by a particular technical covariate17,69. Alternatively, one 
can check which sample groups are easily distinguished from the rest 
of the dataset using a classifier, thus determining whether and how a 
dataset should be split up into separate batches12. Recent efforts have 
also attempted to automate the batch selection procedure68.

Pitfalls in the choice of batch covariate arise predominantly due 
to the possibility of removing biological signals during the integration 
process, as they can covary with the chosen batch covariate. A particu-
lar challenge arises when batches directly correspond to biological 
variables of interest. This is the case when integrating datasets of, for 
example, different organoid protocols, species or organ locations, or 
samples of patients with different diseases. Here, removing dataset-level 
or sample-level variation could remove the related variance of interest 
(for example, protocol-specific states) from the integrated atlas, ham-
pering downstream analyses. In such cases, one may select a coarser 
batch covariate that is not directly confounded by the covariate of inter-
est, such as dataset instead of sample. It is important to note, however, 
that some existing atlases show biological preservation of sample-level 
variation even when using sample as the batch covariate11,15.

Selection of genes for data integration. Similar to other single-cell 
RNA-sequencing (scRNA-seq) dimensionality reduction techniques, 
data integration can benefit from being performed on a subset of 
genes. Benefits range from improving the signal-to-noise ratio, remov-
ing non-informative signals given the atlas scope, and improved 

computational efficiency, resulting in improved integration43. How-
ever, when removing genes, one has to keep in mind that existing 
integration models cannot be adapted to add features (genes) later 
on, such as features that may be important to future samples mapped 
to the atlas.

Currently, the most common practice for gene selection is select-
ing ‘highly variable genes’, that is, genes that show higher variance 
than would be expected based on their mean expression levels in the 
data70,71. Most atlases select 2,000 to 5,000 genes10,15,16,24, with higher 
numbers preferred for atlases with broader scope13. Often, genes are 
selected as the intersection of genes that vary within individual batches 
to avoid selecting genes varying due to batch effects72,73. Several meth-
ods that aim to improve the robustness or biological meaningfulness 
of gene selection have also been proposed72–77. These include remov-
ing batch-affected or quality-metric-associated genes and selecting 
genes related to signals of interest such as individual cell lineages, rare 
cell types or diseases (Supplementary Note 3). Given the diversity of 
proposed approaches, there is likely a large potential for optimizing 
atlas building in this step.

Selecting an optimal data integration strategy. The choice of inte-
gration method and its parameters will have a substantial effect on the 
outcome of the integration12,17,43,78. As different integration methods 
work best in different scenarios43, it is important to select the optimal 
method and parameter settings for the data at hand, for example, using 
existing integration benchmarking platforms43. The methods scANVI45, 
Scanorama79 and scVI67 have been shown to perform well on complex 
integration tasks43 and could thus be prioritized if time constraints do 
not allow for extensive method benchmarking. Moreover, integration 
strategies for multimodal data are discussed in Supplementary Note 4.

The integration process also involves a decision on which of the 
available data to include in a single integrated representation. In some 
cases, batch effects are too strong to be removed while still preserving 
the desired level of biological information. In this case, the atlas may 
be split into multiple parts, for example, to create one sub-atlas per 
species6,9, per lineage80 or for cells versus nuclei26. Notably, recent 
efforts have been devoted toward facilitating the integration of more 
biologically and technically diverse datasets81,82. It is yet to be deter-
mined how global integration strategies compare to a split approach. 
While atlases consisting of multiple integrated representations could 
provide better resolution, they are less user-friendly, requiring separate 
analyses and comparisons for each sub-atlas.

Several atlases have taken the approach of separating their data 
into core datasets that are normally integrated, and extension datasets 
that are mapped onto the core8,11,12,17 using query-to-reference mapping 
methods83–85. These methods make it possible to project new data onto 
an existing reference while removing batch effects from the resulting 
representation. In some cases, it may be desirable to separate core and 
extension datasets based on biology, for example, by using only healthy 
adult data in the reference to ease the learning of batch effects during 
integration with minimal biological confounding17. The core-extension 
approach also allows more flexibility in adapting and extending an atlas. 
Given a fixed core reference, datasets can be independently mapped 
onto the core. However, as the atlas model core is never updated with 
the newly mapped data, new biological variation in these datasets may 
not be sufficiently captured, or the model might not be able to suffi-
ciently remove new batch effects. Additionally, most currently available 
query-to-reference mapping methods are designed to work only with 
selected integration methods or models (for example, Symphony with 
Harmony86, scArches with conditional autoencoder-based methods83). 
These compatibilities should be kept in mind when selecting a data inte-
gration method to ease mapping to the atlas by future users (‘Projecting 
new single-cell data into an atlas space’).

Integration method performance can differ widely and thus the 
best integration should be selected for a given collection of datasets. 

BOX 3

Key takeaways
	• Differences in dataset preprocessing could lead to batch 
effects and may be mitigated by preprocessing harmonization. 
Furthermore, some preprocessing steps may differ for atlases 
compared to standard analysis protocols, such as preservation 
of low-quality droplets for annotation transfer.

	• As high-quality metadata are key for atlas use, the metadata 
should be harmonized across datasets and aligned with standard 
ontologies.

