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Single-cell ATAC sequencing coverage in regulatory regions is typically
binarized as anindicator of open chromatin. Here we show that binarization

isan unnecessary step that neither improves goodness of fit, clustering, cell
type identification nor batch integration. Fragment counts, but not read
counts, shouldinstead be modeled, which preserves quantitative regulatory
information. These results have immediate implications for single-cell ATAC
sequencing analysis.

Single-cell assay for transposase-accessible chromatin using sequenc-
ing (scATAC-seq)' is a major method employed to study chromatin
regulation®. Itemploys Tn5 transposase to insert sequencing adaptors
into accessible genome regions, resulting in reads representing Tn5
insertions in individual cells’ (Fig. 1a,b). When analyzing scATAC-seq
data, open chromatin regions are generally identified on the pooled
data as peaks, which are genomic regions with a significant excess of
reads compared to the background"**. Alternative approaches define
the feature set as genomic windows or bins*® (Supplementary Table 1).
Subsequently, the reads overlapping each feature are counted for
each cell, yielding a typically very sparse matrix with less than 10%
non-zero counts’.

Machine-learning modeling of scATAC-seq data supports inves-
tigations of single-cell genome regulation, including identification
of celltypes, differentially accessible regions and transcription factor
activity inference. The loss function and data representation are
crucial determinants of a model’s predictive power. Many methods
default tobinarizing the count matrix due to overall data sparsity and
the conceptualization of chromatin accessibility as a binary state’™°
(Supplementary Table 1). While some approaches handle the data
quantitatively>"'?, there exists no systematic evaluation of theimpact
of binarization.

Here, we compare binarization versus count-based modeling on
scATAC-seq data modeling tasks and assess the quality of the learnt
latent space using multiple downstream evaluations. We based our
analysis on four publicly available datasets representing different
protocols, species and tissues™ ¢ (Supplementary Table 1; Methods).
First, we considered the proportion of peaks above the typical binari-
zationthreshold of oneread. Across all datasets, over 65% of non-zero

peaks had more than one read count (Fig. 1c and Extended Data
Fig.1).Inthe NeurIPS dataset, for instance, 74% of non-zero peaks had
counts of two, with 12% having even higher counts. We furthermore
saw a fivefold increase in peaks with even compared to odd counts
(Fig.1c). This pattern can be explained as an artifact of the count aggre-
gation strategy used in the 10x Genomics CellRanger ATAC pipeline*,
which counts reads (deduplicated fragment ends) instead of fragments
(Fig. 1a). As scATAC-seq generates paired-end reads, even counts are
predominant, whereas odd counts only occur when one read pair falls
outside the peak region (Fig.1a,b). In contrast, fragment counts showed
aregular monotonic decay (Fig.1d and Extended DataFig. 1; Methods).
Many methods rely on the read count matrices generated by the 10x
pipeline or adopt the same counting strategy®*'°" (Supplementary
Table1); however, nobenchmark has compared the read and fragment
countstrategies.

The alternating pattern of odd and even read counts does not
align with standard statistical count distributions, such as the Poisson.
We found that the variance of read counts for each region across cells
was approximately twice the mean (Fig. 1e and Extended Data Fig. 1),
violating the Poisson assumption of equal mean and variance. In con-
trast, the mean-variance relationship of fragment counts was broadly
consistent with a Poisson distribution across the four datasets (Fig. 1f
and Extended Data Fig.1).

Altogether, these results have two implications. First, scATAC-data
carries information beyond binary accessibility. Second, fragment
counts, but not read counts, can be more suitably modeled with the
Poisson distribution.

To assess how modeling fragment counts, rather than binarized
signals, affects latent space learning, we adapted the PeakVI model,
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Fig.1|scATAC-seq data are quantitative and fragments, rather thanreads,
should be counted. a, lllustrated is the scATAC-seq protocol and count
aggregation strategy. Tn5 transposases insert into open chromatin regions,
cut the DNA and attach sequencing adaptors (blue and red). Two TnS insertions
create one fragment with adaptors. The orientation of the insertion is important
asonly fragments flanked with two distinct barcodes can be captured and
amplified. Fragments are sequenced paired-end and aligned to the genome.
SCATAC-seq peak calling is performed using reads from multiple cells. Once
peakregions are identified, reads (deduplicated fragment ends) or fragments
overlapping the peak region are counted for each cell separately. b, Genome
viewer snapshot of one peak region in the NeurIPS dataset at the promoter of
the human gene RERE showing multiple insertions inasingle cell. The tracks
show, from top to bottom, the coverage of one batch used for peak calling,

