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Highly multiplexed imaging holds enormous promise for understanding
how spatial context shapes the activity of the genome and its products

atmultiple length scales. Here, we introduce a deep learning framework
called CAMPA (Conditional Autoencoder for Multiplexed Pixel Analysis),
which uses a conditional variational autoencoder to learn representations
of molecular pixel profiles that are consistent across heterogeneous cell
populations and experimental perturbations. Clustering these pixel-level
representations identifies consistent subcellular landmarks, which

can be quantitatively compared in terms of their size, shape, molecular
composition and relative spatial organization. Using high-resolution mul-
tiplexedimmunofluorescence, this reveals how subcellular organization
changes upon perturbation of RNA synthesis, RNA processing or cell size,
and uncovers links between the molecular composition of membraneless
organelles and cell-to-cell variability in bulk RNA synthesis rates. By
capturinginterpretable cellular phenotypes, we anticipate that CAMPA
will greatly accelerate the systematic mapping of multiscale atlases of
biological organization to identify the rules by which context shapes
physiology and disease.

The wide availability of single-cell omics techniques has rapidly
advanced our understanding of cell biology in health and disease'”.
Currently, thereis arapidly growing range of spatially resolved omics
methods, which can quantify tens to hundreds of molecular species
in single cells across large populations of cells or tissues, and at the
same time show how these molecular species are spatially organized
from the multicellular to the subcellular scale’. This combination
of quantitative and spatial information across multiple scales holds
enormous promise for understanding biological systems.

Cellsindifferent states (for example, distinct cell cycle positions
or disease states) or experimental conditions show changes in the
relative abundance and subcellular localization of proteins and RNAs.
From an analysis perspective, the challenge is to identify and quantify
these changes directly from multiplexed image-based datasets in an
unbiased manner, and thereby facilitate their biological interpretation.
Previously, pixel clustering of multiplexed image data hasbeen used to
identify subcellular regions viasimilarity of their molecular profiles**.
These approaches weigh all channels equally in clustering, therefore,
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when applied across cells from different experimental conditions they
typically result in pixels from different conditions being identified as
distinct*, even though they may represent the same subcellular region.
Asanextreme example, ifan experimental treatmenteliminates asingle
target protein (Fig. 1a), thereductioninintensity of the corresponding
channel may be the largest difference between the high-dimensional
pixel profiles of the two conditions. In this case, direct pixel clustering
would identify independent sets of pixel clusters for each condition
(Fig. 1b). Although this may be useful for qualitative identification of
differences between conditions®, it does not enable quantification of
changes in the internal organization of cells because it is difficult to
comparethe different sets of subcellular regions found in each condi-
tion (Supplementary Note1).

Recently, deep learning-based segmentation models were used to
segment cells and nuclei from multi-channel fluorescence microscopy
images®’. However, adapting these supervised methods to generate
consistent segmentations of subcellular structures would require
annotated training datafromall conditions. Although self-supervised
approaches alleviate the need for this time-consuming manual labe-
ling®’, they do not account for changing localizations of molecular
species across perturbations nor do they enable quantification of
these changes. To facilitate high-throughput quantitative analysis of
subcellular organization, we therefore need approaches that caniden-
tify consistent subcellular landmarks despite condition-dependent,
and possibly unanticipated, changes to abundance and/or relative
localization of measured proteins and RNAs.

To achieve this, we have developed CAMPA (Conditional Autoen-
coder for Multiplexed Pixel Analysis), adeep learning framework based
on conditional variational autoencoders (CVAEs)". CAMPA uses a cVAE
for unsupervised learning of condition-independent molecular profile
representations to identify consistent subcellular landmarks (CSLs),
thatis, pixel clusters that are conserved across conditions. Using these
landmarks to measure changes in molecular composition and spatial
organization at the subcellular scale, CAMPA enables aninterpretable
comparison of conditions (Fig. 1c). CAMPA is an open-source python
package with strong links to the single-cell transcriptomics analy-
sis software, scanpy", and its spatial extension, squidpy'. It enables
high-throughput analysis of high-resolution multiplexed imaging
datasets with GPU (graphics processing unit)-accelerated assignment
of pixels to CSLs.

Here, we use CAMPA to derive a detailed map of subnuclear organi-
zation across different perturbations, directly from high-resolution
iterative indirectimmunofluorescence imaging (4i) (ref. 4) data. This
shows how key proteins and protein states (for example, phospho-
proteins and histone post-translational modifications) involved in
transcription, chromatin, mRNA processing and nuclear export, as well
as subnuclear organelles, change at the cellular and subcellular scale
upon perturbation of various stages of messenger RNA metabolism. We
find that the three aspects of cellular phenotypicinformation captured

by CAMPA (cellular intensities, subcellular protein localizations and
subcellular spatial organization) contribute unique information to
characterize perturbations, indicating that CAMPA will be a power-
ful approach for cellular phenotypic screening. Finally, by capturing
and quantifying interpretable cellular phenotypes at multiple scales,
we demonstrate that the combination of 4i and CAMPA can uncover
quantitative relationships across scales, from cell populations to sub-
cellular organelles.

Results

CAMPA identifies consistent subcellular landmarks

In highly multiplexed image datasets, each pixel is represented as a
multiplexed pixel profile: a one-dimensional vector containing the
intensity of each marker at that spatial location. We developed CAMPA
to identify consistent types of pixel profiles across different experi-
mental conditions, even when some of the underlying channels change.
CAMPA first learns alocal, condition-independent representation of
multiplexed pixel profiles and subsequently clusters the learned rep-
resentations into CSLs (Fig. 1c). To learn a latent representation z, a
cVAEistrained onann x nneighborhood of the multiplexed pixel pro-
files x, together with a set of condition labels c for each pixel profile.
Pixels are then grouped together by applying the Leiden algorithm®
onak-nearest neighbor graph of the learned latent (pixel) representa-
tions. Because the cVAE model learns a conditional generative distribu-
tion py(x|z, ¢) for the pixel profiles, the model is optimized to encode
variationsuch as subcellular differences inintensity that occur across
all conditions (and omit condition-specific information) in the latent
representation z'>**, which resultsinless condition-dependent cluster-
ing of z(Fig. 1h,i). Within CAMPA, identified CSLs can be quantitatively
compared in terms of their size, shape, molecular composition and
relative spatial organization.

Akey goal of perturbation experiments is toidentify and quantify
induced changesin cellular phenotypes. Here, we focus on how pertur-
bation of various stages of RNA metabolism affects subcellular organi-
zation, by collecting a high-resolution (pixel size, 108 nm x 108 nm)
44-plex image dataset of 11,848 human epithelial cells (184A1) across
six chemical perturbations, using 4i (ref. 4) (Fig. 1d). The perturbations
target different pathwaysinvolved in RNA production and processing
(histone deacetylation, trichostatin A (TSA); polymerase (Pol) I tran-
scription, CX5461 (ref. 15); Pol Il transcription initiation, triptolide'®;
Pol Il transcription activation, AZD4573 (ref. 17); and mRNA splicing,
meayamycin'®). The proteins and post-translational modifications
imaged (Supplementary Table 1) either play roles in RNA metabolismor
aremolecular markers of subcellular organelles (for example, nuclear
speckles) or cellular states (for example, cell cycle stage, cell crowd-
ing). We observed changes in overall protein state abundances across
all perturbations (Fig. 1e), confirming previous observations in other
cell lines'. However, we also noticed perturbation-induced changes
inthe composition and relative spatial organization of membraneless

Fig.1| CAMPA enables unsupervised learning of CSLs using a cVAE.

a, Schematic showing perturbation-induced changes in channeliintensity.

b, Schematic of direct pixel clustering across experimental conditions leading
to condition-dependent clusters. ¢, Schematic of CAMPA, showing how a cVAE
conditioned on perturbation can learn a perturbation-independent latent space.
Clustering this latent space identifies CSLs, enabling quantitative comparisons.
d, Schematic of the 4i experiment and dataset dimensions. e, Fold-change in
nuclear mean intensity in different perturbations compared with unperturbed
cells, for all proteins with nuclear localization. P values show the significance of
the perturbation effect on meanintensity, as determined using a mixed-effect
model (Wald test, multiple testing correction using Benjamini-Yekutieli method).
5-EUrepresents 5-ethynyl uridine pulse labeling of nascent RNA (Methods).

f, UMAP representation of pixels using either multiplexed pixel profiles (left)

or cVAE latent space (right). Pixels from unperturbed cells, trichostatin A (TSA)-
treated and triptolide-treated cells colored by perturbation. Data shown are the

subset of pixel profiles used to derive the clustering (see Methods). g, Comparison
of perturbation dependence of multiplexed pixel profiles, and VAE/cVAE latent
space coordinates. Plots show balanced accuracy scores of binary logistic
regression classifiers predicting perturbation from normalized multiplexed

pixel profiles or latent representations. Accuracy of 0.5 indicates random

chance (perturbation information absent from data). h, Example cells from each
perturbation colored by clusters, along with a pie chart of relative abundance

of clusters per perturbation. Left: Direct pixel intensity clustering (Leiden
resolution, 1.2). Right: cVAE latent space clustering (CSLs) (Leiden resolution,
0.5).i, Comparison of perturbation dependence of direct clustering at different
Leiden resolutions, and VAE and cVAE latent space clustering (CSLs). Plots show
the coefficient of variation of the fraction of pixels assigned to each cluster in each
perturbation. The boxplot summarizes results for all clusters with the number of
clusters nshown above. Center line, median; box limits, upper and lower quartiles;
whiskers, 1.5-fold the interquartile range; points, all data points.
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nuclear organelles involved in RNA metabolism, such as nuclear speck-
les, promyelocytic leukemia (PML) bodies and the nucleolus. This
dataset therefore provides anideal use-case for the CAMPA framework
togenerate novel insights into relationships between RNA metabolism
and subcellular organization.