	• Preliminary cell-type annotation is an important source of 
prior knowledge in atlas building as it can guide integration 
and is often required for atlas evaluation. It can be obtained by 
harmonizing available annotations across datasets, transferring 
annotations from individual datasets, or de novo manual or 
automated annotation.
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Importantly, visual inspection of the result of integration (for example, 
using uniform manifold approximation and projection (UMAP)) to 
assess performance can be misleading43,87 and hard to apply to large 
amounts of integration outputs. Therefore, one should combine visual 
inspection with quantitative metrics to assess the integration quality. 
Several metrics aim to quantify either how well batch effects were 
removed or how well biological variation was retained during data 
integration43. As different metrics measure different aspects and reso-
lutions of the integrated representation and have their specific benefits 
and limitations43,69,82,88, it is important to consider which metrics to 
use. For example, both metrics that rely on prior biological knowledge 
(for example, cell labels) and those that are independent of it should 
be included. Notably, performing a benchmark on data integration 
methods for an individual atlas is resource intensive. Therefore, for 
atlases with a large number of cells, a subset of the data may be used 
for the integration method benchmark. We provide further details on 
integration benchmark metrics and on data subsetting in Supplemen-
tary Note 5 (Box 4).

Atlas evaluation and reannotation
The quality of an atlas is critical for its utility as a reference. Because 
automated evaluation of integration methods, as described above, 
provides no guarantees on the top-performing method being of suf-
ficient quality for atlas use, it should be complemented with manual 
atlas evaluation. This also includes atlas-level cell-type reannotation, 
which serves both for the evaluation of the integrated representation 
quality and as a basis for downstream analyses.

Evaluation of overall atlas representation quality. The final atlas 
evaluation must be done on the basis of prior biological knowledge. 
This ensures that the atlas correctly represents biological information 
from the data and that batch effects have been sufficiently removed, 
as discussed below. The evaluation step serves as the last checkpoint 
in the optimization of the atlas representation (Fig. 3a–d) and may 
lead to revisiting and adjusting earlier atlas building steps (Fig. 3e–k).

To derive new insights from the atlas, one must ensure that the 
integration did not remove key biological information from the data 
(Fig. 3a). This can be evaluated based on the co-occurrence or sepa-
ration of cells in the integrated representation in relation to known 

biological factors, such as cell type, age or disease. As the first step, 
the expected biological effects within the representation should be 
evaluated based on the presence of clusters corresponding to known 
cell types. For example, rare and transitioning cell clusters are com-
monly merged with other populations due to over-integration17,43. The 
integration benchmarking metrics described above can be further 
used here to highlight cell subsets that show poor integration quality, 
necessitating further manual exploration.

When analyzing the presence of biology-driven cell states and sub-
types within cell-type clusters, caution must be taken not to interpret 
batch effect-driven separation as biological differences. The separation 
of cell representations based on specific covariates, such as disease, 
should therefore be supported across replicate samples and datasets 
and the cell populations should also be distinguishable by the expres-
sion of specific markers.

To ensure that downstream analyses are driven by biological rather 
than residual batch effect variation, it is necessary to evaluate how 
well batch effects have been removed from the atlas (Fig. 3b). For a 
detailed and thorough evaluation of the remaining batch effects in 
the atlas, the integrated representation needs to be checked for cell 
separation driven by technical effects. These include sample-specific or 
dataset-specific clusters that cannot be explained biologically. One way 
of identifying batch-driven separation of cells is using the correlation of 
cluster assignment with the expression of known technical effect genes, 
which will often be sample specific. This includes ambient genes89,90, 
genes associated with tissue handling, such as stress genes induced by 
dissociation and extended processing time91–94, or, when integrating 
single-cell and single-nucleus data, genes known to be differentially 
expressed between the two assays, such as mitochondrial genes95. 
However, it should be noted that these genes can also be involved in bio-
logically relevant processes, such as disease-related cellular changes.

It is possible that the overall quality of an atlas integration is excel-
lent, despite a small subset of samples or subjects, or a single dataset in 
the atlas not being well integrated, due to stronger batch effects in that 
data subset. Visual inspection can sometimes already highlight poorly 
integrated subsets of the atlas. Furthermore, metrics assessing the 
mixing of batches17 within cell populations should be used to identify 
outliers. It is important to pinpoint the reason for reduced integration 
as it may result from past disease or outlier demographics that warrant 
distinct localization in the atlas. Several steps can be considered if 
finding outlier datasets. First, a reintegration without the outlier data-
set, subject or sample can be considered, depending on their relative 
importance to the focus of the atlas (Fig. 3e). Second, reintegrating 
with a tailored batch covariate (Fig. 3h), method or parameter setting 
(Fig. 3i) can be considered, such that more emphasis is placed on the 
removal of outlier batch effects. Third, if the source of the batch effect 
is clear, adding more datasets of the same type and data reintegration 
might help mitigate batch imbalance96.

Even after the removal of outliers and tuning of the integration 
approach, some batch effects will always remain. The residual batch 
effects determine how fine the cell annotation resolution can be before 
cells separate into clusters based on technical rather than biological 
effects. Therefore, it is essential to keep in mind how this affects the 
representation and thereby the downstream analyses.