Read mean u Fragment mean u

the aligned read pairs of a single cell, the peak region and genome annotation.
The peak region overlaps with five reads and three fragments. ¢, Read count
distribution on the entire NeurIPS dataset. The striking odd/even patternin
read count distribution reflects that reads come in pairs and suggests that
fragment counts, rather than reads, should be modeled. Pie chart showing the
percentage of all non-zero peaks with one, two or more than two reads (inset).
d, Distribution of the approximated fragment count does not show an even/
odd pattern. e, Variance of read counts across cells against mean read counts.
Each dot represents one peak region. When fragment ends (reads) are counted,
the variance of read countsis about twice the mean (gray dotted line), whichis
not consistent with a Poisson distribution (solid gray line). f, Same as e, but for
fragment counts. The variance of fragment counts is approximately equal to the
fragment count mean, consistent with a Poisson distribution (solid gray line).

a state-of-the-art variational autoencoder (VAE) for scATAC-data’.
Originally designed for binarized data, PeakVI learns the probability
thatapeakineach cellis accessible, while accounting for cell-specific
effects and region biases through learnt factors. We modified PeakVI’s
last layer to instead model Poisson-distributed fragment counts (Pois-
son VAE; Methods). As the total number of fragments per cell varies
drastically across cells (Extended Data Fig. 2a), we incorporated the
total fragment count as a precomputed offset in the loss instead of
learning a cell-specific factor. Similarly, we tested the effect of includ-
ing the precomputed offset in the binary case (Binary VAE; Methods).

Wefirst evaluated model performance across the four datasets by
benchmarking them on predicting the presence of at least one read,
the standard binarization threshold. For binary models, we used the
predicted probability of a region being open, while for quantitative
models, we converted predictions into the probability of having a count
exceeding zero (Methods). There was no benefit from using binarized
data in the 10x datasets as Poisson VAE significantly outperformed
PeakVI and Binary VAE in reconstructing binarized counts (Fig. 2a).
Notably, substantial performance gain was achieved by controlling for

the observed rather than predicted total fragment counts asthe binary
model (Binary VAE) also showed significantly better reconstruction
than PeakVI. We further tested that the performance improvement
was not a result of disproportionately giving more weight to regions
with high counts (Extended Data Fig. 2b). In contrast, the sparser
sci-ATAC-seq3 dataset (median peak fragment count 0.036 versus
0.017 in the 10x datasets; Extended Data Fig. 2a and Supplementary
Table 1), did not benefit from using quantitative information or the
observed total fragment count. Downsampling of the NeurIPS dataset
confirmed that the advantages of the quantitative modelincreased with
ahigher total fragment count (Extended Data Fig. 2c).

We also evaluated the learnt latent representations using several
integration metrics divided into two categories, batch integration and
bioconservation®. Inaddition to the three VAE models, we compared the
embeddingtechniques of three widely used methods (Supplementary
Table1): latent semantic indexing (LSI; Signac® and ArchR®); latent Dir-
ichletallocation (cisTopic®) and SCALE", adeep generative model. While
binary methods performed reasonably well across the datasets, there
was no apparent benefit in utilizing binarized data (Extended Data
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Fig.2|Binarizing scATAC-seq data is unnecessary and hides quantitative
information. a, Comparison of the Poisson VAE, Binary VAE and PeakVI models
onreconstructing the binarized cell-peak matrix of the NeurIPS, the Satpathy,
the Fly and the sci-ATAC-seq3 datasets for ten cross-validation (CV) runs. Poisson
VAE and Binary VAE use the observed total fragment count. The horizontal line
denotes the median. Pvalues were computed using a two-sided paired Wilcoxon
test and Benjamini-Hochberg corrected. **P=0.0019, *P = 0.0195, NS, not
significant, P=0.0695.b, Uniform Manifold Approximation and Projection
(UMAP) of the integrated latent space of all NeurIPS batches, colored by cell type
for the Poisson VAE model. The isolated label ID2-hi myeloid progenitors and the
erythrocyte lineage are annotated. UMAPs for all other methods and datasets are
in Extended Data Figs. 5-8. ¢, Enrichment (odds ratio, one-sided Fisher exact test)
of distal regulatory elements, super-enhancers in bone marrow, promoters of
highly expressed genes and promoters of highly variable genes in the scATAC-
seq peaks of the NeurIPS dataset. Peaks are sorted by the fraction of counts
above the binarization threshold and grouped according to different quantiles.
*P<0.0001.d, Correlation of expression of the SLC4A1 gene and fragment counts
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inits promoter. The two-sided Spearman correlation analysis was computed