To quantify these changes, we initially focused on analyzing the
approximately 100 million nuclear pixels for the 34 markers that local-
izedtothe nucleus (Extended DataFig.1and Supplementary Tables 2,
3).Weapplied CAMPA cVAE training and clustering to these data using
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not better than random chance (median accuracy, 0.53; minimum,
0.50; maximum, 0.60). In contrast, classifiers based on multiplexed
pixel profiles reached a median accuracy of 0.87 (minimum, 0.52;
maximum, 0.98). The VAE model without conditioning was not able
to generate condition-independent latent spaces (median accuracy,
0.72; minimum, 0.51; maximum, 0.97), indicating that explicit use of
conditioningis necessary in CAMPA (Fig. 1g and Extended DataFig. 2a).
To investigate the importance that the cVAE places on the condition,
we used integrated gradients?, which showed that for channels with
perturbation-specific intensity changes, the cVAE places increased
importance onthe conditioninput (as opposed to the latent represen-
tation) for modeling these channels (Extended Data Fig.4d,e). We also
optimized the input neighborhood size to improve cVAE latent space
robustness to single-pixel noise, which often occurs in microscopy
imaging. For our data, a3 x 3 neighborhood was optimal (Supplemen-
tary Fig. 1d).

To accelerate latent space clustering and to enable interactive
clustering on a standard workstation, we clustered a subsample of
pixels (150,000 pixels) and then projected resulting clusters to all
pixels using the 15 nearest neighbors. This resulted in 10 clusters.
Cluster stability was not significantly influenced by a different random
subsample nor by increasing or decreasing the number of samples used
forthe clustering by afactor of two (Supplementary Fig.1a,b). Because
all conditions are considered together, any cluster instability does not
affect the ability to quantitatively compare cells across conditions. For
comparisonwith previous approaches, we also directly clustered pixels
using their multiplexed pixel profiles*. Whereas intensity space clusters
were enriched in different perturbations (Fig. 1h and Extended Data
Fig.2b), latent space clusters were evenly distributed across perturba-
tions (Fig. 1hand Extended Data Fig. 2¢). To quantify the perturbation
specificity of clusters, we computed the median coefficient of varia-
tion of the fraction of pixels assigned to each cluster across perturba-
tions. The median coefficient of variation of the latent space clustering
is 0.24 (minimum, 0.08; maximum, 0.61), indicating that clusters
have a similar relative abundance in different perturbations, whereas
direct pixel clustering at similar resolution results in a median coef-
ficient of variation of 0.57 (minimum, 0.09; maximum, 2.62) (Fig. 1i).
In addition, despite differences in intensities of some 4i markers
across different cell cycle phases (for example, PCNA (proliferating
cell nuclear antigen), pRB1), the inclusion of cell cycle as a condition
in CAMPAreduced the cell cycle dependence of the latent representa-
tions (median accuracy of pairwise binary classifiers of latent space/
pixel profiles, 0.58/0.67), whichresulted inlatent space clusters being
assigned consistently across cell cycle stages (median coefficient of
variationacross cell cycle stages of latent space clustering/direct pixel
clustering, 0.11/0.21) (Extended Data Fig. 3). We therefore name these
cVAE latent space clusters ‘consistent subcellular landmarks’ (CSLs)
and use them in the following to analyze the impact of perturbations
onsubcellular organization.

To enable biological interpretability of quantitative comparisons
between cells, we annotated CSLs with the names of known subcellular
structures (see Methods) (Fig. 2a). To facilitate this optional step in the
CAMPA workflow and to avoid mis-annotations, automated annotation
proposals can be obtained by querying the Human Protein Atlas (https://
www.proteinatlas.org/)* database. The annotation resulted in assign-
ment ofthe10 original CSLs to seven annotated CSLs (Nucleolus, Nuclear
speckles, PML bodies, Cajal bodies, Nucleoplasm, Nuclear periphery
and Extra-nuclear (outside the nucleus)) (Fig. 2d-i), by merging four
original CSLsinto the Nucleoplasm CSL (Extended Data Fig. 4a). These
annotations are consistent with automatic annotations proposed by the
Human Protein Atlas database (Extended DataFig.4b). Inthe following
we refer to these annotated CSLs simply as CSLs. To quantitatively vali-
date CSL annotations, we performed two manual segmentations of
nuclear speckles and two manual segmentations of PML bodies using
state-of-the-art pixel classifiers** (Extended Data Fig. 5). These were

based only onsingle-channelintensities of canonical markers for these
membraneless organelles (SON and SRRM2 for nuclear speckles and
SP100 and PML for PML bodies). We quantitatively compared these
manual segmentations with their respective CSLs using the F1-score (a
measure of similarity) and found that CSL-derived nuclear speckles were
as similar to the manual segmentations (Fycs;json) = 0.963 + 0.006,
Ficstisrrmz) = 0.967 = 0.006, mean +s.d. between conditions) as the
different manual segmentations are to one another
(Fysrrmzisony = 0.964 £ 0.007) (Extended Data Fig. 5). Fi-scores were
similarly high for PMLbodies.

We therefore conclude that CAMPA enables consistent identi-
fication and annotation of subcellular landmarks across perturba-
tions and cell cycle stages. This contrasts with previous direct pixel
clustering approaches, which often identify different clusters for
the same subcellular organelle in different conditions or cell cycle
stages. Unlike for manual segmentation of subcellular structures,
when using CAMPA to identify CSLs there is no need to pre-define
markers of certain landmarks in advance, because the cVAE uses all
channels that are consistent across perturbations to define the latent
space. This may ultimately enable identification of novel landmarks
defined by higher-dimensional combinations of different channels.
Importantly, the cVAE learns to remove condition-specificinformation
from channels that show characteristic changes in intensity between
conditionswhengenerating the latent space and the CSLs. Naturally, as
shownin the following, these channels can then be used to compare the
effects of, and differences between, perturbations when aggregated on
the CSLs.

Uncovering perturbation-induced subcellular landmark
changes

To quantify subcellular changes in abundance of markers across the
six perturbations, we calculated the mean intensity of each marker in
each CSL per cell. We then computed the fold-change for a particular
condition compared with unperturbed cells, across all CSL-channel
combinations, as well as the fold-changes in the size (number of pixels)
of each CSL (Supplementary Fig. 2a,b). Unlike direct pixel clustering
approaches**, in which conditions are compared by identifying pixel
classes that change abundance between conditions (Extended Data
Fig. 6 and Supplementary Note 1), CAMPA compares molecular abun-
dances across landmarks that are consistently found in both conditions
(CSLs). This naturally extends traditional quantification of overall cel-
lular abundance changes (Fig. 1d) to the subcellular scale. Focusing
on meayamycin, which perturbs mRNA splicing'®, CAMPA identified
aset of markers that were uniformly depleted across the nucleus, and
an overall increase in the size of nuclear speckles (Supplementary
Fig. 2b). To investigate relocalization of proteins (rather than over-
all changes in abundance), we normalized intensity fold-changes in
each CSL by their corresponding whole-nucleus fold-changes (Fig. 3a
and Supplementary Fig. 2c). This showed that the relative size of
nuclear speckles increases upon meayamycin treatment, and that
their molecular composition changes: they become significantly
enriched in cytoplasmic poly(A) binding protein 1 (PABPC1) (Fig. 3d)
and depleted in POLR2A-S2P (a marker of actively transcribing RNA
polymerasell) (Fig. 3e). PABPClrelocalization to nuclear speckles was
observed previously”. POLR2A-S2Pis typically distributed throughout
thenucleoplasmwithslight enrichment in nuclear speckles (Fig. 2¢)*.
However, uponinhibition of mRNA splicing, POLR2A-S2Pisreducedin
overall abundance (Supplementary Fig. 2b) and s specifically excluded
from nuclear speckles (Fig. 3a,e). These changes in POLR2A-S2P were
mirrored by areduction in bulk RNA production upon meayamycin
treatment, as measured using 5-ethynyl uridine pulse labeling (Fig. 1d
and Methods). Many mRNA splicing factors are located in nuclear
speckles, and transcription and splicing has been reported to occur
more efficiently in their vicinity”°. Moreover, Ser2-phosphorylation of
POLR2Aisimportant for coupling of mRNA splicing and transcriptional
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Fig. 2| CSLsrepresent known subnuclear structures. a, UMAP representation
of pixels using their cVAE latent representations generated in CAMPA, colored
by CSL. b, Example nucleus showing the spatial distribution of CSLs. ¢, Relative
mean intensity of each channelin each annotated CSL (see Extended Data
Fig.4aforall10 Leiden clusters). Heatmap z-scored by column to show the

relative localization of each channel across CSLs. The black-outlined boxes are
highlighted in d-i. d-i, Example 4i channels that are enriched or depleted in the
identified CSLs, shown together with CSLs. See c for the distribution of channels
acrossthe CSLs. Scale bar, 5 pum.

elongation®. However, our analysis shows that the relative abundance
of CDK9 (the kinase predominantly responsible for POLR2A-S2P)
increasesinnuclear speckles at the same time (Fig. 3a). Thisindicates
thatinhibition of splicing affects overall transcription rates, and either
causes relocalization of transcribing Pol Il (POLR2A-S2P) further away
from nuclear speckles or preferentially affects transcription of genes
thatarenormally transcribed in the vicinity of nuclear speckles. These
findings areinagreement with amodelinwhich splicing and transcrip-
tion are functionally and kinetically coupled™.