Evaluation of reference quality for mapping new data. As one of the 
main uses of atlases is the analysis of new datasets with the atlas serving 
as a reference, the atlas must be suitable for high-quality alignment of 
the new data to the atlas via ‘query-to-reference mapping’ (Fig. 3c). This 
mapping projects any unseen single-cell dataset into the preexisting 
low-dimensional space of the integrated atlas, thus allowing joint 
analysis of the atlas and the new data. Poor reference mapping perfor-
mance can result in faulty interpretation of the mapped query data. 
Resolving poor performance may require adapting the integration 
itself, and can include revisiting previous steps, from dataset selection 

BOX 4

Key takeaways
	• Data integration is the key step of any atlas building project.
	• The choice of batch covariate importantly affects the integration 
outcome. Confounding of batch and biological covariates may 
lead to the removal of relevant variation from the data during 
integration.

	• Gene selection helps to reduce noise in the data and limits 
the computational resources required for integration. Several 
gene selection approaches exist to improve the outcome of the 
integration.

	• Gene selection must be performed with future query datasets in 
mind, as these might contain unique condition-specific genes.

	• Atlases can exist as a single integration of all datasets, multiple 
partial atlases from datasets that are easier to integrate 
separately or a core integrated atlas from selected datasets 
extended with additional data via reference mapping.

	• Integration approaches should be compared using metrics 
that assess both batch effect removal and the preservation of 
biological variation.
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to integration hyperparameters (Fig. 3e–i), to better capture the range 
of potential technical and biological effects in the integration itself 
already. Reference mapping also largely depends on both the used 
mapping algorithm and the underlying integration method (‘Select-
ing an optimal data integration strategy’), and a different integration 
method that enables better mapping may be required.

Determining whether an atlas is suited for reference mapping 
involves considering what kind of datasets may be mapped in the 
future, with potential differences in technical factors (for example, 
sequencing protocols, genome versions) as well as biological differ-
ences (for example, tissue from donors with diseases, different devel-
opmental stages). Importantly, data from very different biological 
contexts might complicate mapping (Fig. 3k), just as widely different 
datasets can complicate the initial atlas building (as discussed in ‘Defin-
ing the focus’). To evaluate the atlas’ reference mapping potential, the 
concepts described in ‘Selecting an optimal data integration strategy’ 
and ‘Evaluation of overall atlas representation quality’ can be applied: 
assessing biological preservation and batch correction on the com-
bined atlas and mapped query dataset. Several dedicated metrics and 
approaches can be used to estimate the quality of a mapping, such as 
an estimate of the preservation of neighborhoods or clusters before 
compared to after mapping, the confidence and accuracy of cell-type 
label transfer from reference to query via metrics that measure uncer-
tainty, and the distance from query cells to reference cells83–85.

Annotating the integrated atlas. Once the data have been successfully 
integrated, a reannotation of the cells should be performed to improve 
the quality and resolution of the annotations. The increase in total cell 
number enables the detection of rare cell types and states that might 
not have been annotated in the individual datasets, including groups 
of low-quality droplets12,13,15,17. Furthermore, the joint representation 
enables resolving contradictory annotations of the same cell type, 
as is often observed between datasets17. If parts of the cells were not 
labeled before integration, they can now be labeled on the basis of their 
similarity to labeled cells in the integrated representation. Importantly, 
if the reannotation is based on the original annotations of individual 
datasets or multiple independent expert opinions, the reannotated 
atlas constitutes a first step toward a consensus-based annotation of 
a given tissue17.

Low-quality droplets (for example, empty droplets and doublets) 
will likely still be present in the data at this stage and should be identi-
fied to be separated from viable cells before annotation (Fig. 3d,j and 
Supplementary Note 6). As previously discussed (‘Data harmonization 
and preprocessing’), it is still unclear to what extent quality control 
can be done entirely after integration, rather than before per dataset 
or sample. The former not only saves time during preprocessing, but 
annotating rather than removing low-quality droplets could also enable 
automated quality control of new datasets mapped onto the atlas via 
label transfer97.

Atlas reannotation can be done manually, automatically or by a 
community-based crowdsourcing approach. The classical and most 
labor-intensive approach is to manually annotate all cells of the atlas 
based on their clustering in the integrated representation and marker 
gene expression6,8,9,13,15. Alternatively, preexisting cell-type labels from 
different datasets can be harmonized to a cell-type hierarchy manually 
or automatically58,98,99. Cells can also be automatically annotated using 
marker genes12,24 or via label transfer10,83,85. Finally, crowdsourcing 
approaches enable the collection of annotations from larger groups 
or networks of experts59. These approaches are further discussed in 
Supplementary Note 7.

To ensure the quality of cell annotations, they must be evaluated 
from different perspectives. The grouping of cells into cell types should 
not be driven by technical effects (see section ‘Evaluation of overall atlas 
representation quality’), avoiding, for example, annotating clusters 
that do not have cells from multiple donors and datasets. Furthermore, 

annotation labels should be robust, confirmed by the expression of 
known markers and in broad concordance with prior annotation of 
individual datasets, including coverage of cell types expected to be 
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present12,17. Involving multiple biological experts, as is the aim for the 
CAP59, will likewise increase the reliability of the annotations (Box 5).

When the atlas is completed: sharing and extending the atlas
The finalized atlas will represent a community reference that will serve 
as a resource and that will continue to evolve with new discoveries in 
the field. To that end, the atlas needs to be made available to diverse 
user groups upon publication. Moreover, in the long term, the atlas 
will need to be extended with newly available data and information 
to stay up to date.

