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Modeling fragment counts improves 
single-cell ATAC-seq analysis

Laura D. Martens    1,2,3, David S. Fischer    2,4, Vicente A. Yépez    1, 
Fabian J. Theis    1,2,3,4   & Julien Gagneur    1,2,3,5 

Single-cell ATAC sequencing coverage in regulatory regions is typically 
binarized as an indicator of open chromatin. Here we show that binarization 
is an unnecessary step that neither improves goodness of fit, clustering, cell 
type identification nor batch integration. Fragment counts, but not read 
counts, should instead be modeled, which preserves quantitative regulatory 
information. These results have immediate implications for single-cell ATAC 
sequencing analysis.

Single-cell assay for transposase-accessible chromatin using sequenc-
ing (scATAC-seq)1 is a major method employed to study chromatin 
regulation2. It employs Tn5 transposase to insert sequencing adaptors 
into accessible genome regions, resulting in reads representing Tn5 
insertions in individual cells1 (Fig. 1a,b). When analyzing scATAC-seq 
data, open chromatin regions are generally identified on the pooled 
data as peaks, which are genomic regions with a significant excess of 
reads compared to the background1,3,4. Alternative approaches define 
the feature set as genomic windows or bins5,6 (Supplementary Table 1).  
Subsequently, the reads overlapping each feature are counted for  
each cell, yielding a typically very sparse matrix with less than 10% 
non-zero counts7.

Machine-learning modeling of scATAC-seq data supports inves-
tigations of single-cell genome regulation, including identification 
of cell types, differentially accessible regions and transcription factor  
activity inference. The loss function and data representation are 
crucial determinants of a model’s predictive power. Many methods 
default to binarizing the count matrix due to overall data sparsity and 
the conceptualization of chromatin accessibility as a binary state5–10 
(Supplementary Table 1). While some approaches handle the data 
quantitatively3,11,12, there exists no systematic evaluation of the impact 
of binarization.

Here, we compare binarization versus count-based modeling on 
scATAC-seq data modeling tasks and assess the quality of the learnt 
latent space using multiple downstream evaluations. We based our 
analysis on four publicly available datasets representing different 
protocols, species and tissues13–16 (Supplementary Table 1; Methods). 
First, we considered the proportion of peaks above the typical binari-
zation threshold of one read. Across all datasets, over 65% of non-zero 

peaks had more than one read count (Fig. 1c and Extended Data  
Fig. 1). In the NeurIPS dataset, for instance, 74% of non-zero peaks had 
counts of two, with 12% having even higher counts. We furthermore 
saw a fivefold increase in peaks with even compared to odd counts  
(Fig. 1c). This pattern can be explained as an artifact of the count aggre-
gation strategy used in the 10x Genomics CellRanger ATAC pipeline4, 
which counts reads (deduplicated fragment ends) instead of fragments  
(Fig. 1a). As scATAC-seq generates paired-end reads, even counts are 
predominant, whereas odd counts only occur when one read pair falls 
outside the peak region (Fig. 1a,b). In contrast, fragment counts showed 
a regular monotonic decay (Fig. 1d and Extended Data Fig. 1; Methods). 
Many methods rely on the read count matrices generated by the 10x 
pipeline or adopt the same counting strategy3,5–10,17 (Supplementary 
Table 1); however, no benchmark has compared the read and fragment 
count strategies.

The alternating pattern of odd and even read counts does not 
align with standard statistical count distributions, such as the Poisson. 
We found that the variance of read counts for each region across cells 
was approximately twice the mean (Fig. 1e and Extended Data Fig. 1), 
violating the Poisson assumption of equal mean and variance. In con-
trast, the mean-variance relationship of fragment counts was broadly 
consistent with a Poisson distribution across the four datasets (Fig. 1f 
and Extended Data Fig. 1).

Altogether, these results have two implications. First, scATAC-data 
carries information beyond binary accessibility. Second, fragment 
counts, but not read counts, can be more suitably modeled with the 
Poisson distribution.