To analyze changes in spatial arrangement of the identified CSLs
upon meayamycin treatment, we computed the pairwise spatial
co-occurrence between all CSLs (Fig. 3f). Spatial co-occurrence'>*
captures therelative probability that two CSLs are found within a given
distance interval fromone another (Fig. 3g and Supplementary Fig. 3).
At short distances, co-occurrence scores from a structure to itself
(auto-co-occurrence) are typically high, reflecting the fact that pixelsin
close spatial proximity arelikely to be from the same CSL. We found that
spatial auto-co-occurrence of nuclear speckles remains high atlarger
distances in meayamycin-treated cells thanin unperturbed cells. This
indicates that the average size of nuclear specklesincreases in this per-
turbation, which we confirmed (Fig. 3h). Examining the co-occurrence
between CSLs, we found that co-occurrence of PMLbodies and nuclear
speckles increases at short distances in meayamycin-treated cells
compared with unperturbed cells (Fig. 3g), indicating that PML bod-
ies are more likely to be found in close proximity to nuclear speckles.
The opposite effect was observed between nuclear speckles and the
nucleolus (Fig. 3g). Re-examination ofimages of CAMPA-derived sub-
cellular segmentations showed that, upon meayamycin treatment,
PML bodies indeed appear to coalesce onto nuclear speckles, and
the nucleolus and nuclear speckles appear to move further from one
another (Fig. 3b). To our knowledge, neither of these observations has
been previously reported. PML bodies have been reported to juxta-
pose with Cajal bodies® and some PML isoforms (produced through
alternative splicing) localize to the nucleolar periphery®*. Notably,

all of these compartments, including nuclear speckles, are thought
to form through liquid-liquid phase separation®, therefore relocali-
zation of PML bodies to contact nuclear speckles could represent
surface-wetting between these distinct condensates™.

CSLs can thus be used to identify and statistically quantify both
absolute and relative changes in molecular abundance in different
cellular structures and to quantify changesin the size, morphological
properties and the high-dimensional subcellular spatial organization
of thousands of cells.

Comparing multiple perturbations

So far, we have considered comparisons of each perturbation to unper-
turbed controls. Here, we extend these analyses and show how CAMPA
can be used to compare multiple perturbations with one another. To
do this, we generated a feature vector for each cell containing the
mean intensity of each channel in each CSL (Fig. 4b). We used this as
arepresentation of the specific subcellular-localized abundance of
each channel. In a similar way, we represented the spatial organiza-
tion of the nucleus as a feature vector containing the pairwise spatial
co-occurrencescores (Fig. 4c). Finally, we used abaseline feature vector
of meannuclear intensities of all channels to represent the information
available without subcellular resolution (Fig. 4a). To determine how
these distinct aspects of cellular organization change across all pertur-
bations, we quantified differences between perturbations withall three
per-cell representations using pairwise silhouette scores (Fig. 4d-f).
Using mean nuclear intensity features, perturbations targeting Pol Il
transcription (AZD4573, triptolide) showed low pairwise silhouette
scores, indicating common changes in overall nuclear abundance of
the proteins and protein states measured (Fig. 4d). Inalmost all of the
cases, pairwise silhouette scores were higher when considering per-CSL
intensities (Fig. 4e) instead of whole-nucleusintensities. Thisindicates
that per-CSL intensities provide a more fine-grained characteriza-
tion of the cellular phenotype and are therefore better able to distin-
guish perturbations. In contrast, we found that spatial co-occurrence
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Fig.3|Molecular composition and spatial organization of subcellular
landmarks change upon inhibition of mRNA splicing. a, log, fold-change of
mean intensities for each channelin each CSL, or number of pixelsin each CSL,
when comparing meayamycin with unperturbed cells. Values shown are normalized
to overall (whole-nucleus) changes in intensity. P values show the significance
of meayamycin treatment onintensity of each channel and CSL combination,
compared with the change observed for the whole nucleus, as determined
from the mixed-effect model (Wald test, multiple testing correction using the
Benjamini-Yekutieli method). b, Example unperturbed (top) and meayamycin-
treated (bottom) cells, colored by CSL. c-e, Example cell from b with pixels
colored by SRRM2 intensity (c), PABPCl intensity (d) and POLR2A-S2P intensity

(e).f, Schematic showing calculation of spatial co-occurrence. g, Mean log, spatial
co-occurrence from Nuclear speckles to Nuclear speckles (auto-co-occurrence),
Nucleolus and PML bodies, as a function of distance (minimum of the distance
interval; onlog scale) in meayamycin-treated and unperturbed cells. Shaded
regions indicate 95% confidence intervals for the mean. See Supplementary
Fig.3bforall co-occurrence plots of meayamycin-treated and unperturbed cells.
h,Median area of individual nuclear speckles, and number of nuclear speckles per
cell. Boxplots summarize distributions over meayamycin-treated and unperturbed
cells. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5-fold
theinterquartile range; outliers omitted for clarity. Unperturbed, n = 3,680;
meayamycin, n="755 (see Supplementary Table 3 for details).

scores alone were generally less able to distinguish perturbations than
mean nuclear intensities (lower silhouette scores). For example, cells
treated with the histone deacetylase inhibitor trichostatin A, were
distinct from unperturbed cells when using whole-nucleus intensi-
ties but highly similar when using co-occurrence scores (Fig. 4d,f).
This indicates a limited change in spatial organization of the nucleus
upon histone deacetylase inhibition (for the 4i markers quantified in
our experiment), despite hyperacetylation of histones (Fig. 1d). One
notable exception was the RNA Pol l inhibitor in CX5461-treated and

unperturbed cells. Here, spatial information was significantly more
informative than molecular abundance information when distinguish-
ing perturbations both at the whole-nucleus and CSL levels (Fig. 4d,f).
To pinpoint how their spatial organization differs, we compared all
CSL spatial co-occurrences between CX5461-treated cells and unper-
turbed controls. This showed that the major difference wasin therela-
tive spatial distribution of the nucleolus CSL, compared with itself
and with other CSLs (Fig. 4g and Extended Data Fig. 7). In particular,
thenucleolus had higher spatial auto-co-occurrence at short distances
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Fig. 4| CAMPA-derived cell features enable comparisons of spatial and
molecular differences across multiple perturbations. a-c, UMAP embedding
of cells using per-nucleus mean intensity (a), per-CSL meanintensity (b) and
pairwise CSL spatial co-occurrence scores (c). Points are colored by perturbation,
and UMAP outliers are manually excluded for clarity (Supplementary Fig. 4).

d, Pairwise differences between perturbations measured by silhouette score using
per-cell mean intensity values. Higher silhouette scores indicate less overlap
between perturbations. e, Change in silhouette score when considering per-CSL
intensities. Negative values indicate decreased silhouette scores compared with
per-cellintensity silhouette scores; positive values indicate increased silhouette
scores. P values obtained using the two-sided Wilcoxon signed-rank test and
were adjusted for multiple testing using Bonferroni correction. f, Asine, for the
change insilhouette score when considering pairwise CSL spatial co-occurrence
scores. g, Comparison of pairwise spatial co-occurrences for different CSLs in

CX5461-treated cells and unperturbed cells quantified as the area between spatial
co-occurrences curves (computed using log-transformed distances). h, Mean
log, spatial co-occurrence from Nucleolus to Nucleolus (auto-co-occurrence)

or Nuclear periphery, as afunction of distance (on log scale) in CX5461-treated
and unperturbed cells. Shaded regions indicate 95% confidence intervals for the
mean. i, Total physical area of nucleolus (as afraction of the nuclear area), number
of nucleoli per celland median nucleolus circularity per cell. Boxplots summarize
distributions across CX5461-treated and unperturbed cells. Center line, median;
box limits, upper and lower quartiles; whiskers, 1.5-fold the interquartile range;
outliers omitted for clarity. Before obtaining counts and circularity per cell, small
objects were removed (Methods). Unperturbed, n =3,680; CX5461,n=1,152

(see Supplementary Table 3 for details). j, Top: example CX5461-treated and
unperturbed cells with pixels colored by CSL. Bottom: nucleolin (NCL) intensity
from the same cells with nucleolus CSL outlines overlaid.