Making the atlas available to different user groups. To ensure that 
atlases can serve their primary role as a community resource, it is cru-
cial that they are easily accessible and reusable (Table 1). This involves 
two main requirements. First, the published data should be well docu-
mented. This includes the description of all atlas components, including 
metadata covariates, and the sharing of all atlas-related code. Metadata 
covariates should moreover adhere to existing ontology nomenclature 
where possible. Second, while count matrices are commonly shared 
on portals such as the Gene Expression Omnibus (GEO)100, BioStud-
ies101 and the HCA data portal54, the data should also be made easily 
accessible to different user groups. For this purpose, specialized tools 
and frameworks have been developed. For simple queries, such as the 
visualization of gene expression levels or metadata categories across 
cells, interactive platforms can be used53,102–105. For more specialized 
analyses, the data should be easy to download, and should be formatted 
such that it is compatible with standard data analysis platforms106–108. 
Finally, atlas-related models (for example, for query-to-reference map-
ping) should be shared publicly109,110, and a framework for automated 
mapping can be made available85,111,112. Notably, it is not yet clear how 
to share results from downstream atlas analyses in a standardized way, 
such as for custom marker lists. Further considerations on atlas sharing 
are elaborated on in Supplementary Note 8.

Extending and updating the atlas. Atlases can be living resources that 
evolve as new datasets become available4. The inclusion of new datasets 
as they are released adds more individuals or conditions, thus enhanc-
ing the statistical power of metadata covariate analyses and improving 
coverage of cell types and states across biological conditions. Similarly, 
cell annotations or metadata descriptors can be updated to adhere to 

evolving ontologies113 or to include newly discovered cell types from 
recent studies114. Importantly, keeping reference atlases up to date will 
require considerable community-wide and consortia-wide efforts115 
as is the case in the genomics field, where standard genome builds are 
iteratively refined and used by the whole scientific community.

New data can be added to the atlas by mapping the new data onto 
the old atlas using query-to-reference mapping algorithms83–85. When 
more new data accumulates, the reintegration by retraining of the atlas 
model, rather than atlas extension by query-to-reference mapping, 
will be necessary to capture or correct for new biological and techni-
cal variation. Additionally, reference atlases can be extended with 
new modalities, such as single-cell assay for transposase-accessible 
chromatin using sequencing (ATAC-seq) and cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq)116. Therefore, using 
an integration model that enables the mapping of different modalities 
may soon become of great importance due to the increased number of 
single-cell datasets of non-transcriptomic modalities117.

An intriguing possibility for upscaling and streamlining atlas 
extension would be to let users, who map their new data to the refer-
ence for analysis of their own data, also share the representation of 
their mapped data on a reference portal. Each mapping, even if not 
intended for atlas extension, would thus further expand the atlas for 
all users. Such a continuous community effort would greatly increase 
the amount of data captured in the atlas at a rate that is not achievable 
for a single atlas curation team (Box 6).

Using integrated atlases
The value of an atlas derives from the biological insights it offers and its role 
as a consensus reference (Fig. 4). Atlases have the potential to answer press-
ing biomedical questions, aiding in understanding disease mechanisms, 
developing new treatments, improving model systems and advancing 
disease prognosis or diagnosis36. Furthermore, atlases can be used to 
study organism-wide cell function113,118, development119, organoid protocol 
design120 and evolution across species121. Projecting new datasets to the 
atlas moreover enables atlas-guided analysis of new data. To promote the 
adoption of atlases across different fields, we here provide an overview of 
domain-agnostic biological and technical questions that can be answered 
using integrated atlases alone or as a complement to new data.

Exploring the information within the atlas
Marker genes, gene programs and the effects of biological and technical 
factors on cell types are routinely investigated in single-cell datasets. 

BOX 5

Key takeaways
	• Atlas evaluation is key to avoid low-quality integrations 
that might lead to false interpretations. If the atlas quality 
is insufficient, individual steps of the atlas building must be 
adapted and reconducted.

	• Manual inspection of the atlas is required to assess that prior 
knowledge is sufficiently preserved and that batch effects do not 
bias conclusions drawn from the atlas.

	• As reference mapping is one of the key use cases of atlases, it 
should be evaluated how well new data can be mapped to the 
atlas.

	• Query datasets may be too different from the reference atlas 
to be successfully mapped. Thus, determining the dataset 
characteristics required for reliable mapping will improve atlas 
usability.

	• Atlas cell-type reannotation, including the annotation of 
residual low-quality droplets, is part of atlas evaluation. It is also 
necessary for ensuring final label quality and for establishing 
annotation consensus.

Table 1 | Different databases and platforms enable sharing 
of atlas data for different purposes

Atlas sharing purpose Type of tool/
platform

Examples

Fast and easy access to 
atlas for simple queries

Interactive platform CELLxGENE53, Single 
Cell Portal104, UCSC Cell 
Browser102, Vitessce105, and 
Scope+103

Downloadability of atlas 
for detailed analysis

Single-cell 
database

GEO100, HCA data portal54, 
CELLxGENE53

Reference model sharing 
for query-to-reference 
mapping

Model database Zenodo109, HuggingFace110

Automated 
query-to-reference 
mapping

Online mapping 
platform

Azimuth85,112, ArchMap111

Access to detailed 
downstream results

No dedicated 
databases

Paper supplements, 
Figshare193

Reproducibility of 
analyses and results

Public code 
repository

GitHub

For each sharing aspect, the type of tool or platform needed is specified, as well as examples 
of those tools and platforms.
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Atlases provide a uniquely comprehensive resource for these analyses 
due to their greater coverage of biological and technical factors.