To assess how modeling fragment counts, rather than binarized 
signals, affects latent space learning, we adapted the PeakVI model, 
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the observed rather than predicted total fragment counts as the binary 
model (Binary VAE) also showed significantly better reconstruction 
than PeakVI. We further tested that the performance improvement 
was not a result of disproportionately giving more weight to regions 
with high counts (Extended Data Fig. 2b). In contrast, the sparser 
sci-ATAC-seq3 dataset (median peak fragment count 0.036 versus 
0.017 in the 10x datasets; Extended Data Fig. 2a and Supplementary 
Table 1), did not benefit from using quantitative information or the 
observed total fragment count. Downsampling of the NeurIPS dataset 
confirmed that the advantages of the quantitative model increased with 
a higher total fragment count (Extended Data Fig. 2c).

We also evaluated the learnt latent representations using several 
integration metrics divided into two categories, batch integration and 
bioconservation18. In addition to the three VAE models, we compared the 
embedding techniques of three widely used methods (Supplementary 
Table 1): latent semantic indexing (LSI; Signac3 and ArchR5); latent Dir-
ichlet allocation (cisTopic8) and SCALE10, a deep generative model. While 
binary methods performed reasonably well across the datasets, there  
was no apparent benefit in utilizing binarized data (Extended Data  

a state-of-the-art variational autoencoder (VAE) for scATAC-data9. 
Originally designed for binarized data, PeakVI learns the probability 
that a peak in each cell is accessible, while accounting for cell-specific 
effects and region biases through learnt factors. We modified PeakVI’s 
last layer to instead model Poisson-distributed fragment counts (Pois-
son VAE; Methods). As the total number of fragments per cell varies 
drastically across cells (Extended Data Fig. 2a), we incorporated the 
total fragment count as a precomputed offset in the loss instead of 
learning a cell-specific factor. Similarly, we tested the effect of includ-
ing the precomputed offset in the binary case (Binary VAE; Methods).

We first evaluated model performance across the four datasets by 
benchmarking them on predicting the presence of at least one read, 
the standard binarization threshold. For binary models, we used the 
predicted probability of a region being open, while for quantitative 
models, we converted predictions into the probability of having a count 
exceeding zero (Methods). There was no benefit from using binarized 
data in the 10x datasets as Poisson VAE significantly outperformed 
PeakVI and Binary VAE in reconstructing binarized counts (Fig. 2a). 
Notably, substantial performance gain was achieved by controlling for 
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Fig. 1 | scATAC-seq data are quantitative and fragments, rather than reads, 
should be counted. a, Illustrated is the scATAC-seq protocol and count 
aggregation strategy. Tn5 transposases insert into open chromatin regions, 
cut the DNA and attach sequencing adaptors (blue and red). Two Tn5 insertions 
create one fragment with adaptors. The orientation of the insertion is important 
as only fragments flanked with two distinct barcodes can be captured and 
amplified. Fragments are sequenced paired-end and aligned to the genome. 
scATAC-seq peak calling is performed using reads from multiple cells. Once 
peak regions are identified, reads (deduplicated fragment ends) or fragments 
overlapping the peak region are counted for each cell separately. b, Genome 
viewer snapshot of one peak region in the NeurIPS dataset at the promoter of 
the human gene RERE showing multiple insertions in a single cell. The tracks 
show, from top to bottom, the coverage of one batch used for peak calling, 

the aligned read pairs of a single cell, the peak region and genome annotation. 
The peak region overlaps with five reads and three fragments. c, Read count 
distribution on the entire NeurIPS dataset. The striking odd/even pattern in 
read count distribution reflects that reads come in pairs and suggests that 
fragment counts, rather than reads, should be modeled. Pie chart showing the 
percentage of all non-zero peaks with one, two or more than two reads (inset). 
d, Distribution of the approximated fragment count does not show an even/
odd pattern. e, Variance of read counts across cells against mean read counts. 
Each dot represents one peak region. When fragment ends (reads) are counted, 
the variance of read counts is about twice the mean (gray dotted line), which is 
not consistent with a Poisson distribution (solid gray line). f, Same as e, but for 
fragment counts. The variance of fragment counts is approximately equal to the 
fragment count mean, consistent with a Poisson distribution (solid gray line).
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Figs. 3, 4a and 5–8). cisTopic, Signac and SCALE are not explicitly 
designed for batch correction and may consequently exhibit lower 
scores in batch correction metrics (Supplementary Table 1). Batch cor-
rection can matter, as demonstrated by the successful integration of 
the Kenyon cell subtype (KC-g) in the Fly dataset (Extended Data Fig. 7) 
achieved by Poisson VAE, Binary VAE and PeakVI, which explicitly account 
for batch effects. Nevertheless, our observation that binarization offered 
no clear benefit remained consistent across different weightings of 
bioconservation and batch correction metrics (Extended Data Fig. 4b).

