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Abstract

Recent advances in multiplexed single-cell transcriptomics experi-
ments facilitate the high-throughput study of drug and genetic
perturbations. However, an exhaustive exploration of the combina-
torial perturbation space is experimentally unfeasible. Therefore,
computational methods are needed to predict, interpret, and prior-
itize perturbations. Here, we present the compositional perturba-
tion autoencoder (CPA), which combines the interpretability of
linear models with the flexibility of deep-learning approaches for
single-cell response modeling. CPA learns to in silico predict tran-
scriptional perturbation response at the single-cell level for unseen
dosages, cell types, time points, and species. Using newly generated
single-cell drug combination data, we validate that CPA can predict
unseen drug combinations while outperforming baseline models.
Additionally, the architecture’s modularity enables incorporating
the chemical representation of the drugs, allowing the prediction
of cellular response to completely unseen drugs. Furthermore, CPA
is also applicable to genetic combinatorial screens. We demon-
strate this by imputing in silico 5,329 missing combinations (97.6%
of all possibilities) in a single-cell Perturb-seq experiment with
diverse genetic interactions. We envision CPA will facilitate efficient
experimental design and hypothesis generation by enabling in silico
response prediction at the single-cell level and thus accelerate
therapeutic applications using single-cell technologies.
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Introduction

Single-cell RNA-sequencing (scRNA-seq) profiles gene expression in

millions of cells across tissues (The Tabula Muris Consortium, 2019;

Domcke et al, 2020) and species (Han et al, 2020). Recently, novel

technologies have been developed extending these measurements to

high-throughput screens (HTSs), which measure response to thou-

sands of independent perturbations (Norman et al, 2019; Srivatsan

et al, 2020). These advances show promise for facilitating and accel-

erating drug development (Yofe et al, 2020). HTSs applied at the

single-cell level provide both comprehensive molecular phenotyping

and capture heterogeneous responses, which otherwise could not be

identified using traditional HTSs (Srivatsan et al, 2020).

While the development of high-throughput approaches such as

“cellular hashing” (McGinnis et al, 2019; Gehring et al, 2020;

Srivatsan et al, 2020; preprint: Martin et al, 2021) facilitates scRNA-
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seq in multi-sample experiments at low cost, these strategies require

expensive library preparation (Srivatsan et al, 2020) and do not

easily scale to large numbers of perturbations. These shortcomings

become more apparent when exploring the effects of combination

therapies (Al-Lazikani et al, 2012; Kim et al, 2016; Sachs et al, 2020)

or genetic perturbations (Dixit et al, 2016; Datlinger et al, 2017;

Norman et al, 2019), where the experimental screening of all

possible combinations becomes infeasible. While projects such as

the Human Cell Atlas (Rozenblatt-Rosen et al, 2017) aim to compre-

hensively map cellular states across tissues in a reproducible

fashion, the construction of a similar atlas for the effects of pertur-

bations on gene expression is impossible due to the vast number of

possibilities. Since brute-force exploration of the combinatorial

search space is infeasible, it is necessary to develop computational

tools to guide the exploration of the combinatorial perturbation

space to nominate promising candidate combination therapies in

HTSs. A successful computational method for the navigation of the

combinatorial space must be able to predict the behavior of cells

when subject to novel combinations of perturbations only measured

separately in the original experiment. These data are referred to as

Out-Of-Distribution (OOD) data. OOD prediction would enable the

study of perturbations in the presence of different treatment doses

(Hagai et al, 2018; Srivatsan et al, 2020), combination therapies

(Gehring et al, 2020), multiple genetic knockouts (Norman

et al, 2019), and changes across time (Hagai et al, 2018).

Recently, several computational approaches have been developed

for predicting cellular responses to perturbations (Fröhlich

et al, 2018; Lotfollahi et al, 2019, 2020; Ramp�ašek et al, 2019; Yuan

et al, 2021). The first approach leverages mechanistic modeling

(Fröhlich et al, 2018; Yuan et al, 2021) to predict cell viability (Fröh-

lich et al, 2018) or the abundance of a few selected proteins (Yuan

et al, 2021). Although they are powerful at interpreting interactions,

mechanistic models usually require longitudinal data (which is often

unavailable in practice) and most do not scale to genome wide

measurements to predict high-dimensional scRNA-seq data. Linear

models (Dixit et al, 2016; Kamimoto et al, 2023) do not suffer from

these scalability issues, but have limited predictive power and are

unable to capture nonlinear cell-type-specific responses. In contrast,

deep learning (DL) models do not face these limitations. Recently, DL

methods have been used to model gene expression latent spaces from

scRNA-seq data (Lopez et al, 2018, 2020; Eraslan et al, 2019; Lotfol-

lahi et al, 2022), to describe and predict single-cell responses (Lotfol-

lahi et al, 2019, 2020; Ramp�ašek et al, 2019; Russkikh et al, 2020).

However, current DL-based approaches also have limitations: they

model only a handful of perturbations; cannot handle combinatorial

treatments; and cannot incorporate continuous covariates such as

dose and time, or discrete covariates such as cell types, species, and

patients. Therefore, while current DL methods have modeled indivi-

dual perturbations, none have been proposed for HTS.

Here, we propose the compositional perturbation autoencoder

(CPA), a method to predict scRNA-seq perturbation responses across

combinations of conditions such as dosage, time, drug, and genetic

knock-out. The CPA borrows ideas from interpretable linear models

and applies them in a flexible DL model to learn factorized latent

representations of both perturbations and covariates. Given a

scRNA-seq dataset, the perturbations applied, and covariates

describing the experimental setting, CPA decomposes the data into a

collection of embeddings (representations) associated with the cell

type, perturbation, and other external covariates. By virtue of an

adversarial loss, these embeddings are independent of each other, so

they can be recombined at prediction time to predict the effect of

novel perturbation-covariate combinations. Therefore, by exploring

novel combinations, CPA can guide experimental design by directing

hypotheses toward expression patterns of interest to experimental-

ists. We demonstrate the usefulness of CPA on six public datasets

and a novel non-small cell lung cancer (A549) dataset comprised of

32 single and combinatorial drug perturbations across multiple tasks,

including the prediction and analysis of responses to compounds,

doses, time-series information, and genetic perturbations.

Results

Multiple perturbations as compositional processes in gene
expression latent space

Prior work has modeled the effects of perturbations on gene expres-

sion separate processes. While differential expression compares each

condition separately with a control, modeling a joint latent space with

a conditional variational autoencoder (Sohn et al, 2015; Lotfollahi

et al, 2020; Russkikh et al, 2020) is highly uninterpretable and not

amenable to the prediction of the effects of combinations of condi-

tions. Our goal here is to factorize the latent space of neural networks

to turn them into interpretable, compositional models. If the latent

space were linear, we could describe the observed gene expression as

a factor model where each component is a single perturbation.

However, gene expression latent spaces, particularly in complex

tissues, are nonlinear and best described by a graph or nonlinear

embedding approximations (van der Maaten & Hinton, 2008;

preprint: McInnes et al, 2018). In scRNA-seq datasets, gene expres-

sion profiles of cell populations are often observed under multiple

perturbations such as drugs, genetic knockouts, or disease states, in

labeled covariates such as cell line, patient, or species. Each cell is

labeled with its experimental condition and perturbation, where

experimental covariates are captured in categorical labels and

perturbations are captured using a continuous value (e.g., a drug

applied with different doses). This assumes a sufficient number of

cells per condition to permit the estimation of the latent space in

control and perturbation states using a large neural network.

Instead of assuming a factor model in gene expression space, we

instead model the nonlinear superposition of perturbation effects in

the nonlinear latent space, in which we constrain the superposition to

be additive (see Materials and Methods). We decouple the effects of

perturbations and covariates, and allow for continuous effects such as

drug dose by encoding this information in a nonlinearly transformed

scalar weight: a learned drug-response curve. The linear latent space

factor model enables interpretation of this space by disentangling

latent space variance driven by covariates from those stemming from

each perturbation. At evaluation time, we are able to not only interpo-

late and interpret the observed perturbation combinations, but also to

predict other combinations, potentially in different covariate settings.