on cells with at least one fragment count in the promoter (n = 775). The Pvalues
were adjusted for multiple testing using the Benjamini-Hochberg correction. We
restricted the plot to cells of similar total fragment count (0.25-0.75 quantile)

to not capture effects driven by total fragment count. e-g, log-normalized gene
expression over normalized accessibility of the SLC4A1 gene for the Poisson VAE
(e), Binary VAE model (f) and cisTopic model (g). Cell type separation is measured
with the silhouette width and area under the receiver operating characteristic
(ROC) curve and is better with the Poisson VAE model. In all boxplots, the

central line denotes the median, boxes represent the interquartile range (IQR)
and whiskers show the distribution except for outliers. Outliers are all points
outside 1.5 x IQR. AUC, area under the curve. B, B cell; T, T cell; Mono, Monocyte;
prog, progenitor; HSC, Hematopoietic stem cell; ILC, Innate lymphoid cell;
Lymph, Lymphoid; MK/E, Megakaryocyte and Erythrocyte; G/M, Granulocyte
and Myeloid; NK, Natural Killer cell; cDC2, Classical dendritic celltype 2; pDCs,
Plasmacytoid dencritic cells.

Figs. 3, 4a and 5-8). cisTopic, Signac and SCALE are not explicitly
designed for batch correction and may consequently exhibit lower
scores inbatch correction metrics (Supplementary Table 1). Batch cor-
rection can matter, as demonstrated by the successful integration of
the Kenyon cell subtype (KC-g) in the Fly dataset (Extended Data Fig. 7)
achieved by Poisson VAE, Binary VAE and PeakVI, which explicitly account
forbatcheffects. Nevertheless, our observation that binarization offered
no clear benefit remained consistent across different weightings of
bioconservationandbatch correction metrics (Extended Data Fig. 4b).

Beyond the lack of advantage in using binarized data, preserving
quantitative information can enhance cell representation. Forinstance,

Poisson VAE better recovered the rare cell type ID2-hi myeloid progeni-
torsinthe NeurIPS dataset (Supplementary Table 1), asindicated by the
improvedisolated label F1score (Fig.2b and Extended Data Figs. 3 and 5).

We furtherinvestigated the biological signal represented by quan-
titative datato understand effects that could be captured in the Poisson
VAE. We first examined high-count peaks and found they tend to be
broader (Extended Data Fig. 9a) and enriched for promoter regions
of highly expressed genes, highly variable genes and super-enhancers
(Fig.2c; Methods). Conversely, low-count peaks were associated with
distal enhancer elements, consistent with previous bulk observations
highlighting the accessibility differences between active transcription
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startsites (TSSs) and enhancers”. Next, we examined whether increased
TSS accessibility correlated with higher gene expression using the
NeurlIPS dataset, focusing on cells with at least one fragment in the
promoter region. We observed a significant correlation (i.e., Spear-
man correlation P < 0.05) between promoter accessibility and gene
expression in 481 out of 3,879 genes (12.4%, 2.5-times higher than
expected, binomial test P< 0.05), inagreement witharecent preprint”.
Toillustrate, we considered cell type markers among the top 20 high-
est correlated genes (Extended Data Fig. 9b), including SLC4A1,agene
involved in the red blood cell lineage? (Spearman correlation 0.12,
P=0.001; Fig. 2b,d). Similarly, we found a significant correlation for
genesinvolvedinother biological lineages (Extended DataFig. 9c-e).
We tested whether the Poisson VAE model can capture this quantita-
tive accessibility signal and enhance cell type discrimination in these
promoter regions. Indeed, the normalized accessibility from Poisson
VAE showed improved cell type separation compared to cisTopic
and Binary VAE inthree out of four cases (Fig. 2e-g and Extended Data
Fig.10; Methods).

In conclusion, we found that scATAC-seq binarization is unnec-
essary and results in a loss of useful information. What makes
scATAC-seq quantitative? Chromatin accessibility is highly dynamic
and nucleosome turnover rates are in the same order of magnitude as
the scATAC-seq incubation duration”. Furthermore, transcription
factors, not unlike transposase, must diffuse through the nucleus to
access DNA, potentially reaching distinct chromosome territories
and compartments with various efficiencies (Extended Data Fig.10d).
Also, a single genomic position in diploid cells may not be simultane-
ously open or closed on both alleles. Our observations indicate that
SCATAC-seq fragment counts capture this continuum of chromatin
accessibility”. Even though the advantage of quantitative modeling is
diminished for very sparse datasets, treating scATAC-seq data quanti-
tatively is more general than binarization and it matters to study highly
expressed and highly variable genes, including important marker
genes. These findings have immediate practical implications as using
a Poisson over a binary loss has no increase in computational cost.
Future directions include investigating other typically binarized set-
tings, such as scChIP-seq®* and alternative count distributions such as
negative binomial.