Beyond the lack of advantage in using binarized data, preserving 
quantitative information can enhance cell representation. For instance, 

Poisson VAE better recovered the rare cell type ID2-hi myeloid progeni-
tors in the NeurIPS dataset (Supplementary Table 1), as indicated by the 
improved isolated label F1 score (Fig. 2b and Extended Data Figs. 3 and 5).

We further investigated the biological signal represented by quan-
titative data to understand effects that could be captured in the Poisson 
VAE. We first examined high-count peaks and found they tend to be 
broader (Extended Data Fig. 9a) and enriched for promoter regions 
of highly expressed genes, highly variable genes and super-enhancers 
(Fig. 2c; Methods). Conversely, low-count peaks were associated with 
distal enhancer elements, consistent with previous bulk observations 
highlighting the accessibility differences between active transcription 
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Fig. 2 | Binarizing scATAC-seq data is unnecessary and hides quantitative 
information. a, Comparison of the Poisson VAE, Binary VAE and PeakVI models 
on reconstructing the binarized cell-peak matrix of the NeurIPS, the Satpathy, 
the Fly and the sci-ATAC-seq3 datasets for ten cross-validation (CV) runs. Poisson 
VAE and Binary VAE use the observed total fragment count. The horizontal line 
denotes the median. P values were computed using a two-sided paired Wilcoxon 
test and Benjamini–Hochberg corrected. **P = 0.0019, *P = 0.0195, NS, not 
significant, P = 0.0695. b, Uniform Manifold Approximation and Projection 
(UMAP) of the integrated latent space of all NeurIPS batches, colored by cell type 
for the Poisson VAE model. The isolated label ID2-hi myeloid progenitors and the 
erythrocyte lineage are annotated. UMAPs for all other methods and datasets are 
in Extended Data Figs. 5–8. c, Enrichment (odds ratio, one-sided Fisher exact test) 
of distal regulatory elements, super-enhancers in bone marrow, promoters of 
highly expressed genes and promoters of highly variable genes in the scATAC-
seq peaks of the NeurIPS dataset. Peaks are sorted by the fraction of counts 
above the binarization threshold and grouped according to different quantiles. 
*P < 0.0001. d, Correlation of expression of the SLC4A1 gene and fragment counts 

in its promoter. The two-sided Spearman correlation analysis was computed 
on cells with at least one fragment count in the promoter (n = 775). The P values 
were adjusted for multiple testing using the Benjamini–Hochberg correction. We 
restricted the plot to cells of similar total fragment count (0.25–0.75 quantile) 
to not capture effects driven by total fragment count. e–g, log-normalized gene 
expression over normalized accessibility of the SLC4A1 gene for the Poisson VAE 
(e), Binary VAE model (f) and cisTopic model (g). Cell type separation is measured 
with the silhouette width and area under the receiver operating characteristic 
(ROC) curve and is better with the Poisson VAE model. In all boxplots, the 
central line denotes the median, boxes represent the interquartile range (IQR) 
and whiskers show the distribution except for outliers. Outliers are all points 
outside 1.5 × IQR. AUC, area under the curve. B, B cell; T, T cell; Mono, Monocyte; 
prog, progenitor; HSC, Hematopoietic stem cell; ILC, Innate lymphoid cell; 
Lymph, Lymphoid; MK/E, Megakaryocyte and Erythrocyte; G/M, Granulocyte 
and Myeloid; NK, Natural Killer cell; cDC2, Classical dendritic celltype 2; pDCs, 
Plasmacytoid dencritic cells.
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start sites (TSSs) and enhancers2. Next, we examined whether increased 
TSS accessibility correlated with higher gene expression using the 
NeurIPS dataset, focusing on cells with at least one fragment in the 
promoter region. We observed a significant correlation (i.e., Spear-
man correlation P < 0.05) between promoter accessibility and gene 
expression in 481 out of 3,879 genes (12.4%, 2.5-times higher than 
expected, binomial test P < 0.05), in agreement with a recent preprint19. 
To illustrate, we considered cell type markers among the top 20 high-
est correlated genes (Extended Data Fig. 9b), including SLC4A1, a gene 
involved in the red blood cell lineage20 (Spearman correlation 0.12, 
P = 0.001; Fig. 2b,d). Similarly, we found a significant correlation for 
genes involved in other biological lineages (Extended Data Fig. 9c–e). 
We tested whether the Poisson VAE model can capture this quantita-
tive accessibility signal and enhance cell type discrimination in these 
promoter regions. Indeed, the normalized accessibility from Poisson  
VAE showed improved cell type separation compared to cisTopic  
and Binary VAE in three out of four cases (Fig. 2e–g and Extended Data 
Fig. 10; Methods).