and lower spatial auto-co-occurrence at longer distances, indicat-
ing that the nucleolus adopts a more compact and spatially coher-
ent conformation in CX5461-treated cells (Fig. 4h). Moreover, pixels
assigned to the nucleolus were more likely to be found close to the
nuclear periphery. On examination of example images we found that
CX5461 treatment results in a circularization and shrinking (Fig. 4i,j)
of the nucleolus and fragmentation into smaller regions enriched in
the nucleolar marker NCL. Given that CX5461 inhibits synthesis of ribo-
somal RNA, changes in the morphology of the nucleolus (the site of
rRNA transcription) in CX5461-treated cells are not unexpected. None-
theless, it shows that CAMPA can rapidly identify that the nucleolus

is the primary site of activity of this compound, despite the antibody
panelnot having amarker for the directly targeted protein (RNA poly-
merase ). This points to the exciting future possibility of applying
CAMPA inachemical compound screening format to provide clues to
subcellular locations that are relevant for the activity of a particular
molecule. Overall, this analysis shows that cellular representations
obtained through CAMPA can be used to compare cells from several
perturbations at once, at the level of subcellular localization or spa-
tial organization. These are rich and readily interpretable sources of
information, which are complementary to one another and to overall
protein abundance measurements.
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Revealing subcellular reorganization upon cell size change
Having developed CAMPA on a 34-plex dataset focused on cell nuclei,
we nextappliedittowhole cellimages to demonstrate its potential to
identify alarger number of cellular landmarks from higher-dimensional
image data. Here, we examined HeLa cellsin which expression of SBF2
(SET binding factor 2) is reduced by treatment with short interfering
RNA, whichresults in an approximate twofold increase of cell volume
and an approximately threefold increase in cell area' compared with
control cellstransfected with scrambled siRNA (Supplementary Tables 4
and5). We applied CAMPA on 43 channels comprising both nuclear and
cytoplasmic 4i stains, using perturbation (SBF2 or scrambled siRNA)
and cell cycle stage (G1, S, G2) as conditions (Supplementary Table 6).
This resulted in 21 CSLs (Extended Data Fig. 8a), some of which were
manually merged, including two distinct P-body CSLs that correspond
tothe center and periphery, respectively (Extended Data Fig. 8b). This
resulted in16 distinct cytoplasmic and nuclear annotated CSLs (Fig. 5).
These comprise all major compartments marked by the antibodies in
the panel, including all previously identified nuclear CSLs (for compari-
sonsee Extended DataFig. 8d,e) as well as cytoplasmiclandmarks such
asperinuclear and peripheral endoplasmic reticulumand mitochondria
(HSPD1/CALR), Golgi apparatus (GOLGA?2) cell-cell contacts (CTNNBI),
focal adhesions (PXN) and P-bodies (DDX6) (Fig. 5b,c). Our manual
annotation is consistent with the automated annotation, but is more
detailed (Extended Data Fig. 8c). Comparison of the per-CSL mean
intensities of each marker between conditions showed several uniform
differences across the whole nucleus or cytoplasm (Supplementary
Fig.5a,c). The more striking changes were differencesin the relative size
of CSLs (Fig. 5d). Thisindicates that the doubling of cell volume induced
by SBF2knockdownis associated with disproportionate changesin size
of different subcellular compartments, however, we cannot exclude
other effects of SBF2 knockdown that are independent of cell size
changes. Focusing on membraneless organelles, we found that the
markers of the nucleolus and Cajalbodies (NCL and COIL, respectively)
bothincreased their molecular abundance in larger SBF2 knockdown
cells (Supplementary Fig. 5e,f). However, the size of the nucleolus in
SBF2knockdown cells was similar to that of controls (Fig. 5f). Because
nuclearareaalsoincreases with cell volume upon SBF2knockdown”, the
size of the nucleolus as afraction of the nucleus decreases. In contrast,
Cajal bodiesincreased their combined size by approximately fivefold, a
larger increase than the increase in nuclear or cell area (Fig. 5e). This was
predominantly achieved by increasing the size of the individual Cajal
bodiesrather thanbyincreasing their number per cell (Fig. 5e).In con-
trast, we found that P-bodies, a cytoplasmic membraneless organelle
involved in RNA processing”, increased innumber per cell rather than
byincreasing the size of individual P-bodies (Fig. 5g). When we binned
cells by cell size (total protein content), we found that the number of
P-bodies in each cell is closely related to cell size, independent of the
genetic perturbation (Fig. 5h).

This analysis shows that CAMPA generalizes to a higher level of
multiplexing and can identify CSLs not only across conditions with
different molecular profiles but also across different CSL sizes. Mor-
phological properties of CSLs on a per-cell basis such as count and
areacanbeused to compare andinterpret changesinscaling behavior
between conditions.

Linking cellular heterogeneity to subcellular reorganization

Finally, we use CAMPA to study how subcellular properties vary within
cell populations, to examine its potential in uncovering links between
subcellular properties and cellular states. Rates of RNA production are
heterogeneous in cell populations'®*® and can be measured by RNA
metaboliclabeling with 5-ethynyl uridine®. Nuclear 5-ethynyl uridine
intensity quantifies the amount of nascent RNA synthesized during a
5-ethynyluridine pulse at the single-cell level (Fig. 6a). To examine how
differencesinbulk RNA production arerelated to subcellular changes,
we considered control cells (scrambled siRNA) from the CAMPA model
trained on entire Hela cells (Fig. 5) and binned these into either ‘low’
(lower quartile) or ‘high’ (upper quartile) RNA synthesis, using mean
nuclear 5-ethynyluridine intensity (Extended Data Fig. 9a). Examination
of intensity fold-changes for each channel-CSL combination between
these groups revealed changes in overall nuclear concentration of
POLR2A and other proteins and protein states related to RNA synthe-
sis (Extended Data Fig. 9b), as previously observed™. Focusing on the
subcellularlevel, we observed that PMLbodies showed a change in the
relative molecular composition of PML and SP100, the two markers
of PML bodies used in this experiment. In cells with low RNA synthe-
sis, PML bodies were enriched in PML, while in cells with high RNA
synthesis, PML bodies were enriched for SP100. These changes are
difficult to observe in overall (all) or whole-nucleus (Nucleus (com-
bined)) CSLs, demonstrating theimportance of quantifying thisat the
subcellular scale. These trends were recapitulated across the full range
of 5-ethynyl uridine intensities (Fig. 6b), and were observedinthe G1,S
and G2 phases of the cell cycle (Extended Data Fig. 9c). PMLbodies have
previously been implicated in transcriptional regulation*’, however,
their molecular composition has not been linked to global changes
in transcriptional output of single cells. Examining images directly
revealed heterogeneity in PML body composition, both between and
in cells (Fig. 6¢). Specifically, cells with low RNA synthesis had PML
bodies lacking SP100, while high RNA synthesis cells had PML bodies
lacking PML. Classically, these bodies are defined as having both SP100
and PML*. Detection of these nuclear bodies based only on PML or
on SP100 (univariate) would have not assigned all these pixels as PML
bodies, highlighting a key difference between CAMPA and univariate
approaches. It is important to note, however, that, given that we did
not use 5-ethynyl uridine intensity as a conditionin the cVAE training,
we would expect to see these unique pixel combinations annotated as
different CSLs at higher clustering resolution (Extended Data Fig. 9d).

Fig. 5| Subcellular landmarks reveal coordination of organelle and cell size.
a, CSLsidentified using CAMPA from 43-plex 4i data of HeLa cells transfected
withscrambled siRNA (top) or SBF2siRNA (bottom). b, Relative mean intensity
of each channelin each CSL, omitting the Antibody Aggregate CSL (see Extended
DataFig. 8 for all 21 cVAE latent space Leiden clusters). Heatmap z-scored

by column to show the relative localization of each channel across CSLs. ER,
endoplasmic reticulum. ¢, Example 4iimages in the example SBF2 knockdown
cell for comparison with identified CSLs. d, log, fold-changes of number of
pixels per cell assigned to each CSL when comparing SBF2knockdown with
control cells (scrambled siRNA). P values show the significance of the effect

of SBF2knockdown on the abundance of each CSL, as determined from the
mixed-effect model. P values are corrected for multiple hypothesis testing
using the Benjamini-Yekutieli method. Left panels show non-normalized
changes in CSL sizes, right panels show changes normalized to the nuclear
(upper) or cytoplasmic (lower) size changes, respectively. e, Upper: number of
Cajal bodies per cell and their per-cell median areas. Before obtaining counts

and areas per cell, small objects were removed (Methods). Lower: Cajal body

area as a percentage of nuclear area or as un-normalized. Boxplots summarize
distributions across cells (center line, median; box limits, upper and lower
quartiles; whiskers, 1.5-fold the interquartile range; outliers omitted for clarity).
Scrambled, n=2,301; SBF2, n =430 (see Supplementary Table 5 for details).

f, Asin efor NCL and Nucleolus. g, As in e for DDX6 and P-bodies. h, Cells binned
by cellsize (total protein content). The upper panel shows the fraction of cells in
each bin per condition. The middle panel shows the mean number of P-bodies per
cellfor each bin. The lower panel shows the average size of individual P-bodies
(mean of median P-body area per cell). Bins with less than 10 cells per genotype
were omitted. Error bars show 95% confidence intervals for mean (obtained using
bootstrapping; n =500). Fit lines show LOESS (locally estimated scatterplot
smoothing) regression of binned data with the shaded region representing the
95% confidence interval. Before obtaining counts per cell, small objects were
removed (Methods). Scale bars: a, 20 um; e-g,20 pm.
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These results demonstrate that CAMPA can be used not only to reveal
changes between perturbations but also to uncover links between
global properties of cells and their subcellular organization.