Compositional perturbation autoencoder (CPA)

We introduce the CPA (see Materials and Methods), a method

combining ideas from natural language processing (preprint:
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Mikolov et al, 2013) and computer vision (preprint: Radford

et al, 2015; Lample et al, 2017) to predict the effects of combinations

of perturbations on single-cell gene expression. Given a single-cell

dataset of multiple perturbations and covariates, the CPA first uses

an encoder neural network to decompose the cells’ gene expression

into a series of learnable, additive embeddings, which correspond to

its basal state, the observed perturbation, and the observed covari-

ates. Crucially, the latent representation that the CPA encoder learns

about a cell’s basal state is disentangled from (does not contain

information about) the embeddings corresponding to the perturba-

tion and the covariates. This disentangling is achieved by training a

discriminator classifier (Lample et al, 2017; Zhao et al, 2018) in a

competition against the encoder network of the CPA. The goal of

the encoder network in the CPA is to learn an embedding repre-

senting the cell’s basal state, from which the discriminator network

cannot predict the perturbation or covariate values. To account for

continuous time or dose effects, the learned embeddings about each

perturbation are scaled nonlinearly via a neural network which

receives the continuous covariate values for each cell, such as the

time or the dose. After the linear integration of the learned embed-

dings about the cell’s basal state, perturbations, and covariate

values into an unified embedding, the CPA uses a non-linear neural

network decoder to recover the cell’s gene expression vector (Fig 1A

and B, see Appendix Fig S1 and Materials and Methods for more

details). The non-linearity of the decoded enables capturing complex

cell-type-specific and non-additive effects of combinatorial treat-

ments. Consider a simple example when a cell is perturbed with

two gene knock-out perturbations. CPA learns to reconstruct combi-

natorial treatment’s overall gene expression effect via linearly

combining singleton treatment embedding for each perturbation and

the basal state fed to the decoder. Such a constraint allows the

model to learn a pattern of how a single treatment behaves when

combined with other treatments and thus enabling the prediction of

combinations not seen during the training. The prediction perfor-

mance for combinations of a given single perturbation could

improve when the model observes diverse training data from that

perturbation combined with others. Conversely, when the model

has never seen training data containing combinations for a specific

single perturbation, it could generate spurious predictions for

combinations including that treatment.

Similar to many neural network models, the CPA is trained using

backpropagation (Goodfellow et al, 2016) on the reconstruction and

discriminator errors (see Materials and Methods), to tune the para-

meters of the encoder network, the decoder network, the embed-

dings corresponding to each perturbation and covariate value, and

the dose/time nonlinear scalers. The learned embeddings allow the

measurement of similarities between different perturbations and

covariates, in terms of their effects on gene expression. The main

feature of the CPA is its flexibility of use at evaluation time. After

obtaining the disentangled embeddings corresponding to some

observed gene expression, perturbation, and covariate values, we

can intervene and swap the perturbation embedding with any other

perturbation embedding of our choice. This manipulation is effec-

tively a way of estimating the answer to the counterfactual question:

what would the gene expression of this cell have looked like, had it

been treated differently? This approach is of particular interest in

the prediction of unseen perturbation combinations and their effects

on gene expression. The CPA can also visualize the transcriptional

similarity and uncertainty associated with perturbations and covari-

ates, as later demonstrated.

CPA allows predictive and exploratory analyses of single-cell
perturbation experiments

We first demonstrated the performance and functionality of the CPA

on three small single-cell datasets: a dataset of PBMCs stimulated

with IFN-β (Kang et al, 2018), a dataset of human lung cancer cells

perturbed by four drugs (Srivatsan et al, 2020), and a longitudinal

cross-species dataset of lipopolysaccharide (LPS) treated phagocytes

(Hagai et al, 2018; see Materials and Methods). The datasets repre-

sent different potential applications of the model: (i) binary pertur-

bation in distinct cell types, (ii) diverse doses; and (iii) several

species and variation with respect to time instead of dose. We split

each dataset into three groups: train (used for model training), test

(used for tuning the model parameters), and OOD (never seen

during training or parameter setting, and intended to measure the

generalization properties of the model).

Here, we considered PBMCs from lupus patient samples that

were treated with IFN-β (Appendix Fig S2A). The stimulation, in this

case, is a binary one, without any continuous covariate (e.g., dosage

or time) associated with it. In order to assess that CPA is capable of

decoupling covariate and perturbation information when this is

provided we trained two models: (i) one to which only perturbation

labels were provided during training, (ii) and one to which both

perturbation and cell type labels were provided. We then inspected

the basal latent representation obtained with these models, this is

the latent information remaining after covariate and/or perturbation

information is transferred to the respective embeddings by means of

adversarial training. As expected, the latent representation obtained

with model (i) shows a good mixing of the perturbations while cell

type information is retained (Appendix Fig S2B), on the other hand,

the latent values obtained from model (ii) show good mixing of both

cell types and perturbations, since in this case labels for both were

provided to the model which successfully embedded this informa-

tion in the correspondent latent factors (Appendix Fig S2C). In order

to further demonstrate the differences between the two models we

decoded the basal latent representation of B cells without factoring

the cell type and perturbations embeddings and looked at the gene

expression of CD74 and CD37, two marker genes of B cells in this

dataset (Appendix Fig S2D). The cells thus obtained from model (i)

show high values of expression for these genes, this happens

because cell type information is not decoupled and is retained in the

basal latent space, this is not the case for model (ii) where cell type

information has been successfully removed from the basal latent

space (Appendix Fig S2E).

Furthermore, we leveraged this dataset to assess that the model

is capable of learning cell-type-specific responses to perturbations.

We trained different CPA models holding out perturbed cells

belonging to one cell type at a time and then predicted the gene

expression of the perturbed cells in these OOD conditions. CPA

successfully models the response of various genes to stimulation in

different cell types, even in the case of cell-type-specific responses

(Appendix Fig S3). Sciplex2 from Srivatsan et al (2020) contains

measurements of a human lung adenocarcinoma cell line (A549)

treated with four drug perturbations at increasing dosages

(Appendix Fig S4A). In this scenario, the model learns to generalize
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to unseen dosages of the drugs. To demonstrate the OOD properties,

we withheld cells exposed to the second to largest dose among all

drugs. This choice was made because the vast majority of cells were

dead for most of the drugs at the highest dosage, and we would not

have enough cells to test the generalization capabilities of the CPA

model. Since the latent space representation learned by the CPA is

still high-dimensional, we can use various dimensionality reduction

methods to visualize it. We opted for a Kernel PCA computed using

a cosine similarity kernel (Appendix Fig S4C). To demonstrate how

well CPA captured the dose–response dynamics of individual genes,

we looked at the top 2 differentially expressed genes upon all pertur-

bations (Appendix Fig S5). The dose–response curves agree well

with the observed data. We evaluate the goodness of the prediction

by computing the R2 scores between the means and variances of the

predicted gene expression and the real one. We compute this on the

entire gene expression vector, and on the top 50 DEGs exclusively

for that condition, to make sure that we are capturing the response

of genes of interest (Appendix Fig S4B). In order to have a point of

reference we formulate a baseline which consists of the R2 scores

obtained between the OOD conditions and a random subselection of

the training dataset (see Benchmarks section in Materials and

Methods). Improvements over this baseline show that the model

has learned perturbation and covariate information and has not just

modeled an average representation of the training data.

We additionally use the distance of the embedding of an unseen

condition from the closest embedding in the observed manifold as a

proxy for uncertainty (see Materials and Methods). This distance

equals 0 for conditions that were observed during training and

increases for points in the perturbation and covariate space that

were not presented to the model, for example, dosage values

between those sampled in the training dataset (Appendix Fig S4D).

This distance increases for combinations of drugs

(Appendix Fig S4E), this finding agrees with the fact that the model

never saw some drug combinations during training and that such

predictions are performed on conditions more distant from those

observed during training.

As our third example, we studied the cross-species dataset from

Hagai et al (2018). Here we show that the dynamics of the covariate

can be a non-monotonic function, such as time instead of the dose–
response. In this example, bone marrow-derived mononuclear

phagocytes from mouse, rat, rabbit, and pig were perturbed with

LPS (Appendix Fig S6A). CPA is able to model the response of genes

of interest (as indicated in the original study for which the data was

generated) over time (Appendix Fig S6B).

Figure 1. Interpretable single-cell perturbation modeling using a compositional perturbation autoencoder (CPA).

A Given a matrix of gene expression per cell together with annotated potentially quantitative perturbations d and other covariates such as cell line, patient, or species,
CPA learns the combined perturbation response for a single-cell. It encodes gene expression using a neural network into a lower dimensional latent space that is
eventually decoded back to an approximate gene expression matrix, as close as possible to the original one. To make the latent space interpretable in terms of pertur-
bation and covariates, the encoded gene expression vector is first mapped to a “basal state” by feeding the signal to discriminators to remove any signal from pertur-
bations and covariates. The basal state is then composed with perturbations and covariates, with potentially reweighted dosages, to reconstruct the gene expression.
All encoder, decoder, and discriminator weights as well as the perturbation and covariate dictionaries are learned during training.