Cell identities and their markers. Cell-type annotations across 
single-cell datasets rarely agree. This is partly due to biological dif-
ferences in cellular states, but also due to the lack of standardization 
in cell-type nomenclature and resolution16. By combining multiple 
annotated datasets from different laboratories, conditions, anatomical 
regions or sample handling protocols10–12,15,16 as well as different expert 
opinions on cell-type labels, cell atlases present an opportunity for 
establishing consensus cell-type annotation8,14,16,17.

Cell-type markers identified via an atlas are likely to be more spe-
cific, sensitive and robust as they are consistent across datasets and 
thus across protocols10,16. Moreover, as atlases pool data across multi-
ple studies, they can reveal rare cell types that are often missed when 
analyzing individual datasets8,9,12,16,17,65. Thus, atlas-based markers are 
particularly valuable for cell-type annotation in new datasets122 and 
evaluation of newly identified or previously proposed markers14–16, 
as well as the selection of markers used for tissue staining7,15, cell 
sorting6,123 and probe design for spatial transcriptomics124. While 
common marker identification strategies (benchmarked in ref. 125) 
can be applied to atlases, additional considerations are required 
due to the large number of relevant clusters and their relative hierar-
chy, as well as the large number of datasets and related batch effects  
(Supplementary Note 9).

Description of gene function and regulation. The gene regulatory 
landscape and molecular pathways within individual cell types are often 
inferred via coexpression analyses2,15,24,126,127. These analyses benefit 
from large heterogeneous data collections with many samples. Thus, 
atlases can be used to robustly identify gene–gene relationships128,129 
and multicellular programs, which are groups of genes co-regulated 
across different cell types130. To better model regulatory relationships 
between genes, measurements from multiple omics layers can be 
used131. Multi-omic atlases that cover the full omic landscape of emerg-
ing multi-omic data types132–134 could thus serve as a bridge between 
different omics layers135.

Molecular and cellular changes across conditions. To understand 
the molecular characteristics of phenotypes, such as disease, age or sex, 
one must analyze associated changes in gene expression and cell-type 
composition6–8,11,122 (called ‘covariate analysis’ henceforth). Atlases 
improve covariate analysis for multiple reasons. They capture a large 
number of subjects and datasets, which results in better generalization 
and higher power to detect associations between phenotypes and gene 
expression7,17. These associations can also serve as an additional layer 
of gene functional information beyond the commonly used pathway 
databases15. The large subject number also results in better coverage 
of continuous clinical or demographic trajectories, such as aging 
or disease progression136. Likewise, increased patient coverage may 

reveal heterogeneity between patients with the same disease, ena-
bling patient stratification for personalized medicine7,11. Moreover, 
as atlases combine data from multiple studies, they bring together 
biological conditions that could not be compared within individual 
datasets6,13,15,65,122. For example, shared molecular characteristics across 
conditions may be informative for drug repositioning across diseases 
or tissues7,17,137. Similarly, cross-condition differences may aid in select-
ing preclinical models9,15. In the future, atlases may even be used to build 
predictive models for the clinical classification of patients based on 
their single-cell profile8,11,138.

There are multiple challenges of covariate analyses within atlases. 
The datasets in an atlas were not generated with a single question in 
mind and thus do not follow a single optimal experimental design to 
answer any specific question11. Furthermore, when building an atlas, 
batch effects are often only corrected in an integrated representation, 
while the gene expression counts are left uncorrected67,86,139,140. This ren-
ders gene expression values incomparable across batches141. Similarly, 
cell proportion analysis may be affected by batch-related differences 
in sampling protocols (for example, dissociation technique) and tissue 
sampling locations11,17. For these reasons, atlas-level covariate analyses 
require the incorporation of confounders in statistical models141,142. 
This becomes particularly challenging in the case of partial confound-
ing between biological and technical factors, such as when a cellular 
trajectory is divided across datasets. Alternatively, one may consider 
performing the analysis per dataset and afterwards combining the 
results143. Furthermore, modeling assumptions established based on 
individual datasets are not always met in atlases. For example, cell–cell 
communication tools assume that all cells were located together in the 
tissue, which is not true for an atlas as a whole. Thus, standard analysis 
approaches need to be adjusted with atlas-specific considerations.

Guiding future experimental design. Atlases offer several opportuni-
ties to improve the design of future experiments. For example, while 
individual datasets are rarely generated to assess how different techni-
cal parameters affect the data, atlases bring together multiple datasets 
that enable such analyses11,12,16,17. This can reveal which technical fac-
tors should be optimized to prevent cell stress, doublets or ambient 
contamination, or to better capture specific cell types17. Furthermore, 
atlases can be used for power analyses, that is, to estimate the number 
of cells, samples or donors that need to be profiled to answer specific 
questions. This can be useful when studying rare cell types or when 
determining the optimal combination of counts per cell and number 
of profiled cells for differential gene expression analysis133,144. Finally, 
atlases highlight which cell types, diseases, demographics or other 
categories are understudied in the current data12,13,17,145 and need to be 
better captured in the future (Box 7).