Discussion

Quantifying changes in subcellular organization across perturbations
inanautomated manneris acentral goalin highly multiplexed imaging.
This has so far been difficult because perturbation-induced changes or
heterogeneity in cell populations has prevented the consistent annota-
tion of subcellular structures. In CAMPA, we use acVAE tolearn robust

perturbation-and cell state-independent latent representations of pix-
elsthatenables the identification of CSLs, found across perturbations
and cell states. This differs from previous approaches based on direct
clustering of multiplexed pixel profiles, which aim to identify pixel
combinations that are unique or enriched in different experimental
conditions or cell states. In contrast, CAMPA quantifies changes in all
markerswithrespectto consistently identified landmarks. Thisleads to
amoreinterpretable and quantitative assessment of changes between
conditions that directly provides insights into changes in subcellular
protein abundance and localization, and the relative positioning of
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Fig. 6 | Cellular RNA synthesis rates are associated with altered molecular
composition of PML bodies. a, Schematic of RNA metabolic pulse labeling with
5-EU*. b, Meanintensity of PML and SP100 in PML bodies as a function of mean
nuclear 5-EU intensity (RNA synthesis rate) relative to the mean across all cells. All
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confidenceintervals for mean (obtained using bootstrapping; n = 500). Fit lines
show LOESS regression of binned data with the shaded region representing the
95% confidence interval. The upper panel shows the number of cellsin each bin
(totaln=2,301 (scrambled siRNA, see Supplementary Table 5)). ¢, Example images
comparing two S-phase cells in states of high and low RNA synthesis. Arrows
highlighta PML-only PML body (low RNA synthesis, left) and an SP100-only PML
body (high RNA synthesis, right). The outlines of PML bodies derived from PML
body CSL were dilated by 9 pixels for visualization purposes. Scale bar, 10 pm.

organizational units inthe cell at subcellular length scales. Compared
with direct pixel clustering, CAMPA also scales more readily to com-
parelarge numbers of perturbations, because the number of CSLs that
needstobe considered does not necessarily increase with the number
of different perturbation conditions studied.

Cellularrepresentations based on CAMPA-derived features canbe
used to compare multiple perturbations with one another simultane-
ously. We found that different sources of information (spatial versus
intensity based) were complementary at distinguishing perturbations.
Unlike other deep learning-based approaches for generating cellular
representations, CAMPA-derived cellular representations are highly
interpretable. Forexample, the observation that CX5461-treated cells
are distinguishable from unperturbed cells using spatial represen-
tations leads readily to the identification of a change in nucleolar
morphology in this perturbation. Because both 4i and CAMPA can be
appliedin high throughput, thisapproach has enormous potential for
screening applications. We envisage that CAMPA-derived cellular rep-
resentations could be used asinterpretable fingerprints to characterize
and compare perturbations in terms of their subcellular phenotypes.

Here, we focused on subcellular imaging of proteins using 4i,
however, we anticipate that CAMPA could readily be applied to other
modalities such as multiplexed RNA fluorescence in situ hybridiza-
tion*? or integrated spatial genomics® (RNA, proteins and DNA in the
same cells), that is, technologies that have not yet been used to study
perturbations at the subcellular scale. Currently, one limitation of
CAMPA (and all previous pixel clustering approaches) is that pixels
are assigned only to one cluster type. Pixel types therefore compete
for allocation, with markers that show characteristic, sparse distribu-
tions in cells preferentially being used to define cellular landmarks.
Limited optical resolution means that proteins that do not occupy the
same physical space in the cell are nonetheless visualized in the same
pixels. Inour data, the number of structures visualized was appropri-
ateforthe optical resolution used, as evidenced by the limited overlap
between defining channels of CSLs, however, as we further increase
the number of structures simultaneously visualized, this problem will
become more pronounced. In CAMPA, this may be addressed in the
future by using mixture models* or approaches from fuzzy clustering**
onthelatent space, to enable pixels to be simultaneously assigned to
multiple different CSLs.

CAMPA uses a cVAE to generate consistent latent representa-
tions of multiplexed pixel profiles across multiple conditions, whichis
computationally similar to approaches forintegrating and clustering
single-cell transcriptomics data'**. Extensions and enhancements
to the cVAE framework developed in this related field could easily
be leveraged by CAMPA in the future. One example of this would be
an adversarial loss to enforce strict disentangling of more complex
condition effects and latent representation or ‘architecture surgery™®
to enable integration of new data to already learned representations.
In this way, CAMPA could contribute to building a queryable atlas of
intracellular variation, onto which novel observations from different
experimentalists could be projected to not only annotate CSLs, but
also to compare with reference atlases. Altogether this will render
CAMPA applicable to an even wider range of data and conditions and
thus contribute to uncovering the rules by which spatial context shapes
the activity of our genome across multiple scales.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods
Cell lines and culture conditions
HeLa Kyoto (female) cell populations were derived from a single-cell
clone and were tested for identity by karyotyping*’. HeLa cells were
cultured in high glucose DMEM supplemented with 10% FBS and
1% GlutaMAX. Cells with low passage number (2-6) were used for
allexperiments.

184A1 (human female breast epithelial) cell populations were
derived from asingle-cell clone, and were used at low passage number
(2-6) for all experiments. 184Al cells were cultured in DMEM/F12 media
supplemented with 5% horse serum, 20 ng ml™ epidermal growth
factor, 10 pg mi?insulin, 0.5 pg mI™ hydrocortisone and 10 ng mi™
choleratoxin.

For all experiments, cells were grown and imaged in uncoated
Greiner pClear plastic-bottom 394-well plates.

Chemical treatments

A total of 1,250 1841 cells were plated 72 h before chemical treat-
ment. RNA polymerase I inhibitor, CX5461 (ref. 15) was dissolved in
5mN HCl at a concentration of 5 mM and used at 2 pM. XPB (TFIIH)
inhibitor, triptolide'® was dissolved in dimethylsulfoxide (DMSO) at
aconcentration of 10 mM and used at 2 uM. CDK9 inhibitor AZD4573
(ref.17) was dissolved in DMSO at a concentration of 10 mM and used
at 0.1 uM. Splicing factor 3b subunit1(SF3b1) inhibitor, meayamycin'é,
was dissolved in DMSO at aconcentration of 10 pM and used at 10 nM.
When applicable, the final DMSO concentration was 0.1%. Duration of
chemical treatment is noted throughout the text and figures.

siRNA transfection

Transfection with siRNA was performed as previously described®. In
brief,700 HeLa cells were plated per well in 384-well plates for reverse
transfection onto amixture of pooled siRNAs (5 nM final concentration)
and lipofectamine RNAIMAX (0.08 pl per wellin OptiMEM) according
to the manufacturer’s specifications. Cells were subsequently grown
for 72 h at 37 °C in a final volume of 50 pl growth media, to establish
efficient knockdown of the targeted genes'. SBF2 knockdown was
validated previously".

Image acquisition

Imaging was performed on an automated spinning-disk micro-
scope (CellVoyager 7000, Yokogawa, software vR1.17.05), equipped
with four excitation lasers (405, 488, 568 and 647 nm) and two Neo
sCMOS cameras (Andor), using a x60/NA (numerical aperture) 1.27
water-immersion objective lens. Bandpass emission filters centered
on 445,525,590 and 675 nm were used for detection. The pixel dimen-
sions of images are 108 x 108 nm, with a theoretical lateral resolution
of 214,252,283 and 324 nm (for emission at 445, 525,590 and 675 nm,
respectively). Images were acquired with a z-spacing of 0.8 um, and
were maximum-projected during acquisition.

Insitu metabolic labeling of nascent RNA

Cells were pulsed with 5-ethynyl uridine for 30 min before fixation.
Nascent RNA was visualized using the Click-iT RNA Alexa Fluor 488
Imaging Kit (Invitrogen), following the manufacturer’s instructions
except for the substitution of Alexa Fluor 488 azide with Alexa Fluor
647 azide (Invitrogen).

Iterative indirectimmunofluorescence imaging

4iwas performed as previously described* with two modifications:
intercept blocking buffer (LI-COR Biosciences) was used for all block-
ing, primary and secondary antibody incubations, and 50 mM HEPES
(Sigma) was included in imaging buffer, which was adjusted to a pH
of 7.4. To detect primary antibodies, goat anti-rabbit IgG Alexa Fluor
568 (Thermo Scientific) was combined with either goat anti-mouse
IgG Alexa Fluor 488 (Thermo Scientific) or goat anti-rat IgG Alexa

Fluor 488 (Thermo Scientific), all at adilution of 1:500. The first cycle
included no primary antibodies, to quantify the background level of
fluorescence in all cells. Before 4i experiments, all antibodies were
tested for compatibility with elution buffer using the following criteria:
similar staining on normal and elution buffer-treated cells, minimal
residual signal after elution and re-staining with secondary antibody.
The following proteins and protein post-translational modifications
were measured: ALYREF, CALR, CCNT1, CDK7, CDK9, COIL, CTNNBI,
DDX6, GOLGA2, GTF2B, H2B, H3, H3K27ac, H3K4me3, HDAC3, HSPD1,
KPNAL, KPNA2,NCL, NONO, PABPC1, PABPN1, pCDK9, PCNA, pMAPK1,
PML, POLR2A, POLR2A-S2P, POLR2A-S5P, pRB1, pRPS6, PXN, RPS6,
SETDI1A, Smantigen, SON, SP100, SRRM2, SRSF2, TUBA1A, U2SNRNPB
and YAP1 (Extended Data Fig. 1). Primary antibodies used are listed in
Supplementary Table1.

DNA and total protein stain

In cycles 1-7, nuclear DNA was stained using 4’,6-diamidino-
2-phenylindole dihydrochloride (DAPI) for 5-10 min at a final con-
centration of 0.4 pg mi™in PBS. For cycles 8-22, nuclei were visualized
with chicken anti-H2B primary antibody (1:1,000, Abcam) and Goat
anti-ChickenIgY Alexa Fluor 405 (1:500, Abcam). Before the lastimag-
ing cycle, total protein was stained using Alexa Fluor 647 NHS Ester
(succinimidyl ester) (Invitrogen) for 10 min at afinal concentration of
0.2 pg ml™in 50 mM carbonate-bicarbonate buffer, pH9.2.