In conclusion, we found that scATAC-seq binarization is unnec-
essary and results in a loss of useful information. What makes 
scATAC-seq quantitative? Chromatin accessibility is highly dynamic 
and nucleosome turnover rates are in the same order of magnitude as 
the scATAC-seq incubation duration1,21. Furthermore, transcription 
factors, not unlike transposase, must diffuse through the nucleus to 
access DNA, potentially reaching distinct chromosome territories 
and compartments with various efficiencies (Extended Data Fig. 10d). 
Also, a single genomic position in diploid cells may not be simultane-
ously open or closed on both alleles. Our observations indicate that 
scATAC-seq fragment counts capture this continuum of chromatin 
accessibility19. Even though the advantage of quantitative modeling is 
diminished for very sparse datasets, treating scATAC-seq data quanti-
tatively is more general than binarization and it matters to study highly 
expressed and highly variable genes, including important marker 
genes. These findings have immediate practical implications as using 
a Poisson over a binary loss has no increase in computational cost. 
Future directions include investigating other typically binarized set-
tings, such as scChIP-seq22 and alternative count distributions such as 
negative binomial.
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Methods
Input data and preprocessing
NeurIPS dataset. The multiome hematopoiesis dataset from the 
NeurIPS 2021 challenge13 was downloaded from the AWS bucket s3://
openproblems-bio/public/. We did not perform any additional filter-
ing of the data. scATAC-seq BAM files were downloaded from the Gene 
Expression Omnibus (GEO) under accession code GSE194122.

Satpathy dataset. The second hematopoiesis dataset14 was down-
loaded from GEO (accession code GSE129785). Specifically, the pro-
cessed count matrix and metadata files: scATAC-Hematopoiesis-All.
cell-barcodes.txt.gz, scATAC-Hematopoiesis-All.mtx.gz and 
scATAC-Hematopoiesis-All.peaks.txt.gz. We then filtered the peaks 
to only those that were detected in at least 1% of the cells in the sample, 
reducing the data from 571,400 to 134,104 peaks.

Fly dataset. Raw fragment files for chromatin accessibility of the fly 
brain15 were downloaded from GEO (accession code GSE163697). Addi-
tionally, peak regions, cell barcodes and cell metadata were extracted 
from the cisTopic object AllTimepoints_cisTopic.Rds, which was down-
loaded from flybrain.aertslab.org. Fragments were counted per peak 
region using the Signac function FeatureMatrix. We then filtered the 
peaks to be detected in at least 1% of all cells. Furthermore, we excluded 
cells labeled unknown (CellType_lvl1 equal to ‘unk’ or ‘-’).

sci-ATAC-seq3 dataset. Count matrices and metadata were down-
loaded from GEO (accession code GSE149683)16. Peaks were filtered 
to be accessible in at least 1% of all cells.

Fragment computation
The standard 10x protocol for generating the cell-peaks matrix is to 
count the fragment ends (reads). To estimate fragment counts, we 
rounded all uneven counts to the next highest even number and halved 
the resulting read counts.

Poisson VAE model
Let XN×P  be a fragment count matrix consisting of N cells and P peak 
regions. We model the counts xcp with a variational autoencoder:

zc ∼ Normal (f μ (xc) , f σ (xc))

ρcp = gp (zc, sc)

wcp = softmax (ρcp + rp)

λcp = exp (lc) ⋅wcp

xcp ∼ Poisson (λcp)

The neural networks f μ, f σ encode the parameters of a multivariate 
normal random variable from which zc is drawn. gp is a neural network 
that maps the latent representation zc concatenated to the batch anno-
tation sc back to the dimension of peaks. rp captures a region-specific 
bias such as the mean fragment count or peak length and is learned 
directly. lc refers to the log-transformed total fragment counts per cell  
lc = log(∑pxcp). wcp is constrained to encode the mean distribution of  
lc reads over all peaks by using a softmax activation in the last layer. 
This means that ∑pwcp = 1.