Developing new single-cell methods and machine-learning 
models
The development of new single-cell methods heavily depends on 
the availability of high-quality datasets for method testing and 
benchmarking146,147. Highly curated reference atlases are particularly 
suitable for this for several reasons. First, they contain high-quality data 
in a standardized format, reducing the need for data wrangling. This is 
of particular interest for the development of large-scale generalizable 
‘foundation’ models for single-cell biology (Supplementary Note 10). 
Second, they contain diverse large-scale data and thereby present 
realistic challenges (for example, batch effects) for methods, revealing 
potential method limitations. Third, they contain diverse data appro-
priate for various benchmarking tasks. This covers different analysis 
types, including trajectory inference across continuous covariates, 
differential analysis across conditions and integration across batches. 
Fourth, due to their size, atlases can easily be split at random or in a 
stratified manner (for example, by datasets and lineages) to conduct 
benchmarks for time efficiency and data complexity. Fifth, atlases are 

BOX 6

Key takeaways
	• Atlases should be publicly accessible both computationally and 
interactively. However, standards for atlas sharing are not yet 
fully established and data are currently often scattered across 
databases.

	• Community efforts will be needed to keep atlases up to date 
with new datasets and associated discoveries, such as newly 
identified cell types. Atlas updates can be based either on 
mapping new data onto the atlas or on rebuilding the atlas.
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often well explored, thereby providing a reliable approximation of 
ground truth in terms of biological and technical effects present in the 
data. Thus, atlases have the potential to serve as standard benchmark-
ing datasets, which are common in the machine-learning field148, but 
still rare in single-cell data science149–151(Box 8).

Analyzing new single-cell, spatial or bulk data with atlases as 
references
Analysis of new data provides many challenges, such as data integration 
and de novo cell-type annotation, and may in some cases be limited due 
to a low number of cells and samples. These and many other challenges 
can be alleviated by leveraging atlases as a basis for the analysis of new 
data. Atlases can also supplement new data with additional biological 
information, such as in cross-modal expression prediction, expansion 
of the control sample pool and contextualization of bulk data with 
single-cell information.

Projecting new single-cell data into an atlas space. One of the central 
goals of scRNA-seq analysis is obtaining a high-quality, low-dimensional 
representation that enables the identification of cell types, states and 
trajectories. Atlases provide such high-quality representation and by 

using query-to-reference mapping methods, new datasets (queries) can 
be positioned within the atlas (reference) representation space. This 
has multiple advantages over analyzing query data alone12,152,153. First, 
rare cell populations are better represented in the atlas and can thus be 
better identified in the mapped query dataset as well. Second, the atlas 
representation was optimized to distinguish biological from technical 
variation using many training datasets. Mapping to this representation 
can improve batch correction in query data, in particular if query batch 
effects are directly confounded with biological variation and can thus 
not be disentangled using the query alone. Third, mapping into the 
atlas representation space enables a rapid, joint analysis of the new 
dataset and the atlas, for example, for cell identity annotation transfer 
and comparison (more details in ‘Annotating cellular identities’ and 
‘Comparisons with a control population’). Atlas-based representations 
are thus likely to become a standard step in future scRNA-seq analyses.

Successful mapping of a query to a reference depends on a number 
of factors, including the sample characteristics, data preprocessing 
and the mapping method. The mapped samples should be sufficiently 
similar to the reference, both in terms of sample biology as well as the 
measured features and preprocessing choices. For example, a human 
reference may not work optimally for mapping animal data or data from 
other preclinical models, such as organoids. Such mapping can result 
in either too much separation of the query and reference in the result-
ing representation due to under-correction or merging of distinct cell 
populations due to overcorrection when attempting to increase integra-
tion strength. In both cases, the integration failure hampers the correct 
interpretation of the results. Furthermore, while the reference mapping 
method that can be used with a given atlas is in many cases dependent 
on the model used for atlas building, some of the methods allow tuning 
of the mapping parameters to tailor the mapping to a given context. 
This includes modifying integration strength and adding biologically 
relevant features (genes) missing from the ref. 97. Finally, while reference 
mapping should be always evaluated, tools enabling this are still lacking.

BOX 7

Key takeaways
	• Atlases will play a key role in establishing cell annotation 
standards within tissues and across conditions. The number 
and diversity of datasets improve marker robustness and ease 
identifying rare cell populations.

	• Atlases will improve our understanding of gene regulation, 
especially when multi-omic atlases become more widely 
available.

	• Atlases can enable the association of demographic, clinical 
and other biological covariates with gene expression changes, 
due to large sample numbers and multi-condition coverage. 
However, batch effects may need to be explicitly modeled.

	• Atlases can reveal how experimental protocol characteristics 
affect data quality and cell population capture.

	• Atlases provide insights into under-sampled conditions and cell 
populations.

BOX 8

Key takeaways
	• The quality and diversity of the data within atlases make them 
especially well suited for the development and comparison of 
new methods and models.
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Fig. 4 | Use cases of integrated atlases. a,b, The rich information captured within the atlas can provide new biological or technical insights in multiple ways and can 
serve as a baseline for method development (a) or can be used as a reference for analyzing new single-cell, spatial or bulk datasets (b).