B Features of CPA are interpreted via plotting of the two learned dictionaries, interpolating covariate-specific dose–response curves and predicting novel unseen drug
combinations.
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CPA finds interpretable latent spaces in large-scale single-cell
high-throughput screens

The recently proposed sci-Plex assay (Srivatsan et al, 2020) profiles

thousands of independent perturbations in a single experiment via

nuclear hashing. With this high-throughput screen, 188 compounds

were tested in three cancer cell lines. The panel was chosen to target

a diverse range of targets and molecular pathways, covering tran-

scriptional and epigenetic regulators and diverse mechanisms of

action. The screened cell lines A549 (lung adenocarcinoma), K562

(chronic myelogenous leukemia), and MCF7 (mammary adenocarci-

noma) were exposed to each of these 188 compounds at four doses

(10 nM, 100 nM, 1 μM, 10 μM), and scRNA-seq profiles were gener-

ated for altogether 290 thousand cells (Fig 2A). As above, we split

the dataset into three subsets: train, test, and OOD. For the OOD

case, we held out the highest dose (10 μM) of the 36 drugs with the

strongest effect in all three cell lines. Drug, dose, and cell line

combinations in the OOD cases were removed from the train and

test sets.

Compositional perturbation autoencoder can extrapolate to the

unseen OOD conditions with unexpected accuracy, as it captures

the difference between control and treated conditions for a

compound where it did not see examples with the highest dose. As

one example, Momelotinib has a strong differential response to

treatment compared to control, as can be seen from the distributions

of the top 5 differentially expressed genes (Fig 2B). Despite not

seeing the effect of Momelotinib at the highest dose in any of the

three cell lines, CPA performs reasonably in inferring the mean and

distribution of these genes (Fig 2B). CPA performs well in modeling

unseen perturbations, as the correlation of real and predicted values

across OOD conditions is overall better than the correlation between

target cells and existing cells across different compounds (Fig 2D)

when looking at individual conditions (Fig 2C), CPA does well-

recapitulating genes with low and high mean expression in the OOD

condition. Furthermore, we compare the performance of CPA

against that of scGen on this dataset. scGen is another deep learning

method for perturbation prediction in single-cell datasets. Since this

model cannot handle continuous covariates associated with the

perturbation, we retain only control and second-highest dosage cells

for this benchmark. We compared the R2 on the predicted means

and variances and the Wasserstein distance to measure the whole

distribution computed gene-wise. All metrics were computed on the

whole gene vector and also for DEGs. When comparing CPA’s

predictions with scGen we observed a 1.54% improvement in more

straightforward mean prediction compared to higher moments. At

the same time, CPA significantly outperformed scGen on variance

prediction by 35.85% improvement and similarly outperformed

scGen in whole distribution prediction. This benchmark is a very

simplified scenario where existing models can be benchmarked and

work well on mean prediction but fail to capture whole distribution

shifts, which are indeed crucial in single-cell data since they capture

cellular heterogeneity (see Appendix Fig S7).

Compositional perturbation autoencoder performs worse when

predicting experiments with more unseen covariates. To assess the

ability of the model to generalize to unseen conditions, we trained

CPA on 28 splits with different held-out conditions, with one of the

doses held out in anywhere between 1–3 cell lines (Fig 2E). We see

here that K562 is the hardest cell line to generalize, when

considering training on two cell lines to generalize to another. We

also see that extrapolating to the highest dose is a harder task than

interpolating intermediate doses, which is consistent with the diffi-

culty of anticipating the experimental effect of a higher dose, versus

fitting sigmoidal behavior to model intermediate doses.

After training, CPA learns a compressed representation of the

188 compounds, where each drug is represented by a single 256

dimensional vector (Fig 2G). To test whether the learned drug

embeddings are meaningful, we asked if compounds with similar

putative mechanisms of action are similar in latent space. This holds

for a large set of major mechanisms: we find that epigenetic, tyro-

sine kinase signaling, and protein formation compounds are clus-

tered together by the model, which suggests the effectiveness of

drugs with these mechanisms on these three cancer cell lines which

is in line with the findings in the original publication (Srivatsan

et al, 2020).

We additionally demonstrate that the model learns universal

relationships between compounds which remain true across data-

sets and modalities. Using the same set of compounds tested in the

sci-Plex dataset together with 853 other compounds (for a total of

1,000 compounds), we trained CPA on L1000 bulk perturbation

measurement data across 82 cell lines (Musa et al, 2019). We

observed that CPA works equally well on bulk RNA-seq data, and

also that matched epigenetic and tyrosine kinase signaling

compounds present in sci-Plex were close to each other in the latent

representation, suggesting that the learned model similarities apply

across datasets (Fig 2H). This holds also for the other learned

embeddings: Applying the same similarity metric to the covariate

embedding – here the 82 cell lines – we observed that the cell line

embedding learned by the model also represents cell line similarity

in response to perturbation, as cell lines from blood tissue were

clustered together (Fig 2F).

CPA predicts combinatorial drug effects

We further validated the model trained on the sci-Plex data by

performing a new combination experiment using 13 compounds

from the original sci-Plex in A549 cells. We leveraged the perturba-

tion responses predicted by CPA when trained on sciplex3 (Fig 2)

data and selected highly responsive perturbations (which is also

reflected in the model’s perturbation embedding as separate clusters

distinct from control) with which to perform an additional valida-

tion experiment. We selected combinations to cover a variety of

pathways and response magnitudes, using the second highest dose

from the original experiment to capture maximal cell variability. We

see that the combinations partitioned themselves into two clusters

of behavior (Fig 3A), with the smaller clusters predominantly

governed by the transcriptional response to Alvespimycin. We then

assessed the ability of the CPA model to predict held out perturba-

tion combinations (Fig 3B). CPA successfully predicted the tran-

scriptional response of compounds which were similar to control,

combinations dominated by one compound, and combinations

containing the transcriptional response of both compounds (Fig 3B).

We can see in Fig 3B that the combination of Panobinostat and

Alvespimycin (top left cluster in Fig 3A) was predicted with an R2

of 0.81, despite the model having seen no other cells similar to it as

that cluster consisted only of the Panobinostat + Alvespimycin

condition and therefore held out entirely. CPA performs better than
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the control random baseline model described previously and a

linear model (see Benchmarks section in Materials and Methods)

and accurately predicts the expression levels of highly variable

genes (Fig 3C–E). We can then reconstruct the representation

between combinations by looking at the latent space derived from

combining individual perturbation vectors from the CPA perturba-

tion latent space (Fig 3F). We see that there are three “effect

clusters”, represented by Givinostat, Panobinostat, and Alvespi-

mycin in Fig 3F. Givinostat and Panobinostat are both histone

deacetylase inhibitors but operate through dissimilar mechanisms of

action.

CPA is an extensible framework for predicting single-cell
perturbations

One of the benefits of the modular architecture employed by CPA is

its flexibility and extensibility. While the perturbation dictionary

works well for the compositional structure in the latent space, it is

limited to the set of compounds present in the training set. There-

fore, predicting perturbation responses for compounds not screened

in the experiments is not feasible. To enable the prediction of

unseen drugs, a recent extension to this, called chemCPA (see Mate-

rials and Methods), has been proposed by Hetzel et al (2022).

A B

D E F

C

G H

Figure 2.
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chemCPA introduced a perturbation network that encodes small

molecules using their known chemical descriptors (Fig 4A). This

perturbation network replaces the perturbation embedding

dictionary in CPA. It comprises a pre-trained molecule encoder G, a

perturbation encoder M, and an amortized dosage scaler S. While M

learns to map from the general chemical embedding to the latent

perturbation effect zdi for a compound d, the dosage scaler S learns

to map to the effective dose ŝi given the chemical embedding hdi
and the applied dosage si.

We applied chemCPA to both the sci-Plex3 dataset (Fig 2) and

the new combination dataset (Fig 3). For the single-drug prediction

experiment, we held out nine compounds (similar to Hetzel

et al, 2022) as OOD—Dacinostat, Givinostat, Belinostat, Hesperadin,

Quisinostat, Alvespimycin, Tanespimycin, TAK-901, and Flavopir-

idol. Since CPA’s perturbation dictionary is limited to compounds

observed in the training set, it is not possible to compare CPA and

chemCPA when these drugs are entirely excluded from the training.

We kept observations from the two lowest dosages in the training

and validation sets to enable comparison within a challenging

setting. Hence, excluding the dosage values of 1 μM and 10 μM. The

results in this setting illustrate how the chemical prior improved

perturbation predictions on both the whole gene set and DEGs

across dosages (Fig 4B). Furthermore, we observed that chemCPA

generalized particularly well for compounds that belonged to the

histone deacetylation pathway (Fig 4C), which is in line with the

original sci-Plex publication (Srivatsan et al, 2020) and general

support within this perturbation dataset. We report the results from

(Hetzel et al, 2022) where the OOD drugs were excluded entirely

from training and validation (Fig 4D) and observe that the inclusion

of the low dosage values diminished chemCPA’s performance signif-

icantly, demonstrating the importance of high-dose observation for

the training of CPA and chemCPA.