Nuclear and cell segmentation

We typically perform nuclear and cell segmentation as described previ-
ously*®, however, this can result in segmentation artifacts when cells
are irregularly shaped or highly crowded. To further improve this
segmentation, we made use of additional information availablein the
multiplexed image data. Using DAPI, CALR (endoplasmic reticulum
marker) and CTNNBI1 (cell-cell contact marker) channels, we manually
trained a pixel classifier inllastik (v1.3.3) toidentify cell-cellboundaries
(which were typically highin CTNNB1and lowin CALR). We refer to the
probability map generated as ‘cell outlines’. To segment nuclei, we first
used these outlines to mask the DAPI channel and thenthresholded and
segmented these objects as ‘primary’ nuclei. These were then used as
seeds on the original thresholded DAPI image to segment ‘full’ nuclei
using propagation. To segment cells, we then summed the total protein
and CALR channels and again masked the resulting image with the cell
outlines mask to segment ‘primary’ cells. Finally, the primary cells were
used as seeds to obtain the final cell segmentation using athresholded
sum of total protein, CTNNB1and TUB1A1 channels.

Datacleanup

After cell segmentation, border cells were excluded. Supervised
machine learning models (support vector machines) were trained
to exclude polynucleated cells and mitotic cells using the Tissue-
MAPS framework (https://github.com/TissueMAPS), as previously
described”. After this cleanup we noticed that there were still cells with
extreme DNA content. These were removed using manually derived
thresholds based on histograms of DNA content. Cells with nuclei that
moved duringimage acquisition or whichwereincompletely acquired
inany cycle wereidentified and removed by examining the correlation
of DNA content at the single-cell level across cycles. The first imaging
cycle used a secondary antibody only with no primary antibody. Any
cells with excessive background in this staining cycle were also removed
from analysis. Supplementary Tables 2 and 4 list the number of cells
ineach of these classes.

Cell cycle classification

Cellcycleclassification for 184Al cells was performed using amachine
learning approach with 5-ethynyl-2-deoxyuridine (EdU) ground truth
data, as previously described”*. The balanced accuracy of the S-phase
classifier was 0.97. For HeLa cells, EdU wells were not included for the
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SBF2 condition, therefore no independent ground truth was available.
In this case, S-phase cells were manually annotated using PCNA and
DAPItexture features by iterative supervised support vector machine
training in the TissueMAPS framework.

Datasets for cVAE training

Two datasets were collected for training and evaluating cVAE models.
Each dataset was splitinto training, validation and test cells (80%,10%,
10%, respectively, for each dataset). Following the split, multiplexed
pixel profiles from the cells were extracted together with their local
3 x 3 neighbors to make the cVAE latent representation more robust to
noise. When one or more of the 3 x 3 neighbors of the pixel of interest
were outside of the segmented region of the cell, the molecular profile
ofthe missing neighbors was replaced with the mean multiplexed pixel
profileinside the 3 x 3 window.

The first dataset consisted of 184Al cells across six chemical treat-
ments (Supplementary Table 3), using 34 channels localizing (at least
partially) to the nucleus (ALYREF, CCNT1, CDK7, CDK9, COIL, DAPI,
GTF2B, H2B, H3, H3K27ac, H3K4me3, HDAC3, KPNA1, KPNA2, NCL,
NONO, PABPC1, PABPN1, pCDK9, PCNA, PML, POLR2A, POLR2A-S2P,
POL2RA-S5P, pRB1, RPS6, SETD1A, Sm antigen, SON, SP100, SRRM2,
SRSF2, U2SNRNPB, YAP1). For each nucleus in the training and valida-
tionsplit, 0.5% of all molecular profiles were extracted for cVAE training
and validation. The second dataset consisted of controland SBF2knock-
downHelLacells (Supplementary Table 5), using 43 channels (including
all of those used in the first dataset together with pRPS6, pMAPK1,
CALR, CTNNBI, PXN, HSPD1, GOLGA2, TUBAIA, DDX6). For each cell
in the training and validation split, 5% of all molecular profiles were
extracted for cVAE training and validation. See Supplementary Table 6
for the exact number of cells and molecular profiles in each dataset.

Preprocessing of datasets
Immunofluorescence background levels were determined in each
imaging cycle from control wells stained with secondary antibodies
(without primary antibodies). These values were subtracted from the
molecular profiles. Molecular profiles were normalized using
per-channel 98th quantile normalization x,;m = X/qos.
Thisbackground subtraction and normalization was also applied
to the multiplexed pixel profiles before obtaining a direct clustering.

cVAE training

The cVAE models the pixel profiles as samples generated by agenerative
conditional distribution py(x|z,c) (also named the probabilistic
decoder), where zis a latent variable generated from a prior distribu-
tion py(z|c), and crepresents the condition labels (for example, pertur-
bation and cell cycle state of the cell that the current pixel profile is
coming from). For a given x, the latent variable zis inferred using a
probabilistic encoder g,(z|x,c), which approximates the intractable
true posterior py(zlx, ¢). Using variational inference, parameters 0 and
o are jointly tuned by maximizing the evidence lower bound of the
marginal log-likelihood log(pg(x|c)) (refs.10,49):

L(x,¢:0,9) = Eq, (1x,0)[108 Po(x12, ©)] — D (g (21x, ©)lIpg(21C)) < log py(xic)

With this formulation, the pixel profiles x are modeled by latent
distribution zand condition labels, which encourages the model to
encode non-condition specific variation (such as subcellular dif-
ferences in intensity that occur across all conditions) in the latent
distribution.

To improve training stability and samples from the decoder, we
use 0-VAE*’tolearn the variance of the decoder, to produce calibrated
decoders:

L(x,¢;0,¢9) = Dino + % MSE(%, X) + Dy (qo(2lx, ©O)llpg(zIc))

with x € RPbeingthe center pixel of theinputand x = pg(x|z, c) the VAE
reconstruction of x. We use the analytical solution for the variance®,
which minimizes the (weighted) mean squared error loss (MSE) while

also minimizing the logarithm of the variance:

"2 = MSE(x, 1)

where pisthe estimated latent mean for x. As prior distribution py(z|c)
we choose:

Ppo(2lc) = p(2) = N(O,1).

Theinput tothe modelwas a3 x 3local neighborhood around the
pixel of interest, and the output was the reconstructed center pixel.
The encoder consisted of an initial 1 x 1 x 32 convolutional layer to
mix the channels of individual pixel inputs, followed by three fully
connected layers (32,16, 16 nodes), and a linear decoder. Conditions
were provided viaatwo-layer condition encoder (10,10 nodes) to the
encoder and decoder by concatenating the learned condition repre-
sentations with pixel inputs and latent space, respectively. Before
concatenating to the pixel inputs, condition representations were
broadcast to match the shape of the input patch. The size of the latent
representation was 16.

Training was done for 25 epochs with a batch size of 128 and a
learning rate of 0.001 (0.0001 for the HeLa dataset). For the 184A1
dataset, the cVAE was trained using perturbation and cell cycle stage
as conditions by concatenating one-hot encoded representations of
both condition inputs. Note that although the control DMSO treat-
mentand untreated cells were used as different conditionsin the cVAE
model, there was no significant difference in mean intensity between
them and they are pooled together for the remainder of the analysis.
Together these untreated and DMSO-treated cells are referred to as
‘unperturbed’. For each quantitative comparison between conditions,
we validated that DMSO and untreated cells showed no differences.
These comparisons are shownin Supplementary Figs. 2a,c and 3a. For
the HelLa dataset, the cVAE was similarly trained using siRNA condition
and cell cycle stage as conditions.

Clustering

For clustering, the dataset was subsampled to 150,000 (300,000 for
the HeLa dataset) multiplexed pixel profiles. To obtain CSLs, ak-nearest
neighbor graph (k =15) of cVAE latent representations of the subsam-
pled data was computed and partitioned with the Leiden algorithm"
using aresolution of 0.5(0.9 for the HeLa dataset). For comparison, the
subsampled multiplexed pixel profiles were also directly clustered by
applying the Leiden algorithm to the k-nearest neighbor graph of the
multiplexed pixel profiles with varying resolutions of 0.2, 0.4, 0.6, 0.8,
1.2,1.6 and 2.0. To project cluster assignments to the entire dataset,
each data point was assigned to the most frequent cluster within 15
nearest neighbors of the subsampled, clustered set. Neighbors were
found using approximate nearest neighbor search®.

To assess the impact of subsampling the data before clustering,
we varied the random initialization for the Leiden algorithm (five
different initializations), the random seed for the subsampling (five
different subsamples) and the size of the subsample, resultingin5 x 5
alternative clusterings for each subsample size 01,100, 2,300, 4,600,
9,300,19,000, 37,000, 75,000, 150,000 and 300,000. The overlap of
these clusterings with the final CSLs was computed using the adjusted
mutual information (AMI)**and the adjusted Rand index (ARI)**** (see
Supplementary Fig.1a,b).