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | January 2025 | 41–57 51

Review article https://doi.org/10.1038/s41592-024-02532-y

With the increased number of datasets capturing different omics 
layers, it will be of interest to use references consisting of one modality 
(currently this is usually the transcriptome) to analyze queries from 
different modalities. This enables various downstream analyses, such 
as cross-modality annotation transfer and identification of cross-omic 
feature correlations. While different strategies for cross-omic map-
ping were proposed116,154, they have not yet been widely applied in the 
atlasing field.

Annotating cellular identities. While manual cell annotation is cum-
bersome and prone to mistakes17,65, atlases enable automated transfer 
of high-quality reference annotations to new datasets. This is com-
monly done by transferring annotations from reference cells that are 
close by in the representation to mapped query cells8,10,65,83–85,155,156. 
Furthermore, annotation of low-quality or doublet droplets is often 
cumbersome, unreliable and inconsistent due to manually set thresh-
olds157. Atlases that have annotated such populations may be used to 
automatically annotate low-quality droplets in the new datasets97. 
Finally, uncertainty metrics158 can be used to identify annotations 
transferred with high uncertainty and, therefore, with a higher likeli-
hood to be incorrect. Cells with high uncertainty labels have been 
shown to represent unseen cell identities in the new data (that is, cell 
identities not present in the reference atlas), such as new cell types or 
disease-related cell states17. Atlases are thus expected to serve as the 
first step in the annotation and analysis of future datasets, guiding the 
manual fine-tuning of the annotation159.

Comparisons with a control population. Identifying the difference 
between healthy cellular phenotypes and those specific to a disease 
based on a single dataset can be complicated by within-cohort batch 
effects, incomplete coverage of healthy cell populations and small 
sample sizes. Using atlases as a basis for the analysis of new query data 
can mitigate these limitations. For example, mapping query samples 
from disease conditions on top of a healthy reference can directly 
identify cell types that have an altered, non-healthy phenotype14,17,158. 
The atlas size reduces the chance for falsely interpreting healthy vari-
ation as disease effects due to the lack of comprehensive controls. 
Nevertheless, atlases alone cannot yet fully replace control samples 
for new datasets152. Furthermore, using an atlas as a reference enables 

comparing cells across a wide range of conditions included in the atlas. 
This has been used to optimize organoid protocols120 or compare model 
systems160. However, one must stay cautious in jointly analyzing atlases 
and mapped data, as atlases and mappings never perfectly remove all 
batch effects, which may lead to biases in the interpretation152.

Reference atlases may also serve as a control to assess sample 
quality and thus prevent mistaking unanticipated technical variation 
for biological differences. For example, if cells from a new sample map 
to an unexpected location in the atlas representation, away from the 
reference cells of the corresponding cell-type and biological condi-
tion, this may indicate low sample quality or strong technical artifacts.

Cross-modal imputation. To improve the understanding of cellular 
states and regulation across modalities, data imputation across modali-
ties can enrich unimodal datasets. Multimodal atlases can be useful 
for imputation due to the large number of contained datasets, thus 
increasing the reliability of imputation models161,162. Imputation can be 
used in many different settings, such as denoising, cross-omic predic-
tion, prediction of non-measured genes in spatial data or imputation of 
spatial location in nonspatial data12,135,161–166. However, special care needs 
to be taken to assess the reliability of the imputation, especially when 
imputing conditions that are not closely related to the training data167.

Analysis of non-single-cell data. Many bulk datasets are available 
across modalities and individuals11, but they lack cell-type informa-
tion that is crucial for understanding tissue function and disease. 
Similarly, spatial data often do not reach single-cell resolution. To 
enable interpretation at the level of cell populations, these datasets 
can be deconvolved based on single-cell data168–171. Atlases are uniquely 
suited for bulk8,11,17,172,173 and spatial8,13,24 data deconvolution due to their 
comprehensive coverage of the cell types present in a tissue or organ, 
and their robust multi-batch cell-type profiles.

Atlases can also help to better understand data that are neither 
single-cell nor transcriptomic. For example, they can help identify cell 
types that may be affected by perturbations, such as disease-associated 
genomic variants in genome-wide association studies17,35,122,174,175 and cell 
types that may be targeted by specific drugs176. Eventually, when suffi-
cient matched single-cell and clinical data are collected, it may become 
possible to develop models that could infer cell-level features, such as 
cell proportions, from images or other clinical measurements177 (Box 9).

Conclusion and outlook
With the maturation of data integration methods and the wide avail-
ability of single-cell datasets, atlasing studies are becoming increasingly 
common. Atlas resources promise to build consensus across communi-
ties and impact biomedical research36. However, standards for building 
atlases are lacking and atlas use cases are still being explored. In this 
Review, we discussed considerations and opportunities for building 
and using atlases to initiate a discussion on standards in the field.

There are still many open questions in the field of atlas building 
that would benefit from benchmarks and that call for new datasets, 
technologies and methods. First, a systematic comparison of different 
atlas building pipelines is lacking. Second, as atlases become more 
comprehensive and complex, including cross-species, longitudinal, 
whole-organism and multimodal data, the need for integration meth-
ods that can accommodate such complex scenarios will grow. Recent 
developments in the machine-learning community, such as foundation 
models that are able to generate broadly usable representations for 
large and diverse datasets, may thus also be useful in the single-cell 
community178,179. Third, cost and labor reduction of single-cell profiling 
technologies will be needed to enable population-wide and cross-omic 
atlases as well as to popularize their use in clinics. These open questions 
and potential solutions are further discussed in Supplementary Note 11.