Online content
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Methods

Input data and preprocessing

NeurlIPS dataset. The multiome hematopoiesis dataset from the
NeurlPS 2021 challenge® was downloaded from the AWS bucket s3://
openproblems-bio/public/. We did not perform any additional filter-
ing of the data. scATAC-seq BAM files were downloaded from the Gene
Expression Omnibus (GEO) under accession code GSE194122.

Satpathy dataset. The second hematopoiesis dataset™ was down-
loaded from GEO (accession code GSE129785). Specifically, the pro-
cessed count matrix and metadata files: scATAC-Hematopoiesis-All.
cell-barcodes.txt.gz, scATAC-Hematopoiesis-All.mtx.gz and
scATAC-Hematopoiesis-All.peaks.txt.gz. We then filtered the peaks
toonly those that were detectedin atleast 1% of the cellsin the sample,
reducing the datafrom 571,400 to 134,104 peaks.

Fly dataset. Raw fragment files for chromatin accessibility of the fly
brain®” were downloaded from GEO (accession code GSE163697). Addi-
tionally, peak regions, cellbarcodes and cell metadata were extracted
fromthe cisTopic object AllTimepoints_cisTopic.Rds, which was down-
loaded from flybrain.aertslab.org. Fragments were counted per peak
region using the Signac function FeatureMatrix. We then filtered the
peakstobedetectedinatleast1% of all cells. Furthermore, we excluded
cellslabeled unknown (CellType_Ivll equal to ‘unk’ or *-’).

sci-ATAC-seq3 dataset. Count matrices and metadata were down-
loaded from GEO (accession code GSE149683)'°, Peaks were filtered
tobeaccessibleinatleast1% of all cells.

Fragment computation
The standard 10x protocol for generating the cell-peaks matrix is to
count the fragment ends (reads). To estimate fragment counts, we
rounded all uneven counts to the next highest even number and halved
theresulting read counts.

Poisson VAE model
Let X¥** be a fragment count matrix consisting of N cells and P peak
regions. We model the counts x, with a variational autoencoder:

z, ~ Normal (f* (x.),f (X))

Pcp =8p (ZesSe)
we, = softmax (p, + 1)

Ap =exp (L) - wep
Xcp ~ Poisson (A,)

The neural networks f*,f°encode the parameters of amultivariate
normal random variable from which z.is drawn. g, is aneural network
that maps the latent representation z.concatenated to the batch anno-
tation s, back to the dimension of peaks. r, captures a region-specific
bias such as the mean fragment count or peak length and is learned
directly. [ refersto the log-transformed total fragment counts per cell
le = log(¥ Xep). Wy i constrained to encode the mean distribution of
. reads over all peaks by using a softmax activation in the last layer.
Thismeansthat 3 w,, =1.

Binary VAE model
The Binary VAE model models binarized counts:

{Oifxq, =0
Yoo = Llifx, >0

The binarized signal was modeled as follows:

z, ~ Normal (f¥ (y.) .f° (¥.))
Pep = 8p (Ve S2)
Op = 0(Pep + 1, +1c)
Yep ~ Ber (6cp)

Weincluded the proportion of non-zeros by modeling:
L=o1(1 >y
c P > cp

Here, 07" is the logit function. This way 6,, is equal to the mean
accessibility of the cell for p., = r, = 0.

Encoder and decoder functions

Thefunctions f*,f°andthe functiong, are encoder and decoder func-
tions, respectively. Tobe as comparable as possible to PeakVIas imple-
mented in scvi-tools®* (v.0.20.3), we used the same architecture.
Specifically, these networks consisted of two repeated blocks of fully
connected neural networks with a fixed number of hidden dimensions
set to the square root of the number of input dimensions, a dropout
layer, alayer-normlayer and leakyReLU activation. The last layerin the
encoder maps to adefined number of latent dimensions 1,

Training procedure

We used the default PeakVI training procedure with a learning rate
of 0.0001, weight decay of 0.001 and minibatch size of 128 and used
early stopping onthe validation reconstruction loss. We used arandom
training, validation and test set of 80%, 10% and 10%, respectively. This
was repeated ten times. We computed all evaluation metrics on the
left-out test cells.