We performed a similar analysis for the combination drug

dataset. Here, the OOD set consisted of all nine drug combinations

that included Panobinostat and one of SRT3025, PCI-34051, Sora-

fenib, Dasatinib, SRT2104, SRT1720, Crizotinib, Alvespimycin, and

Curcumin. That is, the single-drug observation of Panobinostat was

kept in the training and validation set, which enabled the compar-

ison of CPA with chemCPA. While both models performed well in

this scenario, chemCPA outperformed CPA overall. We should

highlight that the clear distribution shift induced by the combination

of Alvespimycin and Panobinostat (Fig 3A) could not be fully identi-

fied by either model, and both models achieved an R2 of about 0.3

on DEGs. In contrast, the other combinations could be predicted

with R2 higher than 0.6 for the DEGs in the case of the chemCPA

model (Fig 4E). The most significant improvement to CPA can be

seen in the combination of Panobinostat and SRT2104 (Fig 4F).

Through chemCPA’s perturbation network, it was possible to

exclude the single-drug perturbation from the training. The results

for this OOD setting (Fig 4G) show that in the combination scenario,

access to the single-drug influence is crucial. While the median R2

decreased from 0.85 to 0.38 for the DEGs, the single-drug perturba-

tion of Panobinostat could still be predicted with high accuracy

(Fig 4H).

CPA allows modeling combinatorial genetic perturbations

Combinatorial drug therapies are hypothesized to address the

limited effectiveness of mono-therapies (Menden et al, 2019) and

prevent drug resistance in cancer therapies (Jia et al, 2009; Menden

et al, 2019; Adam et al, 2020). However, the combined expression

of a small number of genes often drives the complexity at the

cellular level, leading to the emergence of new properties, beha-

viors, and diverse cell types (Norman et al, 2019). To study such

genetic interactions (GIs), recent perturbation scRNA-seq assays

allow us to measure the gene expression response of a cell to the

perturbation of genes alone or in combination (Dixit et al, 2016;

Datlinger et al, 2017). While experimental approaches are necessary

to assess the effect of combination therapies, in practice, it becomes

infeasible to experimentally explore all possible combinations

without computational predictions.

To pursue this aim, we applied our CPA model to scRNA-seq

data collected from Perturb-seq (single-cell RNA-sequencing pooled

CRISPR screens) to assess how overexpression of single or combina-

torial interactions of 105 genes (i.e., single gene x, single gene y,

and pair x+ y) affected the growth of K562 cells (Norman

et al, 2019). In total, this dataset contains 284 conditions measured

across ≈108; 000 single-cells, where 131 are unique combination

pairs (i.e., x+ y) and the rest are single gene perturbations or

control cells. We observed that the latent genetic interaction

◀ Figure 2. Learning drug and cell line latent representations from massive single-cell screens of 188 drugs across cancer cell lines.

A UMAP representation of sci-Plex samples (n = 290,889) of A549, K562, and MCF7 cell-lines colored by pathway targeted by the compounds to which cells were
exposed.

B Distribution of top 5 differentially expressed genes in A549 cells after treatment with Momelotinib, a JAK inhibitor, at the highest dose for real, control and CPA
predicted cells.

C Mean gene expression of 5,000 genes and top 50 DEGs between CPA predicted and real cells together with the top five DEGs highlighted in red for four compounds
for which the model did not see any examples of the highest dose.

D Box plots of R2 scores for predicted and real cells for 36 compounds and 108 unique held out conditions across different cell lines. Baseline indicates comparison of
each condition with a mean derived from randomly sampled cells.

E R2 scores box plot for all and top 50 DEGs. Each column represents a scenario where cells exposed with specific dose for all compounds on a cell line or combinations
of cell lines were held out from training and later predicted.

F Latent representation as learned by CPA of 82 cell lines from the L1000 dataset, with some cancer cell lines colored by tissue of origin.
G Two-dimensional representation of latent drug embeddings as learned by the CPA. Compounds associated with epigenetic regulation, tyrosine kinase signaling, and

protein folding/degradation pathways are colored by their respectively known pathways. The smaller upper right panel shows latent covariate embedding for three
cell lines in the data, indicating no specific similarity preference.

H Latent drug embedding of CPA model trained on the bulk-RNA cell line profiles of the top 1,000 most tested compounds from the L1000 dataset. Compounds overlap-
ping with the sci-Plex experiment in (A) are colored according to the same pathway labels as in (G).

Data information: Box plots in (E and F) indicate the median (center lines) and interquartile range (hinges), and whiskers represent minimum and maximum values.
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manifold placed GIs inducing known and similar gene programs

close to each other (Fig 5A). We further compared our latent space

clustering to mean gene expression embedding similar to the

original publication (Appendix Fig S8). Overall, CPA latent space

grouped similar perturbation as the mean gene expression embed-

ding achieving more granular clusters leading to better clustering

metrics. Next, we sought to assess our ability to predict specific

genetic interactions. We examined a synergistic interaction between

CBL and CNN1 in driving erythroid differentiation which has been

previously validated (Norman et al, 2019). We trained a CPA model

with CBL+ CNN1 held out from the training data. Overexpression of

either gene leads to the progression of cells from control to single

perturbed and doubly perturbed cells (Appendix Fig S9A) toward

the erythroid gene program. Overexpression of both CBL and CNN1

up-regulate known gene markers (Norman et al, 2019) such as

hemoglobins (see HBA1/2 and HBG1/2 in Fig 5B). We observed that

our model successfully predicted this synergistic interaction, recapi-

tulating patterns similar to real data and inline with the original

findings (Fig 5C). We further evaluated CPA to predict a previously

reported (Norman et al, 2019) genetic epistatic interaction between

DUSP9 and ETS1, leading to domination of the DUSP9 phenotype in

doubly perturbed cells (Fig 5C).

To systematically evaluate the CPA’s generalization behavior, we

trained 13 different models while leaving out all cells from ≈10
unique combinations covering all 131 doubly perturbed conditions

in the dataset, which were predicted following training. We

compared CPA predictions with linear and random baselines

described in the previous section (Fig 5D). Surprisingly, The base-

line approach achieved accurate predictions on par with both CPA

and linear models. This observation demonstrates that the transcrip-

tomic effects caused by different perturbations are very similar and

the dataset contains limited non-linear effects on the whole tran-

scriptome level. Thus, a linear model or simple baseline can provide

accurate predictions on mean as opposed to combinatorial drug

effects previously demonstrated. The reported R2 values showed

robust prediction for most of the perturbations: lower scores were

A

C E F

D

B

Figure 3. Validation of predictions in new large-scale drug combination dataset.

A UMAP representation of the combosciplex dataset comprised of n = 63,378 cells and 32 perturbation and perturbation combinations in A549 cells. The left UMAP
highlights the split used for the following results. The right UMAP shows the five out-of-distribution conditions selected and their expression pattern amongst the
clusters.

B The five out-of-distribution conditions shown in (A) and model performance per condition. The circles to the left of the condition names indicate a qualitative diffi-
culty assessment of the prediction. Conditions with the green label are dominated by one of the two compounds in the condition and should be relatively easy for
the model to predict, while combinations containing Alvespimycin are more transcriptionally dissimilar from conditions seen in training.

C Benchmark of CPA vs. a linear model vs. the aforementioned random baseline, as measured by R2 on both highly variable genes and the top 50 differentially
expressed genes. Box plots indicate the median (center lines) and interquartile range (hinges), and whiskers represents minimum and maximum values.

D Predicted vs. true, post-treatment expression values, with the top 5 DEGs colored in red.
E Violin plots of the top two DEGs per out-of-distribution condition and the pre-stimulation, post-stimulation, and CPA predicted expression values.
F UMAP representation of the combination latent vectors learned by CPA. Four individual conditions and the combinations they appear in are highlighted.
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seen for perturbations where the evaluation was noisy due to

sample scarcity (n< 100), or when one of the perturbations was

only available as singly perturbed cells in the data, leading the

model to fail to predict the unseen combination (Fig 5E, see

Appendix Figs S9 and S10). To further understand when CPA perfor-

mance deteriorated, we first trained it on a subset with no combina-

tions seen during training, and then gradually increased the number

of combinations seen during training. We found that overall predic-

tion accuracy improved when the model was trained with more

combinations and that it could fail to predict DEGs when trained

with fewer combinations (see n< 71 combinations in Fig 5F).

Hence, once trained with sufficiently large and diverse training

data, CPA could robustly predict unseen perturbations. We next

asked whether our model could generalize beyond the measured

A

B

D

E F

G H

C

Figure 4.
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combinations and generate in silico all 5,329 combinations, which

were not measured in the real dataset, but made up ≈98% of all

possibilities. To study the quality of these predictions, we trained a

model where all combinations were seen during training to achieve

maximum training data and sample diversity. We then predicted 50

single-cells for all missing combinations. We embedded (Fig 5G)

mean gene expression vector of all measured and generated data

while reporting an uncertainty value for each condition. (Fig 5H).