Binary VAE model
The Binary VAE model models binarized counts:

ycp = {
0 if xcp = 0

1 if xcp > 0

The binarized signal was modeled as follows:

zc ∼ Normal (f μ (yc) , f σ (yc))

ρcp = gp (yc, sc)

θcp = σ (ρcp + rp + ̃lc)

ycp ∼ Ber (θcp)

We included the proportion of non-zeros by modeling:

̃lc = σ−1 ( 1
P ∑

p
ycp)

Here, σ−1 is the logit function. This way θcp is equal to the mean 
accessibility of the cell for ρcp = rp = 0.

Encoder and decoder functions
The functions fμ, fσ and the function gw are encoder and decoder func-
tions, respectively. To be as comparable as possible to PeakVI as imple-
mented in scvi-tools9,23 (v.0.20.3), we used the same architecture. 
Specifically, these networks consisted of two repeated blocks of fully 
connected neural networks with a fixed number of hidden dimensions 
set to the square root of the number of input dimensions, a dropout 
layer, a layer-norm layer and leakyReLU activation. The last layer in the 
encoder maps to a defined number of latent dimensions nlatent.

Training procedure
We used the default PeakVI training procedure with a learning rate 
of 0.0001, weight decay of 0.001 and minibatch size of 128 and used 
early stopping on the validation reconstruction loss. We used a random 
training, validation and test set of 80%, 10% and 10%, respectively. This 
was repeated ten times. We computed all evaluation metrics on the 
left-out test cells.

Hyperparameter optimization
All models were run using the default PeakVI parameters. For the recon-
struction task, we optimized the number of latent dimensions nlatent 
on the validation set for each dataset and model on reconstructing 
the binary accessibility matrix as measured by average precision. The 
used range was from 10 to 100 in increments of 10.

Benchmarking methods
cisTopic. We used the Python implementation of cisTopic, pycis-
Topic8,24 (v.1.0.3.dev2+g45b7e66.d20230426). cisTopic objects were 
created from the binarized count matrices. We then modeled the topics 
using the Mallet algorithm on 10 to 100 topics in steps of 10. We selected 
the optimal topic number using the suggested model selection metrics 
Minmo_201125 and log-likelihood26. Finally, dimensionality reduction 
was performed on the cell-topic matrix with optionally first running 
Harmony27 (harmonypy, v.0.0.9) to reduce batch effects.

SCALE. We used the provided Python script on github.com/jsxlei/
SCALE to run SCALE10 on the binarized count matrix. We set the number 
of clusters to the number of cell types in the dataset.

For visualization, a two-dimensional UMAP28 (umap-learn, 
v.0.5.3) of the integrated latent space was generated based on the 
15-nearest-neighbor graph. The cross-validation run with the best 
reconstruction was used.

Signac. Count matrices were loaded into ChromatinAssays using  
Signac3 (v.1.9.0) and Seurat29 (v.4.3.0) without additional filtering  
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(min.cells = min.features = 0). We then computed the LSI embedding 
using the default procedure (RunTFIDF followed by RunSVD). We 
removed components that correlated with the total fragment count 
by more than 0.5. To investigate the effect of batch normalization, we 
created a batch-normalized LSI embedding by running RunHarmony 
with the respective batch variable as input.

Evaluation
Reconstruction metrics. The reconstruction metrics were calculated 
on the binarized matrix. Poisson rate parameters λcp were transformed 
to a Bernoulli probability θcp by computing the probability of getting 
one or more fragments in a peak for a given cell:

θcp = ℙ (xcp > 0 ∣ λcp) = 1 − ℙ (xcp = 0 ∣ λcp) = 1 − e−λcp

Average precision. As our reconstruction task is highly imbalanced 
(only a small fraction of all peaks are accessible), we used the average 
precision score as implemented in scikit-learn (v.1.2.2) to evaluate 
the reconstruction. Average precision estimates the area under the 
precision-recall curve.

Integration metrics. We used the scib18 (v.1.1.3) implementation for com-
puting the integration metrics on the latent embedding of the cells. We 
used all available metrics using default parameters but excluded metrics 
that were specifically developed for single-cell RNA sequencing datasets 
(highly variable genes score and cell cycle score) and kBET due to its 
long run time. The trajectory score was only run for the NeurIPS dataset, 
which had a precomputed ATAC trajectory. Scib categorizes the metrics 
into metrics that measure batch correction and biology conservation.