Let U= {U;, U,,...,U.} be the ground truth CSL clustering, and
V={W,V,,...,Vi} any other clustering of n data points. We calculated
AMI(U,V) and ARI(U,V) for all alternative clusterings V to compare
clusterings to final CSLs. In addition, we computed the overlap of the
resulting clusterings with the final annotated CSLs using the
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homogeneity score® (see Supplementary Fig. 1c) h = 1 — H(U|V)/H(U),
withentropy H(U) = -3¢, Y 1og(14]),

Homogeneity was calculated for each individual CSL i using a
modified U = {U;, U/U;}, which contained only the CSL i and one other
cluster grouping all other CSLs. This cluster instability analysis could
be used torefine the antibody panel for future experiments, by indicat-
ing those CSLs for which additional channels might be needed.

Tovalidate CSL pixel assignments, we compared CSLs with manual
segmentations of the underlying subcellular structures obtained
by training Ilastik®* (v1.3.3) segmentation models on single-channel
intensities of canonical markers for these membraneless organelles
(compare with Extended Data Fig. 5). We quantitatively compared
these manual segmentations with their respective CSLs using the
F,-score (ameasurement of classification accuracy) using the manual

P
TrosE
the number of true positives, FP denotes the number of false
positives, and FN, the false negatives.

segmentations as the ground truth: F, = where TP denotes

Annotation
To aid interpretability we manually annotated CSLs with biologically
meaningful labels. CSLs corresponding to the same biological structure
may be merged into the same annotated CSL. This annotation was done
inaniterative fashion and considered the following factors: presence of
canonical organelle markersin the top enriched channelsineach CSLin
unperturbed (control) cells (if no canonical markers were present, con-
sider the CSL as ‘background’ (that is, nucleoplasm or cytoplasm)); spatial
distribution of CSLs compared with the spatial distribution of canonical
markers of organelles in unperturbed (control) cells;and Human Protein
Atlas subcellular localization (https://www.proteinatlas.org)® of most
enriched channels in each CSL, weighted by z-scored channel intensity.
To simplify the presentation of results, we merged those CSLs
that, accordingto the above criteria, correspond to the same biological
structure. The merged CSLs either corresponded to the same structure
that displayed within-condition variation (for example, Nucleoplasm
CSLsinFig.2, see Extended DataFig. 4c) or to different spatial locations
of the same biological structure (for example, P-body CSL in Fig. 5,
see Extended DataFig. 8b).

Feature extraction using CSLs
For quantitative analysis of differences between conditions, several
statistics using the CSLs were computed.

Per-CSL mean intensity. Per-CSL mean intensity values were calcu-
lated for each cell and CSL and averaged for each condition.

CSL object features. For each cell and CSL, connected components
using 8-connectivity were calculated. To filter out noise and obtain
more reliable estimates, only components consisting of more than 10
pixels were counted. Inaddition, we removed small components from
each cell by sorting all components by size and removing the smallest
components up toacumulative area of <10% of the total area of the CSL
inthat cell (Supplementary Figs. 6 and 7). If no component was smaller
than10% of the total area, no components were removed from that cell.

After filtering, the number, mean or median area, and mean
or median circularity of these components was extracted and
median-averaged across cells for each condition.

Circularity cwas computed as ¢ = 4ma/p?> where aisthe areaand p
the perimeter of the component.
Spatial co-occurrence. Spatial co-occurrence'”?” ¢4 captures the
relative probability that two CSLs (i, ) are found within a distance
interval [d,, d,]from one another:

;= pldadsl(jli)/pldads](f)

Distanceintervals were log-spaced to enable afocus onsmall-scale
changes inspatial reorganization. For the 184Al dataset, 19 log-spaced
distance intervals between 2 and 80 were used. For the HeLa dataset,
27 log-spaced distance intervals between 2 and 320 were used. The
maximum distance of 80 pixels (320 pixels) was chosen to be approxi-
mately the 99th quantile of the maximum radius of the nucleus (of the
cellfor the HeLa dataset).

Statistical analysis of meanintensity and CSL abundance
changes

To quantify the changes in channel intensities in CSLs, we estimated
thefold-difference of each channel between treated and unperturbed
control cells in the geometric mean of the per-CSL mean intensity.
Specifically, if ¥, denotes the mean intensity for CSLkin celljof well,
we fit a hierarchical linear mixed-effects model:

log(Yyi) = Hi + Vili + Bix + €k

where u, denotes the (log) geometric mean of CSL kin the control group
and ¢;is anindicator variable for condition (¢; = 1for treated wells and
0 for unperturbed control wells), such that exp(yy) is the treatment
effect on CSL k. To account for clustering, 8; ~ N(0, ) isamultivariate
normal well-specificrandom effect, with mean zero and general covari-
ance matrix X, and e;is amultivariate normalrandom error with mean
zero and covariance matrix X; = SRS, where S, is a diagonal matrix
of (condition-specific) standard deviations of the CSL-specific errors,
and Risanunstructured correlation matrix that capturestherelation-
shipsbetween CSLsin asingle cell. Before calculating fold-differences
and hypothesis testing, we removed compartments of size zero.

For each CSL we tested the null hypothesis of no treatment effect
(yx = 0) using a Wald test. To determine relative relocalization of pro-
teinsand protein statesrather than overall changesinabundance, the
fold-changes in each CSL were normalized by the whole-nucleus
fold-changes. Thatis, if k = 0 denotes meanintensity across the whole
nucleus, then exp(y, — yo) is the compartment-specific treatment effect
for CSL k, and we similarly tested y; = y, using a Wald test. CSL sizes
were analyzed in the same way as mean channel intensities.

We used the nlme package®® (v3.1-153) in R v3.6.3 (ref. 57) to fit
these models, and used emmeans® (v1.7.0) to extract estimates and
perform the hypothesis tests of interest. For computational effi-
ciency, we fitted a separate model for each CSL for each marker (using
only the datafrom that CSL and the whole nucleus), and used the con-
servative ‘containment’ method® to determine the degrees of free-
dom of the Wald statisticin the analyses of CSL versus whole-nucleus
differences. The false discovery rate was controlled across all
combinations of CSLs and channels for each treatment using the
Benjamini-Yekutieli method®.

Comparison of perturbations
To compare perturbations with respect to different aspects of cellular
organization, we generated three separate cellular representations:
mean nuclear intensities of all proteins; per-CSL meanintensities of all
proteins; and pairwise spatial co-occurrence between CSLs.

To measure how well these different cellular representations
separate cells from different perturbations, we calculated silhouette
scores® (using L1distance) S(p,q) for each pair of perturbations p, g:

1 (dg(d) - d,p (D)
SO-D = (51 2 e (a0 4y (0)

With d,, (i) being the mean L1 distance of i to all elements in perturba-
tionp:

. 1 .
dy(D) = 10 311G ))

Jjep
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The dataused to generate all results and figures reported in this manu-
scriptareavailable at https://doi.org/10.5281/zenod0.7299516 (ref. 62).
Pre-trained models and clusterings reported in the manuscript are avail-
ableathttps://doi.org/10.5281/zenod0.7299750 (ref. 63). CSL-derived
features fromthe 184Aland the HeLa datasets are available at https://
doi.org/10.6084/m9.figshare.19699651. The Human Protein Atlas, used
to annotate CSLs, is available at www.proteinatlas.org.

Code availability

Analysis was performed using CAMPA, which is available at https://
github.com/theislab/campa with documentation at https://campa.
readthedocs.io. All scripts necessary for reproducing the results
and figures (except schematic figures Fig. 1a-c and Fig. 3f) can be
found at https://github.com/theislab/campa_ana. Nuclear and cell
segmentation, identification of border cells, and cell cycle classifi-
cation was performed using TissueMAPS, an open-source project
for high-throughput image analysis available at https://github.com/
pelkmanslab/TissueMAPS. The TissueMaps analysis pipeline descrip-
tion with module files containing parameter settings used for the
preprocessing of datain this paperis provided at https://github.com/
theislab/campa_ana.
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Extended Data Fig. 1| Iterative Indirect Immunofluorescence Imaging (4i) at high spatial resolution. Example intensity images with overlaid cell segmentation of
unperturbed 184A1 cells for each of the 43 channels measured by 4i (n=4 unperturbed replicate wells imaged; cell numbers in Supplementary Table 3).
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Extended Data Fig. 2| Direct pixel clustering and VAE latent space clustering
are perturbation dependent at different Leiden clustering resolutions. a:
Left: UMAP representation of VAE latent space colored by perturbation. Middle:
Example cells from each perturbation colored by VAE latent space clustering.
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perturbation colored by direct pixel clustering for Leiden resolutions 0.2, 0.4,
0.6,0.8,1.2,1.6,2.0 c: Fraction of pixels assigned to each cluster per perturbation
colored by cVAE latent space clustering (CSLs) before annotation.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Direct pixel clustering is cell cycle-dependent at
different Leiden clustering resolutions. a: Fold-change in nuclear mean
intensity in Sand G2 cells compared to Gl cells, for all proteins with nuclear
localization. P-values show significance of perturbation effect on mean
intensity, as determined from the mixed-effect model (Wald test, multiple
testing correction using Benjamini-Yekutieli method). b: Example intensity
images of cell cycle specific markers PCNA and pRBlin cells from G1, S, and G2
cellcycle phases (d). c: Example cellsin b, colored by CSL clusters. d-e: UMAP
representation of multiplexed pixel profiles from unperturbed cells (d) and of
corresponding cVAE latent space (e) colored by cell cycle. f: Comparison of cell
cycle-specificity of 4i pixel profiles and cVAE latent space coordinates. Plots
show balanced accuracy scores of pairwise binary logistic regression classifiers
predicting cell cycle from normalized 4i pixel profiles or latent representations of