We hypothesized that the closer the generated embedding was to

the measured data. the more likely it was to explore a similar space

of the genetic manifold around the measured data. Equipped with

this information, we annotated the MIS clusters based on gene

prevalence, finding that single genes (i.e. gene x) paired with other

genes (i.e., y) as combinations (i.e., x+ y) are a main driver of cluster

separation (Fig 5I). Genes without measured double perturbations

were less likely to be separated as independent clusters using the

newly predicted transcriptomic expression (Appendix Fig S11A),

suggesting that their interaction-specific effects were less variable

than cases with at least one double perturbation available in the

training data. Meanwhile, points distant from measured data can

potentially indicate novel gene-interaction behaviors such as in the

case of KLF1 with co-perturbed genes (Fig 5J). However, this would

require additional consideration and validation steps.

To investigate the type of interaction between the newly

predicted conditions, we compared the differences between double

and single perturbations versus control cells and thus annotated

their interaction modes adapted from the original publication

(Norman et al, 2019). In each gene-specific cluster, we observed

variability across these values, suggesting that our predictions

contained granularity that went beyond single gene perturbation

effects and could not be fully dissected by two-dimensional embed-

dings. Upon curation of gene perturbations using these metrics and

the levels of experimental data available (Appendix Fig S11B), we

decided to predict and annotate interaction modes based on these

values when double measurements were available for at least one

gene. For example, we observed clustering of KLF1 and partner gene

perturbation pairs solely from these metrics in most of the measured

data points, suggesting the existence of several interaction modes

that cannot be fully described with bidimensional embeddings

(Fig 5K). Extraction of gene-pairs based on these values and their

variability allowed us to extract interaction types and label those

into interpretable categories, via thresholding as previously

proposed by Norman et al When we further examine the differen-

tially expressed genes in each co-perturbation, these metrics vali-

dated previously reported epistatic interactions (CEBPA), and

proposed new ones with KLF1-dominant behavior (NCL), gene

synergy (FOXA3), and epistasis (PTPN13), among others (Fig 5L).

Repeating this analysis across all measured and predicted double

perturbations, we found genes with potential interaction preva-

lences (Appendix Fig S11C). Among genes which repeatedly

respond to several perturbations, we found common gene expres-

sion trends in both direction and magnitude (Appendix Fig S11D),

suggesting that variation is modulated by conserved gene regulatory

principles that are potentially captured in our learned model.

Altogether, our analysis indicated that double perturbation

measurements can be generated by CPA by leveraging genetic

perturbation data, which when combined with an uncertainty metric

allows us to generate and interpret gene regulatory rules in the

predicted gene–gene perturbations.

Discussion

In silico prediction of cell behavior in response to a perturbation is

critical for optimal experiment design and the identification of effec-

tive drugs and treatments. With CPA, we have introduced a versatile

and interpretable approach to modeling cell behaviors at single-cell

resolution. CPA is implemented as a neural network trained using

stochastic gradient descent, scaling up to millions of cells and thou-

sands of genes.

We applied CPA to a variety of datasets and tasks, from

predicting single-cell responses to learning embeddings, as well as

reconstructing the expression response of compounds, with variable

drug-dose combinations. Specifically, we illustrated the modeling of

perturbations across dosage levels and time series, and have demon-

strated applications in drug perturbation studies, as well as genetic

perturbation assays with multiple gene knockouts, revealing poten-

tial gene–gene interaction modes inferred by our model predicted

values. CPA combines the interpretability of linear decomposition

models with the flexibility of nonlinear embedding models.

While CPA performed well in our experiments, it is well known

that in machine learning there is no free lunch, and as with any

◀ Figure 4. CPA extensibility enables predicting the response to unseen drugs.

A Proposed architecture change for CPA to include chemical prior knowledge. The molecule encoder G maps the chemical information of a compound to a latent drug
embedding hdi . This module can be based on a pre-trained graph encoder or molecular fingerprints like here. During training only the perturbation module M and
the amortized dosage scaler S are optimized.

B Comparison between CPA and chemCPA, including a baseline that ignores all drug-induced perturbation effects. Scores are computed on the sci-Plex3 (n= 290,889)
data on a test set that consists of nine compounds. Both the whole genes set (left) and the DEGs (right) are shown.

C Performance comparison between the models from (B) for two histone deactylation drugs, Givinostat and Dacinostat, across all doses and cell-lines (shades).
D Median scores for the models from (B) for the highest dose value of 10 μM, including the result of chemCPA for the setting in which the nine test compounds are

completely unseen and excluded from the training and validation.
E Comparison between CPA and chemCPA on the new combosciplex (n= 63,378) including the same type of baseline as in (B). The test set consists of all nine drug

combinations that include Panobinostat.
F Detailed performance comparison between the models from (E) for the two conditions with the highest R2 difference on the DEGs.
G Median scores for the models from (E), including the result of chemCPA where also the single-drug Panobinostat observations were held-out. The median score on

the DEGs reduces from 0.85 to 0.38.
H Showing how well chemCPA is able to predict the single-drug effect of Panobinostat when it is held out. This is compared to the achieved score when Panobinostat

is included in the training set (E).

Data information: Box plots indicate the median (center lines) and interquartile range (hinges), and whiskers represent minimum and maximum values.
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other machine learning model, CPA will fail if the test data are very

different from the training data. To alert CPA users to these cases, it

is crucial to quantify model uncertainty. To do so, we implemented

a distance-based uncertainty score to evaluate our predictions. The

current heuristic for uncertainty estimation originates from the

compositional formulation in CPA. Such formulation results in very

different covariate/perturbation vector combinations to those

observed in training data will have a higher distance and thus

higher uncertainty than covariate/perturbation observed in training

(see Appendix Figs S4 and S12). Yet, like other in silico predictive

models, CPA’s predictions cannot replace experimental validation;

instead, it can serve as a potential guide to efficiently conduct

experiments. Additionally, scalable Bayesian uncertainty models are

promising alternatives for future work (Gal & Ghahramani, 2016).

Although we opted to implement a deterministic autoencoder

scheme, extensions toward variational models (Lopez et al, 2018;

Lotfollahi et al, 2020), as well as cost functions other than mean

squared error (Eraslan et al, 2019) are straightforward. In addition

to model uncertainty, the data uncertainty and biases play an impor-

tant role in biasing the model toward specific prediction regimes.

For example, genes co-measured with other genes tend to

show more complex predictions than the ones where either one or

neither gene was co-measured in combinations, in which case the

model tends to predict single-gene effects (dominance) (see

Appendix Fig S11D). The nature of these multivariate biases and

whether it is solely data-driven or linked to Biology should be the

focus of additional work. We hope this insight contributes to the

design of future combinatorial screenings. Finally, we leveraged one

fixed architecture with very similar hyperparameters. However, to

achieve the best performance, systematic hyperparameter sweeping

is needed; for example, in cases where many perturbations and

covariates are present different weights for disentanglement loss

might be required to ensure the basal state is free of perturbation

and covariate information.

Aside from CPA, existing methods (Lotfollahi et al, 2020; Russ-

kikh et al, 2020) such as scGen (Lotfollahi et al, 2019) have also

been shown capable of predicting single-cell perturbation responses

when the dataset contains no combinatorial treatment or dose-

dependent perturbations. Therefore, it may be beneficial to

benchmark CPA against such methods in less complicated scenarios

with few perturbations. However, this approach might not be prac-

tical, considering the current trend toward the generation of massive

perturbation studies (Dixit et al, 2016; Norman et al, 2019; Srivatsan

et al, 2020).

Currently, the model is based on gene expression alone, so it

cannot directly capture other levels of interactions or effects, such

as those due to post-transcriptional modification, signaling, or

cell communication. However, due to the flexibility of neural

network-based approaches, CPA could be extended to include

other modalities, for example via multimodal single-cell CRISPR

(Frangieh et al, 2021; Papalexi et al, 2021) combined scRNA-seq

and ATAC-seq (Clark et al, 2018; Chen et al, 2019) and CUT&Tag

(Kaya-Okur et al, 2019; Wu et al, 2021). In particular, we expect

spatial transcriptomics (Rodriques et al, 2019; van den Brink

et al, 2020) to be a valuable source for extensions to CPA due to

its high sample number and the dominance of DL models in

computer vision.