Bioconservation comprises the following metrics that are applied 
to predefined cell-type labels that each dataset provided:

Normalized mutual information. This measures the consistency of 
two clusterings. Here, we compare how well a clustering on the inte-
grated embedding agrees with predefined cell-type labels. For optimal 
clustering, the scib package runs Louvain clustering at resolutions 
ranging from 0.1–2 in steps of 0.1.

Adjusted Rand index. This is a different metric to compare the cluster-
ings with the predefined cell-type labels.

Label silhouette width. This measures the within-cluster distance of 
cells compared to the distance to the closest neighboring cluster. A 
value close to 1 indicates a high separation between clusters. We used 
the predefined cell labels to define clusters for the label silhouette 
width calculation.

Graph cLISI. This measures the separation of the kNN graph. It evalu-
ates the likelihood of observing the same cell-type label in the nearest 
neighbors, indicating good cell-type separation.

Isolated label metrics. The isolated labels are defined as the cell types 
present in the fewest number of batches (Supplementary Table 1). Two 
metrics evaluate how well isolated labels separate from other cell types. 
The F1 score is the harmonic mean of precision and recall. The isolated 
label silhouette measures the average silhouette width (ASW) of the 
isolated label compared to all non-isolated labels.

Trajectory conservation. This computes the correlation of inferred 
pseudotime ordering before and after integration.

Four metrics measure different levels of batch integration:

Principal component regression. This measures the amount of vari-
ance of the principal components of the embedded space that can be 
explained by the batch variables before and after integration.

Graph connectivity. This measures whether the kNN graph of the 
embedding connects all cells that have the same cell-type label. If there 
are strong batch effects, this will not be the case.

Graph iLISI. This measures the mixture of the kNN graph. It evaluates 
the likelihood of observing different batch labels in the nearest neigh-
bors, indicating a good batch mixing.

Batch silhouette width. This is a metric similar to the label  
silhouette width but applied to batch labels. To ensure that higher 
scores represent better mixing, the silhouette metric is subtracted 
from 1. The ASW is computed separately for each cell label to assess 
the mixing within cells of the same label. Finally, the individual ASW 
scores for each cell label are averaged to obtain an overall measure of 
batch mixing.

Enrichment analysis
Enrichment analysis was performed with respect to four sets of  
regulatory elements: distal enhancers, super-enhancers, highly 
expressed genes and highly variable genes.

Annotations for distal enhancers in the hg38 genome assembly 
were downloaded from ENCODE Registry of CREs (v.3, screen.encode-
project.org)30. They were then subset to distal cCREs with enhancer-like 
signatures (dELS) and CTCF-bound cCREs with enhancer-like signa-
tures (CTCF-bound, dELS).

Super-enhancers were downloaded from SEdb 2.0 (www.licpathway. 
net/sedb/)31. Only bone marrow samples were included.

Highly expressed genes were computed using the preprocessed 
single-cell RNA sequencing data from the NeurIPS dataset. They  
were defined as the top 2,000 genes ranked by mean expression  
across all cells.

Highly variable genes were computed with scanpy32 (v.1.9.2)  
using Seurat-based highly variable gene selection with default  
parameter settings.

We filtered annotations to overlap with at least one peak of the 
NeurIPS dataset. Region overlap was determined using the pyRanges 
package (v.0.0.124). Odds ratios and significance were computed using 
the Fisher exact test implemented in scipy (v.1.10.1) and corrected for 
multiple testing with Benjamini–Hochberg at a false discovery rate 
of 0.05.

Correlation with gene expression analysis
We used the peak annotation of CellRanger ATAC to subset high-count 
peaks to promoter regions. CellRanger annotates a peak as a promoter 
if it overlaps with the promoter region (−1,000 bp, +100 bp) of any 
transcription start site4. Then, we computed the Spearman correlation 
between a cell’s fragment count in the promoter peaks and the gene 
expression count using scipy, taking only cells with a fragment count 
>1 into account. As this correlation can be driven by cells with a high 
total fragment count, we restricted the computation to cells whose 
total fragment count was in the 0.25–0.75 quantile.

Normalized accessibility
We can use the learned latent space and generative model of Poisson 
VAE and Binary VAE to produce denoised and normalized estimates 
of accessibility, controlling for sequencing depth23. To this end, we 
defined the normalized accessibility of the model output using the 
median total fragment count across all cells. For cisTopic, we used the 
imputed and normalized accessibility scores.