Similarly, given that atlases are designed as community resources 
and their usability is of crucial importance, we identify key areas for 

BOX 9

Key takeaways
	• Mapping new datasets onto an atlas can improve their 
data representation. Successful mapping depends on the 
correspondence between the atlas and the new data in terms of 
biological, technical and data preprocessing characteristics.

	• Data quality issues can be revealed by unexpected localization 
of new data points in the atlas representation space after 
mapping.

	• New datasets can be rapidly annotated based on automated  
cell label transfer from the reference.

	• Atlas-guided case–control comparisons in new data can improve 
population and condition coverage. However, atlases cannot 
fully replace matched control populations for new data.

	• Multimodal atlases may in the future enrich unimodal datasets 
via cross-modal imputation.

	• Atlases can help to infer cell-type proportions in bulk and spatial 
data.

	• Atlases can be used to identify cell populations expressing 
genes of interest, such as drug targets or genes with 
disease-associated polymorphisms.
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usability enhancement. First, the performance of interactive interfaces  
and standard analysis pipelines diminishes with the size of data-
sets. To overcome this, wider adoption of graphics processing unit 
(GPU)-accelerated tools180, developing more compact data repre-
sentations, such as compressing cells into meta cells, encoding data 
into foundation models or simpler generative models, or providing 
standardized, human or machine-readable descriptions of cell and 
gene landscapes, would be beneficial. Second, as atlases increase in 
complexity, their visualization and interpretation also do so. Workflows 
should, therefore, be adopted to ease interpretation and visualization 
of atlases spanning tissue resolutions and omics layers. Third, existing 
workflows for analyzing new data based on mapping onto reference 
atlases are still in prototype stages and require further development 
and testing. Fourth, single-cell datasets covering underrepresented 
donor populations, such as specific ancestries, are needed to make 
atlases more generalizable and robust. Fifth, although atlases hold 
great potential for various fields including molecular biology, medi-
cine and computational sciences, current access interfaces are mainly 
tailored to the bioinformatics community181. Therefore, it is necessary 
to further develop data-access options tailored to different user needs, 
including interactive platforms and application programming interface 
access points.

As new single-cell datasets are generated, atlases will also grow in 
size and complexity. This will bring with it questions regarding optimal 
atlas size and the point at which an atlas can be considered ‘complete’. 
Future studies will need to systematically assess at what point adding 
more data no longer improves the coverage of biological information 
(for example, cell states and ancestries) or the quality of the integration. 
Currently, it is still unclear how the optimal atlas size can be determined 
in practice182. In part, this is due to the diversity of goals of atlas studies. 
Healthy cell-type variation, including rare cell states, may be compre-
hensively retrievable with currently available datasets. In contrast, 
comprehensive coverage of genetic and phenotypic diversity across 
populations and conditions will require a large number of samples, 
which is unlikely to be achieved in the near future36.

Despite the promises of reference atlases, they also come with 
limitations. First, atlases rely on integration to remove batch effects 
between datasets. However, this rarely works perfectly and, especially 
when batch effects are strong, also removes biological variation. 
This can limit the resolution of retrievable cell populations. Second, 
just like any individual single-cell dataset, atlases are designed with 
particular goals in mind and thus may be unsuitable to answer certain 
biological questions. For example, if atlas-builders focus on provid-
ing a healthy reference, this may limit atlas-based analysis of data 
from other conditions. Third, atlas building demands substantial 
human and computational resources, which is likely to increase as 
atlases grow in size. Thus, recent work has proposed to complement 
high-quality reference atlases with automated pipelines that enable 
more modular and rapid data integrations tailored to a specific bio-
logical question at hand68,183,184. Fourth, the quality of atlases and their 
long-term maintenance vary as best practice standards are currently 
lacking. In this Review, we aim to make a first step toward establishing 
these standards.

While atlases are expected to have a profound effect on medicine, 
ranging from disease target identification and toxicity prediction to 
direct applications in clinics36, medicine is not the only field that is 
anticipated to be transformed by atlases. For example, cross-species 
atlases may provide insights into phylogeny121,185,186 and environmental 
niches187–189. Similarly, ecology and agriculture atlases190,191 could inte-
grate cross-areal datasets to reveal the interactions between environ-
ment and organism188,192. However, before such atlases can be created, 
more single-cell datasets must be generated in these domains. In the 
near future, atlases outside the biomedical field will, therefore, likely 
be focused on model organisms, for which sufficient data and com-
munity interest are present.

In this Review, we outlined current considerations and recom-
mendations in building, using and sharing atlases, and highlighted 
aspects of these processes that merit further research and develop-
ment. We envision that the insights collected here will aid in setting 
common standards for atlas building and will fuel the broad use of 
atlases in single-cell research. Together, this will pave the way to a 
consensus-based approach for describing cellular biology, increasing 
the impact of atlases on molecular biology and medicine.

Data availability
The final results of the analysis of the published scRNA-seq datasets are 
collected in Supplementary Table 2 and the intermediate results are 
available at https://github.com/lueckenlab/single-cell-papers-trends/.

Code availability
The code for the analysis of the published scRNA-seq datasets depicted 
in Fig. 1 is available at https://github.com/lueckenlab/single-cell- 
papers-trends/.
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