The CPA model is not limited to single-cell perturbations. While

we chose the single-cell setting due to the high sample numbers

available, the CPA could readily be applied to large-scale bulk

cohorts, in which covariates might be patient ID or transcription

factor perturbation. These and any other available attributes could

be controlled independently (Lample et al, 2017) to achieve compo-

sitional, interpretable predictions. Any bulk compositional model

may be combined with a smaller-scale single-cell model to compose

truly multi-scale models of observed variance. The flexibility of the

DL setting will also allow addition of constraints on perturbation or

covariate latent spaces. These could, for example, be the similarity

of chemical compounds (Mater & Coote, 2019), or clinical-covariate

induced differences of patient IDs. The key feature of the CPA

versus a normal autoencoder is its latent space disentanglement and

the induced interpretability of the perturbations in the context of cell

states and covariates. Eventually, any aim in biology is not only

blind prediction, but mechanistic understanding. This objective is

exemplified by the direction that DL models are taking in sequence

genomics, where the aim is not only the prediction of new interac-

tions, but also the interpretation of the learned gene regulation code.

We therefore believe that CPA can not only be used as a hypothesis

◀ Figure 5. Predicting combinatorial genetic perturbations.

A UMAP inferred latent space using CPA for 281 single and double-gene perturbations obtained from Perturb-seq (n = 108,497). Each dot represents a genetic perturba-
tion. Coloring indicates known gene programs associated with perturbed genes from the original publications.

B Measured and CPA-predicted gene expression for cells linked to a synergistic gene pair (CBL + CNN1). Gene names taken from the original publication.
C As (b) for an epistatic (DUSP9+ ETS) gene pair. Top 10 DEGs of DUSP9+ ETS co-perturbed cells versus control cells are shown.
D R2 values of mean gene-expression of measured and predicted cells for all genes (black) or top 100 DEGs for the prediction of all 131 combinations for CPA, linear

model, and the baseline (13 trained models, with ≈10 tested combinations each time).
E R2 values of predicted and real mean gene-expression versus number of cells in the real data.
F R2 values for predicted and real cells versus number of combinations seen during training.
G UMAP of mean gene expression in each measured (n = 284, red dots) and CPA-predicted (n = 5,329, gray dots) perturbation combinations.
H As (g), showing measurement uncertainty (cosine similarity).
I As (g), showing dominant genes in Leiden clusters (25 or more observations). KLF1 cluster is highlighted with red dotted circle.
J UMAP of mean expression of cells with KLF1 as a common co-perturbed gene.
K Hierarchical clustering of linear regression associated metrics between KLF1 with co-perturbed genes, in measured and predicted cells. Each row indicates summary

parameters obtained when fitting a linear regression for double predictions using single perturbations as predicting variables, and relationships between coefficients
c1 and c2. For definitions see Materials and Methods.

L Scaled gene expression changes (versus control) of RF-selected genes (x-axis) in measured (purple) and predicted (yellow) perturbations (y-axis). Headers indicate
gene-wise regression coefficients, and interaction mode suggested by (Norman et al, 2019).

Data information: Box plots indicate the median (center lines) and interquartile range (hinges), and whiskers represent minimum and maximum values.
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generation tool for in silico screens but also as an overall data

approximation model. Deviations from our assumed data generation

process (see Materials and Methods) would then tell us about

missing information in the given data set and/or missing aspects in

the factor model. By including multiple layers of regulation, the

resulting model can grow in flexibility for prediction and for

mechanistic understanding of for example synergistic gene regula-

tion or other interactions.

Finally, we expect CPA to facilitate new opportunities in

expression-based perturbation screening, not only to learn optimal

drug combinations, but also in how to personalize experiments and

treatments by tailoring them based on individual cell response.

Materials and Methods

Reagents and tools table

Reagent/
Resource Reference or Source

Identifier or Catalog
Number

python v3.7 https://www.python.org/

pytorch v1.10 https://pytorch.org/

scanpy v1.8 https://pypi.org/project/
scanpy/

anndata v0.7 https://pypi.org/project/
anndata/

Methods and Protocols

Data generating process
We consider a dataset D ¼ xi; di; cið Þf gNi¼1, where each xi ∈RG

describes the gene expression of G genes from cell i. The perturba-

tion vector di ¼ di;1; . . . ;di;M
� �

contains elements di;j ≥ 0 describing

the dose of drug j applied to cell i. If di;j ¼ 0, this means that pertur-

bation j was not applied to cell i. Unless stated otherwise, the sequel

assumes column vectors. Similarly, the vector of vectors

ci ¼ ci;1; . . . ci;K
� �

contains additional discrete covariates such as cell-

types or species, where each covariate is itself a vector. More speci-

fically, ci;j is a Kj-dimensional one-hot vector.

We assume that an unknown generative model produced our

dataset D. The three initial components of this generative process

are a latent (unobserved) basal latent state zbasali for cell i, together

with its perturbation vector di and covariate vector ci. We assume

that the basal latent state is independent from the perturbation

vector di and covariate vector ci. Next, we form the latent (also

unobserved) perturbed latent state zi as:

zi ¼ zbasali þ Vperturbation � f 1 di;1
� �

; . . . ; fM di;M
� �� �þ∑j¼1;...;KV

covj

� ci;jc
(1)

In this equation, each column of the matrix Vperturbation ∈Rd�M

represents a d-dimensional embedding for one of the M possible

perturbations represented in di. Similarly, each column of the matrix

Vcovj ∈Rd�Kj represents a d-dimensional embedding for the j-th

discrete covariate, represented as a Kj-dimensional one-hot vector ci;j.

The functions f j : R ! R scale non-linearly each of the di;j in the

perturbation vector di, therefore implementing M independent dose–
response (or time-response) curves. Finally, we assume that the

generative process returns the observed gene expression xi by means

of an unknown decoding distribution p xijzið Þ. This process builds the
observation xi; di; cið Þ, which is then included in our dataset D.

Compositional perturbation autoencoder (CPA)
Assuming the generative process described above, our goal is to

train a machine learning model x0i ¼ M xi; di; cið Þ; d0� �
such that,

given a dataset triplet xi; di; cið Þ as well as a target perturbation d0,
estimates the gene expression x0i. The term x0i represents what would

the counterfactual distribution of the gene expression xi with covari-

ates ci look like, had it been perturbed with d0 instead of di.

Given a dataset and a learning goal, we are now ready to

describe our proposed model, the CPA. In the following, we describe

separately how to train and test CPA models.

Training
The training of a CPA model consists in auto-encoding dataset

triplets xi; di; cið Þ. That is, during training, a CPA model does not

attempt to answer counterfactual questions. Instead, the training

process consists in (i) encoding the gene expression xi into an esti-

mated basal state ẑbasali that does not contain any information about

di; cið Þ, (ii) combining ẑbasali with learnable embeddings about di; cið Þ
to form an estimated perturbed state ẑi, and (iii) decoding ẑi back

into the observed gene expression xi.

More specifically, following a forward pass of the CPA model

first encodes the observed gene expression xi into an estimated

basal state:

ẑbasali ¼ f̂
enc

xið Þ:

The estimated basal state is used as input to the auxiliary classi-

fiers (see next paragraph) and also to compute the estimated

perturbed state ẑi:

ẑi ≔ ẑbasali þ V̂
perturbation � f̂ 1 di;1

� �
; . . . f̂ M di;M

� �� �
þ∑j¼1;...;KV̂

covj � ci;j
(2)

Contrary to (1), this expression introduces three additional learn-

able components: the perturbation embeddings V̂
perturbation

, the

covariate embeddings V̂
cov

and the learnable dose–response curves

f̂ 1; . . . ; f̂M

� �
, here implemented as small neural networks

constrained to satisfy f̂ j 0ð Þ ¼ 0.

As a final step, a decoder f̂
dec

accepts the estimated perturbed

state ẑi and returns f̂
dec

μ ẑið Þ and f̂
dec

σ2 ẑið Þ, that is, the estimated mean

and variance of the counterfactual gene expression x0i.
To train CPA models, we use three loss functions. First, the

reconstruction loss function is the Gaussian negative log-likelihood:

li ≔
logs f̂

dec

σ2 ẑið Þ
� �

2
þ

f̂
dec

μ ẑið Þ�x0i
� �2

2 � s f̂
dec

σ2 ẑið Þ
� � ; (3)

where s σ2ð Þ ¼ log exp σ2 þ 10�3
� �þ 1

� �
enforces a positivity

constraint on the variance and adds numerical stability. This loss
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function rewards the end-to-end auto-encoding process if produ-

cing the observed gene expression xi.

Second, and according to our assumptions about the data gener-

ating process, we are interested in removing the information about

di; cið Þ from ẑbasali . To achieve this information removal, we follow

an adversarial approach (Lample et al, 2017). In particular, we set

up the following auxiliary loss functions:

ldi ≔ CrossEntropy f̂
adv

d ẑbasali

� �
; di

� �
; lci;j≔CrossEntropy f̂

adv

ci;j
ẑbasali

� �
; ci;j

� �
; 8j

¼ 1; . . . ;K:

The functions f̂
adv

d , f̂
adv

ci;j
are a collection of neural network classi-

fiers trying to predict di; cið Þ given the estimated basal state ẑbasali .