We compared the normalized accessibility of the models by com-
puting the cell type separation using the silhouette width and ROC AUC.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

http://www.nature.com/naturemethods
http://www.licpathway.net/sedb/
http://www.licpathway.net/sedb/


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-023-02112-6

Data availability
Raw published data for the NeurIPS, Satpathy, the Fly and the 
sci-ATAC-seq3 datasets are available from the GEO under accession 
codes GSE194122, GSE129785, GSE163697 and GSE149683, respectively. 
Annotations for distal enhancers in the hg38 genome assembly were 
downloaded from ENCODE Registry of CREs (v.3, screen.encodepro-
ject.org). Super-enhancers were downloaded from SEdb v.2.0 (www.
licpathway.net/sedb/).

Code availability
All models, code and notebooks to reproduce our analysis and  
figures, as well as a tutorial notebook to use the Poisson VAE model, 
are available at github.com/theislab/scatac_poisson_reproducibility. 
The code has additionally been archived and is available on Zenodo 
at https://doi.org/10.5281/zenodo.8356171 (ref. 33). The Poisson VAE 
model is available as an extension of the scvi-tools suite at github.com/
lauradmartens/scvi-tools.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Comparison of read and fragment counts. a, b) Read 
count (a) and fragment count (b) distribution on the Satpathy dataset14.  
c, d) Read count (c) and fragment count (d) distribution of the sci-ATAC-seq3 
dataset16. Plotted is a 10% random subset as the dataset consists of ~700 K cells. 
e) Fragment count distribution on the fly dataset15. CellRanger ATAC read counts 
were unavailable for this dataset as we generated fragment counts directly with 
Signac. f, g) Pie chart showing the percentage of all non-zero peaks with 1, 2, or 
more than 2 reads for the Satpathy dataset (f), sciATAC-seq3 dataset (10% random 

subset) (g). h) Pie chart with the percentage of all non-zero peaks with one or 
more than one fragment for the fly dataset (read counts are not available for this 
dataset). i, j) Variance of read counts across cells against mean read counts for the 
Satpathy dataset (i) and sciATAC-seq3 dataset ( j). Each dot represents one peak 
region. When fragment ends (reads) are counted, the variance of read counts is 
around twice the mean (gray dotted line), which is not consistent with a Poisson 
distribution (solid gray line). k, l, m) Same as (i, j), but for fragment counts.

http://www.nature.com/naturemethods
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Extended Data Fig. 2 | Fragment count distribution and performance 
evaluation with excluded high counts and downsampled data. a) Average 
fragment count distribution per peak for all four datasets. The sci-ATAC-seq3 
dataset is 50% sparser than the 10x datasets. b) Average precision of the Poisson 
VAE and the Binary VAE model on the NeurIPS13 dataset for all cell-peaks and only 
the subset of cell-peaks with less than ten counts. c) Average precision for the 

Poisson VAE and Binary VAE model at different downsampling thresholds.  
P values were computed using the two-sided paired t-test. In boxplots, the central 
line denotes the median, boxes represent the interquartile range (IQR), and 
whiskers show the distribution except for outliers. Outliers are all points outside 
1.5 times the IQR.
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Extended Data Fig. 3 | Full integration metrics per dataset. Comparison of 
integration accuracy for Poisson VAE, Binary VAE, PeakVI9, Signac3 using LSI, 
cisTopic8 using LDA and SCALE10 on (a) the NeurIPS, (b) the Satpathy (c) the fly 
and (d) the sci-ATAC-seq3 datasets. For cisTopic and Signac, additional batch 

correction was performed using Harmony28. Metrics are categorized into batch 
correction and bioconservation categories. Reported is the mean over ten cross-
validation runs. Overall scores were computed using a 40:60-weighted mean of 
batch correction and bioconservation scores.

http://www.nature.com/naturemethods
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Extended Data Fig. 4 | Overall score of integration including different 
weightings of bioconservation and batch correction. a) Comparison of 
integration accuracy for embeddings generated with Poisson VAE, Binary VAE, 
PeakVI, Signac, cisTopic, and SCALE on the four datasets. For cisTopic and Signac, 
additional batch correction was performed using Harmony. Overall integration 

accuracy scores were computed using a 40:60-weighted mean of batch 
correction and bioconservation scores. P values were computed using the two-
sided paired Wilcoxon test; Benjamini–Hochberg corrected. Error bars represent 
the 95% confidence interval over ten cross-validation runs. b) Overall score 
computed from different bioconservation and batch correction weightings.