pixels. Accuracy values of 0.5 indicate random chance (perturbation information
isnot present in the data). Latent space contains less cell cycle information than
pixel profiles. g: Fraction of pixels assigned to each cluster per cell-cycle stage
colored by latent space clustering and annotation. h: Comparison of cell-cycle-
specificity of direct clustering at different Leiden resolutions (0.2, 0.4, 0.6, 0.8,
1.2,1.6,2.0) with cVAE latent space clustering. Plots show coefficient of variation
of the fraction of pixels in each cell-cycle stage assigned to each cluster. Boxplot
summarises results for all clusters with resulting cluster number n shown
above. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5x
interquartile range; points, all data points. i: Fraction of pixels assigned to each
cluster per cell-cycle stage colored by pixel profile clustering for resolutions
0.2,0.4,0.8,1.2,1.6,2.0.
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Extended Data Fig. 4 | Details of cVAE clustering and annotation (184A1
cells). a: Mean intensities of each channel across different clusters (unperturbed
184Alcells). Original Leiden clusters obtained from cVAE latent space are
shown on the right and their corresponding annotation is shown on the left.
Four original clusters are manually merged into the ‘Nucleoplasm’ CSL, as
described in the main text. Values z-scored by channel (compare with Figure
2¢). b: Automated annotations from the Human Protein Atlas. Foreach CSL a
maximum of 3 channels with a z-score > 1 (from a) were used to query HPA for
subcellular localization of these channels. Shown is the result of these queries
for each CSL, weighted by the mean z-score of the channel (shownina). c:
Coefficient of variation (CV) of CSL sizes in each cell across all cells in a well.
Original nucleoplasm clusters have alarge CV (variable abundance between
cells), and are merged to one annotated CSL (shown in a). Center line, median;
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points,
outliers. n=21 wells from 9 perturbations. d: Importance of condition input for
reconstructing each channel. Saliency scores are calculated with integrated

gradients? for every output channel with respect to the latent representation
and condition input. The importance of the condition for each output channel is
calculated as the fraction of absolute scores for the condition, normalized by the
absolute sum of scores for the entire input (condition and latent representation).
Shown is the maximum condition importance of each channel; the median
conditionimportance for each perturbation and channel; and the median
conditionimportance for each cell cycle stage and channel. Large values indicate
that the condition information was important for correctly reconstructing this
channel, and the cVAE focused less on the latent representation. e: Scatter plot
of conditionimportance (shownin d) vs Log2 fold-change in overall cellular
intensity for each channel and perturbation (shown in Fig. 1d). Channels that
show an overall perturbation-dependent effect in intensity also have high
condition-importances, meaning that the cVAE preferentially uses the

condition label and not the latent representation to model the pixel intensities
for these channels.
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Extended Data Fig. 5| Comparison of CSL-derived nuclear speckles/PML
bodies with supervised segmentation of nuclear speckles/PML bodies.

a: CSLs generated using CAMPA for an example 184A1 nucleus. b: Measured
intensities of canonical nuclear speckle markers SON and SRRM2. ¢: Probability
maps of nuclear speckles generated through supervised pixel clustering of
single-channelimages in Ilastik. d: Nuclear speckle classifier derived from
thresholding the probability map at P=0.95. e: Comparison of pixels assigned
to nuclear speckles using supervised classifiers based on SON, SRRM2 with
nuclear speckle CSL. f: Quantitative comparison of the different classification
approaches using SON and SRRM2 classifiers as the ground truth. x-axis

shows the value at which the probability map is thresholded to generate the
segmentation. Dashed line at P=0.95 is the classification shown in d. Metrics
computed on arandom 10% subsample of all data. g: F,-scores for each
comparison for all perturbations individually. Data from all pixels in a single

well for each condition. Probability map threshold at P=0.95. h-j: As in b-d for
canonical PML body markers SP100 and PML. Classificationiniis the probability
map thresholded at P=0.6.k: As ine for PML bodies. I: As in f for PML bodies.
Dashed line at P=0.6 is the classification shown inj. m: As in g for PML bodies.
Probability maps thresholded at P=0.6.
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Extended Data Fig. 8 | Details of cVAE clustering and annotation (HeLa cells,
scrambled siRNA). a: Mean intensities of each channel across different clusters.
Original Leiden clusters obtained from cVAE latent space are shown on the right
and their corresponding manual annotation is shown on the left. Five original
clusters are manually merged into the ‘Cytoplasm’ CSL. Two original clusters

are manually merged into the ‘P-bodies’ cluster. Values z-scored by channel

(c.f., Fig.5b). b: Cluster 13 and 19, which are merged into the ‘P-bodies’ cluster, and
DDXé6 intensity visualized in two example cells from scrambled siRNA and SBF2
siRNA. Cluster 19 corresponds to P-body center with very high DDX6 intensity,
cluster 13 corresponds to P-body periphery with lower DDX6 intensity. Both
P-body clusters show identical behavior when comparing scrambled to SBF2
(Supplementary Fig. 5b, d). ¢: Automated annotations from the Human Protein

Atlas (HPA). For each CSL a maximum of 3 channels with az-score >1(froma) were
used to query HPA for subcellular localization of these channels. Shown is the
result of these queries for each CSL, weighted by the mean z-score of the channel
(shownina).d: Example HeLa cells colored by CSLs obtained from 43-plex

HelLa cells (c.f., Fig. 5) and CSLs obtained from 34-plex 184A1 cells (nucleus only,
c.f.,, Fig.2). e:Comparison of CSLs obtained from 43-plex HeLa cells and CSLs
obtained from 34-plex 184Al cells on HeLa cells. Shown is the intersection over
union (IOU) of the common CSLs from both clusterings. Nucleolus, Cajal bodies,
Nucleoplasm and Nuclear speckles have high 10U scores. Nuclear speckles, PML
bodies, and Nuclear periphery have lower IOU scores, indicating either cell-line
specific differences, or that information from the additional channels in the
43-plex HeLa dataset results in aslightly different definition of these CSLs.
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Data collection  Data were acquired using an automated spinning-disk microscope (CellVoyager 7000, Yokogawa), using the proprietary CV7000 software
(version R1.17.05).

Data analysis Analysis was performed using CAMPA which is available at https://github.com/theislab/campa with docs at https://campa.readthedocs.io. All
scripts necessary for reproducing the results and figures (except schematic figure panels Fig. 1a,b,c, Fig. 3f) can be found at https://
github.com/theislab/campa_ana.

Nuclear and cell segmentation, identification of border cells, and cell-cycle classification was performed using TissueMAPS, an open-source
project for high-throughput image analysis which is available at https://github.com/pelkmanslab/TissueMAPS. The TissueMaps analysis
pipeline description with module files containing parameter settings used for the preprocessing of data in this paper is provided at https://
github.com/theislab/campa_ana.

We used llastik (version 1.3.3) to train a model for nuclear and cell segmentation.

For statistical analysis of mean intensity and CSL abundance changes, we used the nilme package (version 3.1-153) in R version 3.6.3 to fit the
mixed models and used emmeans (version 1.7.0) to extract estimates and perform hypothesis tests.
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Data
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The data used to generate all results and figures reported in this manuscript is available at https://doi.org/10.5281/zenodo0.7299516. Pre-trained models and
clusterings reported in the manuscript are available at https://doi.org/10.5281/zenodo.7299750.

CSL-derived features from the 184A1 and the Hela datasets are available at https://doi.org/10.6084/m9.figshare.19699651.

The human protein atlas that was used to annotate CSLs is available at www.proteinatlas.org.
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Population characteristics N/A
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
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Sample size No sample-size calculation was performed. We sampled 1000-3000 cells per condition, across 2-4 replicate wells per condition
(Supplementary Tables 3 and 5) based on experimental feasibility. This sample size enables statistical comparisons between conditions using
mixed-effects models with random effects for each replicate well, as described in Methods.

Data exclusions  Mitotic and polynucleated cells were excluded during data cleanup, as described in Methods, and quantified in Supplementary Tables 2 and 4.
In Figure 4a, a small subset of outlier cells were excluded from the UMAP plot. Justification of this exclusion is provided in Supplementary
Figure 10, as indicated in Figure 4 legend. When analyzing CSL object features, small objects were removed as described in Methods, and
indicated in Figure legends.

Replication Data were from a single experiment. Replicate wells were included for all conditions.

Randomization  Plate layout was designed so that replicate wells were in different rows and columns of the plate, and were periodically interspersed with
negative control wells with respect to image acquisition time.

Blinding Investigators were not blinded during the experiments because we wanted to validate success of experimental perturbations (visually) before
proceeding with several weeks of expensive immunofluorescence analysis. The analysis method is predominantly automated, from image
acquisition to unsupervised training of machine learning models, to statistical analysis of quantitative data. An exception to this is the
supervised training of machine-learning models as described in "Data exclusions".
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Antibodies

Antibodies used Refer to Supplementary Table 1

Validation No additional validation undertaken for this study. Information for each can be found using the Research Resource Identifiers (RRIDs)
in Supplementary Table 1

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Hela Kyoto (female) cell populations were derived from a single-cell clone (Battich et al., 2015).
184A1 ((ATCC CRL-8798; human female breast epithelial) cell populations were derived from a single-cell clone (Kramer et al.,
2022).

Authentication Hela Kyoto (female) cell populations were tested for identity by karyotyping (Battich et al., 2015).

184A1 (human female breast epithelial) cell populations were not authenticated.
Mycoplasma contamination All cells tested negative for mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified lines were used
(See ICLAC register)
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