Given this collection of losses, the training process is an optimi-

zation problem that repeats the following two steps:

1 sample xi;di; cið Þ ∼ D, minimize ldi þ∑jl
c
i;j by updating the para-

meters of f̂
adv

d and f̂
adv

ci;j
, for all j ¼ 1; . . . ;K;

2 sample xi; di; cið Þ ∼ D, minimize li�λ � ldi þ∑jl
c
i;j

� �
by updating the

parameters of the encoder f̂
enc

, the decoder f̂
dec

, the perturbation

embeddings V̂
perturbation

, the covariate embeddings V̂
covj

for all

j ¼ 1; . . . ;K, and the dose–response curve estimators f̂ 1; . . . ; f̂ M

� �
.

Testing
Given an observation xi;di; cið Þ and a counterfactual treatment d0,
we can use a trained CPA model to answer what would the counter-

factual distribution of the gene expression xi with covariates ci look

like, had it been perturbed with d0 instead of di. To this end, we

follow the following process:

1 Compute the estimated basal state ẑbasali ¼ f̂
enc

xið Þ;
2 Compute the counterfactual perturbed state ẑ0i

ẑ0i ≔ ẑbasali þ V̂
perturbation � f̂ 1 d0i;1

� �
; . . . f̂ M d0i;M

� �� �
þ ∑

j¼1; ...;K

V̂
covj � ci;j:

Note that in the previous expression, we are using the counter-

factual treatment d0 instead of the observed treatment di.

1 Compute and return the counterfactual gene expression mean x0i;μ:

x0i;μ ¼ f̂
dec

μ ẑ0i
� �

;

and variance x0i;σ2 :

x0i;σ2 ¼ f̂
dec

σ2 ẑ0i
� �

:

Hyper-parameters and training
For each dataset, we perform a random hyper-parameter search of

100 trials. Table 1 outlines the distribution of values for each of the

hyper-parameters involved in CPA training.

Model evaluation
We use several metrics to evaluate the performance of our model:

(i) quality of reconstruction for in and OOD cases and (ii) quality of

disentanglement of cell information from perturbation information.

We split each dataset into three subsets: train, validation, and OOD.

For OOD cases, we choose combinations of perturbations that

exhibit unseen behavior. This usually corresponds to the most

extreme drug dosages. We select one perturbation combination as

“control”. Usually, these are Vehicle or DMSO if real control

samples are present in the dataset; otherwise, we choose a drug

perturbation at a lower dosage as “control”. For the evaluation, we

use the mean squared error of the reconstruction of an individual

cell and average it over the cells for the perturbation of interest. As

an additional metric, we use classification accuracy in order to

check how well the information about the drugs was separated from

the information about the cells.

chemCPA
The chemCPA model (Hetzel et al, 2022) extends CPA by a pertur-

bation network that replaces CPA’s perturbation dictionary with a

neural network that maps chemical information to the latent drug

encoding. This extension allows to infer latent perturbation embed-

ding for compounds that are not originally present in the dataset,

i.e. predicting cellular perturbation effects for drugs that are comple-

tely unseen. For both presented experiments, we use the default

training scripts of the chemCPA model as provided by Hetzel

et al (2022) and available at (https://github.com/theislab/

chemCPA). For a fair comparison, we tested the same set of hyper-

parameters for CPA and chemCPA. As molecule encoder G, we rely

on the molecular fingerprints, computed with RDKit

(Landrum, 2006), as these have shown competitive performance in

the performed benchmark in (Hetzel et al, 2022). In the combination

setting, we compute one forward pass of the perturbation network

per compound and perform latent space arithmetic identically to

CPA.

Benchmarks
Random baseline

We call random baseline the R2 between means and variances of

gene expression between a certain condition (e.g., OOD) and a

random subset of the training data. This gives an idea of how

heterogeneous gene expression is in the dataset. Improvements over

this baseline mean that the model has learned meaningful informa-

tion regarding covariates and perturbations and has not naively

learned a mean representation of the training data.

Linear baseline

As a baseline for combinatorial perturbations we use the average

between the pseudobulked gene expressions of the two perturba-

tions.

~xAB ¼ x�A þ x�B
2

scGen

We used scGen (Lotfollahi et al, 2019) with default parameters as

according to the tutorial described here.
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Uncertainty estimation

To estimate the uncertainty of the predictions we use as a proxy the

minimum distance between the queried perturbation and the set of

conditions (covariate + perturbation combinations) seen during

training (Appendix Fig S12). Intuitively, we expect predictions on

queried conditions that are more distant from the set of seen condi-

tions to be more uncertain. To estimate this distance we first

compute the set of embeddings of the training covariate and pertur-

bation combinations:

ẑcomb ¼ V̂
perturbation � f̂ 1 d01ð Þ; . . . f̂ M d0Mð Þ

� �
þ ∑

j¼1; ...;K

V̂
covj � cj:

The latent vector for the queried condition is obtained in the

same manner. The cosine and euclidean distances from the training

embedding set are computed and the minimum distance is used as a

proxy for uncertainty. Our perturbation and covariate embeddings

are not normalized. Therefore, cosine and euclidean distances yield

different interpretations and orderings. With the cosine distance, we

measure the distance between the vectors’ orientation, assuming

their magnitude is not essential. In contrast, the euclidean distance

measures the distance between the two vectors considering their

magnitude.

ucosine ¼ min 1�SC ẑquery; ẑcomb
� �� �

ueucl ¼ min d ẑquery; ẑcomb
� �� �

where SC x; yð Þ stands for the cosine similarity and d x; yð Þ for the

euclidean distance between the two vectors.

With this methodology, in the case of a drug screening experi-

ment, if we query a combination of cell type, drug, and dosage that

was seen during training, we get an uncertainty of zero since this

combination was present in the training set. It is important to note

that with this method, we obtain a condition-level uncertainty in

that all cells predicted under the same query will have the same

uncertainty, thus not considering cell-specific information.

R2 score

We used the r2_score function from scikit-learn, which reports the

R2 (coefficient of determination) regression score.

Clustering metrics

We used silhouette_score and homogeneity_score functions from

scikit-learn to calculate metrics. Original labels from Norman et al

were used to assess cluster homogeneity. The cluster homogeneity

is high when all clusters contain only data points that are members

of a single cluster. We tried multiple values of K (k in

[3,4,5,6,8,7,8,9,10]) to construct the neighborhood graph and also

multiple resolutions (from low to high resolution) for Leiden clus-

tering (resolution in [0.3, 0.4, 0.5, 0.6, 0.7,0.75, 0.8,0.85, 0.9, 1]) to

maximize the normalized_mutual_info_score() from scikit-learn

between clusters and the ground truth gene programs labels

obtained from the original study. The best result across multiple

hyperparameters for each method was selected and compared.

Datasets
Kang et al

The dataset was obtained from Stuart et al (2019) tutorial. The

object includes PBMCs from eight patients with Lupus. The cells are

either treated with IFN-β or control cells (Kang et al, 2018). We then

proceeded with normalization, log (x+ 1)-transformation and the

selection of 5,000 HVGs using SCANPY.

Genetic CRISPR screening experiment

We obtained the raw count matrices from Norman et al (2019) from

GEO (accession ID GSE133344). According to authors guide, we

excluded “NegCtrl1_NegCtrl0__NegCtrl1_NegCtrl0” control cells

and merged all unperturbed cells as one “ctrl” condition. We then

normalized and log-transformed the data using SCANPY and

selected 5,000 HVGs for training. The processed dataset contained

108; 497 cells.

Cross-species experiment

The data was generated by Hagai et al (2018) and downloaded from

ArrayExpress (accession: E-MTAB-6754). The data consists of

119,819 phagocytes obtained from four different species: mouse,

rat, pig, and rabbit. Phagocytes were treated with lipopolysaccha-

ride (LPS) and the samples were collected at different time points: 0

Table 1. Hyperparameter selection.