http://www.nature.com/naturemethods
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Extended Data Fig. 5 | UMAPs of integrated latent space for the NeurIPS dataset. UMAP of the integrated latent space of the NeurIPS dataset using the Poisson VAE, 
Binary VAE, PeakVI, Signac using LSI, cisTopic using LDA, and SCALE model. Cells are colored by cell type (top row) and batch (bottom row). For cisTopic and Signac, 
additional batch correction was performed using Harmony.

http://www.nature.com/naturemethods
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Extended Data Fig. 6 | UMAPs of integrated latent space for the Satpathy dataset. UMAP of the integrated latent space of the Satpathy dataset using the Poisson 
VAE, Binary VAE, PeakVI, Signac using LSI, cisTopic using LDA, and SCALE model. Cells are colored by cell type (top row) and batch (bottom row). For cisTopic and 
Signac, additional batch correction was performed using Harmony.

http://www.nature.com/naturemethods
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Extended Data Fig. 7 | UMAPs of integrated latent space for the Fly dataset. UMAP of the integrated latent space of the fly dataset using the Poisson VAE, Binary 
VAE, PeakVI, Signac using LSI, isTopic using LDA, and SCALE model. Cells are colored by cell type (top row) and batch (bottom row). For cisTopic and Signac, additional 
batch correction was performed using Harmony.

http://www.nature.com/naturemethods
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Extended Data Fig. 8 | UMAPs of integrated latent space for the sci-ATAC-seq3 dataset. UMAP of the integrated latent space of the sciATAC-seq3 dataset using the 
Poisson VAE, Binary VAE, PeakVI, Signac using LSI, cisTopic using LDA, and SCALE model. Cells are colored by cell type (top row) and batch (bottom row). For cisTopic 
and Signac, additional batch correction was performed using Harmony.
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Extended Data Fig. 9 | Peak length distribution and correlation of gene 
expression with chromatin accessibility counts for selected marker genes. 
a) Peak distribution length for peaks in the top 0.05 quantile (n = 5727) and 
bottom 0–0.95 quantile (n = 110,760) according to the fraction of counts above 
the binarization threshold. High-count peaks are significantly longer. The P value 
was computed using a two-sided Wilcoxon test. b) Expression of genes (rows) 
associated with each cell type (columns). CR1L is involved in the red blood cell 
lineage34 (Proerythroblast, Erythroblast, Normoblast). CD74 is expressed in 
antigen-presenting cells and is known to regulate mature B-cell survival35. MAFB 
is a transcription factor that represses erythrocyte programs in myeloid cells36. 

Correlation of gene expression and fragment counts in the promoter of the (c) 
CD74 gene (n = 7000), (d) CR1L gene (n = 1917), and (e) MAFB gene (n = 1845). The 
two-sided Spearman correlation analysis was computed on fragment counts 
greater than 0. P values were adjusted for multiple testing using the Benjamini–
Hochberg correction. We restricted the plot to cells of similar total fragment 
count (0.25–0.75 quantile) to avoid capturing effects driven by total fragment 
count. We see a quantitative signal in promoter accessibility that would be lost by 
binarization. In all boxplots, the central line denotes the median, boxes represent 
the interquartile range (IQR), and whiskers show the distribution except for 
outliers. Outliers are all points outside 1.5 times the IQR.

http://www.nature.com/naturemethods
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Cell type separation on promoters of marker genes. 
a, b, c) Log-normalized gene expression against normalized accessibility for 
the Poisson VAE (top row), Binary VAE model (middle row), and cisTopic model 
(bottom row) for the (a) CD74 gene, (b) CR1L gene, and (c) MAFB gene. Cell type 
separation is measured with the silhouette width and area under the ROC curve 

and is better with the Poisson VAE model for CR1L and MAFB and second for CD74. 
d) Multiple biological factors contribute to DNA accessibility in single cells to 
be quantitative rather than binary. They include a diploid genome, density of 
chromatin packaging, nucleosome spacing, TFs in a peak region preventing the 
Tn5 from binding, and sequence preferences of Tn5.

http://www.nature.com/naturemethods
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