Group Hyperparameter
Default
value

Random search
distribution

General Embedding
dimension

256 RandomChoice
([128, 256, 512])

Batch size 128 RandomChoice
([64, 128, 256,
512])

Learning rate decay,
in epochs

45 RandomChoice
([15, 25, 45])

Nonlinear
scalers

Hidden neurons,
nonlinear scalers

64 RandomChoice
([32, 64, 128])

Hidden layers 2 RandomChoice([1,
2, 3])

Learning rate 1e-3 10Uniform (−4, −2)

Weight decay 1e-7 10Uniform (−8, −5)

Encoder and
decoder

Hidden neurons,
encoder, and decoder

512 RandomChoice
([256, 512, 1,024])

Hidden layers 4 RandomChoice([3,
4, 5])

Learning rate 1e-3 10Uniform (−4, −2)

Weight decay 1e-6 10Uniform (−8, −4)

Discriminator Hidden neurons,
discriminator

128 RandomChoice
([64, 128, 256])

Hidden layers 3 RandomChoice([2,
3, 4])

Regularization
strength

5 10Uniform (−2, 2)

Gradient penalty 3 10Uniform (−2, 1)

Learning rate 3e-4 10Uniform (−5, −3)

Weight decay 1e-4 10Uniform (−6, −3)

Number of learning
steps

3 RandomChoice([1,
2, 3, 4, 5])
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(control), 2, 4, and 6 h after the beginning of treatment. All genes

from non-mouse data were mapped to the respective orthologs in

the mouse genome using Ensembl ID annotations. We filtered out

cells with a percentage of counts belonging to mitochondrial genes

higher than 20%, then proceeded to normalize and log-transform

the count data. For training and evaluation, we selected 5,000 HVG

using SCANPY. After filtering, the data consists of 113; 400 cells.

sci-Plex 2

The data was generated by Srivatsan et al (2020) and downloaded

from GEO (GSM4150377). The dataset consists of A549 cells treated

with one of the following four compounds: dexamethasone, Nutlin-

3a, BMS-345541, or Vorinostat (SAHA). The treatment lasted 24 h

across seven different doses. The count matrix obtained from GEO

consists of 24; 262 cells. During QC we filtered cells with fewer than

500 counts and 720 detected genes. We discarded cells with a

percentage of mitochondrial gene counts higher than 10%, thus

reducing the dataset to 14; 811 cells. Genes present in fewer than

100 cells were discarded. We normalized the data using the size

factors provided by the authors and log-transformed it. We selected

5,000 HVGs for training and further evaluations.

sci-Plex 3

The data was generated by Srivatsan et al (2020) and downloaded

from GEO (GSM4150378). The dataset consists of three cancer cell

lines (A549, MCF7, K562), which are treated with 188 different

compounds with different mechanisms of action. The cells are

treated with 4 dosages (10, 100, 1,000, and 10,000 nM) plus vehicle.

The count matrix obtained from GEO consists of 581,777 cells. The

data was subset to half its size, reducing it to 290,888 cells. We then

proceeded with log-transformation and the selection of 5,000 HVGs

using SCANPY.

Combosciplex

Experiment details Drug dose combinations were administered as

described previously (Srivatsan et al, 2020). Briefly, A549 cells were

grown in DMEM media (ThermoFisher Scientific; cat no. 11966025)

supplemented with 10% FBS and 1% Penicillin–Streptomycin.

These cells were then seeded at 25,000 cells/well in a 96-well flat

bottom plate (ThermoFisher Scientific, cat no. 12-656-66). Prior to

treatment, stock compounds from SelleckChem (stock concentration

of 10mM) were first diluted to 1:10 in DMSO, followed by a 1:10

dilution in PBS. From this dilution, 1 μl of each compound was

added to a culture well in a 96-well plate containing 99 μl of media.

Treatments were performed one day after plating and resulted in a

final concentration of 1 μM for each compound. After 24 h of growth

at 37°C and 5% CO2, media was removed, cells were washed once

with cold PBS, and then enzymatically detached using 50 μl of

TrypLE at 37°C for 5min (ThermoFisher; cat no. 12604013). After

detachment, cells were quenched with 100 μl of media containing

FBS, transferred to a 96-well V-bottom plate, and pelleted at 500 g

for 5 min in a swinging bucket centrifuge (Eppendorf 5810r). Media

was then aspirated, and cells were washed once with 100 μl cold
PBS. Finally, PBS was removed and cells were resuspended in 50 μl
of tiny-sci lysis buffer; see (preprint: Martin et al, 2021) for details.

Five microliters of each well was then transferred, while preserving

orientation, to a 96-well PCR plate. To each well, we added 0.5 μl of

10mM dNTPs and 1 μl of 10 μM indexed reverse transcription (RT)

primer. Indexed RT, indexed ligation and indexed PCR were all

performed as described in preprint: Martin et al (2021). For this experi-

ment, a single 96-well plate of RT primers and a single plate of 96 liga-

tion primers were used. Prior to indexed PCR, 1,000 nuclei were

deposited per well. The resulting libraries were purified and sequenced

on using the NextSeq 75 cycle high output kit with the following read

lengths: 34 bp – R1; 10 bp I1; 48 bp R2. Sequenced reads were demulti-

plexed, mapped to GRCh38 using STAR, deduplicated, and output as a

cell*gene count matrix as described previously (Srivatsan et al, 2020).

Sample size was chosen such that single cell transcriptomes could be

collected from each drug combination such that cells or molecules

either matched or were in excess of previously collected data.

We generated a novel validation dataset of 32 samples containing

combinations of 13 compounds selected from the 188 compounds in

sci-Plex 2 (Srivatsan et al, 2020). Drug dose combinations were admi-

nistered as described previously. Briefly, A549 cells were grown in

DMEM media (ThermoFIsher Cat number) supplemented with 10%

FBS and 1% Penicillin–Streptomycin. These cells were then seeded at

XX cells/well in a 96-well plate. To minimize the concentration of

DMSO in each well, stock compounds from SelleckChem (concentra-

tion of 10mM) were first diluted to 1:10 in DMSO, followed by a 1:10

dilution in PBS. 1 μl of each diluted compound was then added to the

corresponding position in a 96-well plate containing 99 μl of media to

achieve a final concentration of 1 μM for each compound. After 24 h

of growth at 37°C and 5% CO2, media was removed, cells were all

washed once with cold PBS and then After the data was filtered cells

expressing fewer than 20 genes and gene expressed in fewer than 200

cells, the counts were log-normalized. The dataset can be found with

the GEO accession code— GSE206741.

Interpretation of combinatorial genetic interactions
In the case of genetic screening, previous work by Norman

et al (2019) proposed a set of metrics to annotate and classify gene–
gene interactions based on responder genes. Based on this, here we

used measured or predicted gene expression differences with respect

to control cells (δ), for gene perturbations a (δa), b (δb) and double

perturbations ab (δab), to calculate interaction types by similarity

between these three expression vectors.

More specifically, to calculate association coefficients, we use the

linear regression coefficients c1 and c2 obtained from the model

δab ¼ δac1 þ δbc2

To describe interaction modes, we used the following metrics.

1 similarity between predicted and observed values:

dcorðδac1 þ δbc2; δab).

2 linear regression coefficients: c1 and c2.

3 magnitude: c21 þ c22
� �1=2

.

4 dominance: log10 c1=c2ð Þj j.
5 similarity of single transcriptomes: dcor a; bð Þ
6 similarity of single to double transcriptomes: dcor a; b½ �; abð Þ.
7 equal contributions: min dcor a; bð Þ; dcor b; abð Þð Þ

max dcor a;bð Þ; dcor a;abð Þð Þ.

Following clustering and comparison of these metrics across

measured and predicted cells, we decided the following rules of

thumb to define and annotate interaction modes:
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1 epistatic: min abs c1ð Þ; abs c2ð Þð Þ> 0:2 and either (i)

(abs c1ð Þ> 2abs c2ð Þ) or (ii) (abs c2ð Þ> 2abs c1ð Þ)
2 potentiation: magnitude >1 and abs(dcor a;bð Þ) – 1> 0.2.

3 strong synergy (similar phenotypes): magnitude >1 and abs

(dcor a; b½ �; abð Þ) – 1> 0.2

4 strong synergy (different phenotypes): magnitude >1 and abs

(dcor a;bð Þ) – 1> 0.5.

5 additive: abs(magnitude) – 1< 0.1.

6 redundant: abs(dcor a;b½ �; abð Þ) – 1< 0.2 and abs(dcor a; bð Þ) – 1

< 0.2

More than one genetic interaction can be suggested from these

rules. In those cases, we did not assign any plausible interaction.

For visualization purposes, we consider perturbed genes with 50 or

more interaction modes reported with other co-perturbed genes

(Appendix Fig S11C).

To visualize differentially expressed genes with the similar

response across perturbations (Appendix Fig S11D), we trained a

random forest classifier using as prediction labels control, a, b and

ab cells, and gene expression as features. We retrieved the top 200

genes from this approach. Then, we annotated the direction (posi-

tive or negative) and the magnitude of those changes versus control

cells, generating a code for clustering and visualization. To label

genes with potential interaction effects, we labeled them if the

double perturbation predicted magnitude is 1.5× times or higher

than the best value observed in single perturbations.

Data availability

All datasets analyzed in this manuscript are public and have been

published in other papers. We have referenced them in the manu-

script and made them available at https://github.com/theislab/cpa-

reproducibility/tree/main/notebooks. In Addition, to that, an open-

source implementation of the code is also available at https://

github.com/theislab/cpa.

Expanded View for this article is available online.
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