Hyperparameter optimization

Allmodels wererun using the default PeakVIparameters. For the recon-
struction task, we optimized the number of latent dimensions 7,
on the validation set for each dataset and model on reconstructing
the binary accessibility matrix as measured by average precision. The
used range was from 10 to 100 in increments of 10.

Benchmarking methods

cisTopic. We used the Python implementation of cisTopic, pycis-
Topic®* (v.1.0.3.dev2+g45b7e66.d20230426). cisTopic objects were
created from the binarized count matrices. We then modeled the topics
using the Mallet algorithmon10to 100 topicsin steps of 10. We selected
the optimal topic number using the suggested model selection metrics
Minmo_2011% and log-likelihood®. Finally, dimensionality reduction
was performed on the cell-topic matrix with optionally first running
Harmony* (harmonypy, v.0.0.9) to reduce batch effects.

SCALE. We used the provided Python script on github.com/jsxlei/
SCALE to run SCALE™ on the binarized count matrix. We set the number
of clusters to the number of cell types in the dataset.

For visualization, a two-dimensional UMAP*® (umap-learn,
v.0.5.3) of the integrated latent space was generated based on the
15-nearest-neighbor graph. The cross-validation run with the best
reconstruction was used.

Signac. Count matrices were loaded into ChromatinAssays using
Signac?® (v.1.9.0) and Seurat®’ (v.4.3.0) without additional filtering
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(min.cells = min.features = 0). We then computed the LSl embedding
using the default procedure (RunTFIDF followed by RunSVD). We
removed components that correlated with the total fragment count
by more than 0.5. To investigate the effect of batch normalization, we
created a batch-normalized LSI embedding by running RunHarmony
with the respective batch variable as input.

Evaluation

Reconstruction metrics. Thereconstruction metrics were calculated
onthebinarized matrix. Poisson rate parametersA,, were transformed
to a Bernoulli probability 8, by computing the probability of getting
one or more fragmentsin a peak for agiven cell:

Op=P(Xp>0]Ag)=1-P (X =0[Ag)=1-e

Average precision. As our reconstruction task is highly imbalanced
(only asmall fraction of all peaks are accessible), we used the average
precision score as implemented in scikit-learn (v.1.2.2) to evaluate
the reconstruction. Average precision estimates the area under the
precision-recall curve.

Integration metrics. We used the scib®® (v.1.1.3) implementation for com-
puting theintegration metrics on the latent embedding of the cells. We
used all available metrics using default parameters but excluded metrics
thatwere specifically developed for single-cel| RNA sequencing datasets
(highly variable genes score and cell cycle score) and kBET due to its
long runtime. The trajectory score was only run for the NeurIPS dataset,
whichhad aprecomputed ATACtrajectory. Scib categorizes the metrics
into metrics that measure batch correction and biology conservation.

Bioconservation comprises the following metrics that are applied
to predefined cell-type labels that each dataset provided:

Normalized mutual information. This measures the consistency of
two clusterings. Here, we compare how well a clustering on the inte-
grated embedding agrees with predefined cell-type labels. For optimal
clustering, the scib package runs Louvain clustering at resolutions
ranging from 0.1-2in steps of 0.1.

Adjusted Randindex. Thisis adifferent metric to compare the cluster-
ings with the predefined cell-type labels.

Label silhouette width. This measures the within-cluster distance of
cells compared to the distance to the closest neighboring cluster. A
value close tolindicates a high separation between clusters. We used
the predefined cell labels to define clusters for the label silhouette
width calculation.

Graph cLISI. This measures the separation of the kNN graph. It evalu-
atesthelikelihood of observing the same cell-type labelin the nearest
neighbors, indicating good cell-type separation.

Isolated label metrics. Theisolated labels are defined as the cell types
presentin the fewest number of batches (Supplementary Table1). Two
metrics evaluate how wellisolated labels separate from other cell types.
TheF1scoreistheharmonic mean of precision and recall. The isolated
label silhouette measures the average silhouette width (ASW) of the
isolated label compared to all non-isolated labels.

Trajectory conservation. This computes the correlation of inferred
pseudotime ordering before and after integration.
Four metrics measure different levels of batch integration:

Principal component regression. This measures the amount of vari-
ance of the principal components of the embedded space that can be
explained by the batch variables before and after integration.

Graph connectivity. This measures whether the k\NN graph of the
embedding connectsall cells that have the same cell-type label. If there
are strong batch effects, this will not be the case.

GraphilLISI This measures the mixture of the ANN graph. It evaluates
thelikelihood of observing different batch labels in the nearest neigh-
bors, indicating a good batch mixing.

Batch silhouette width. This is a metric similar to the label
silhouette width but applied to batch labels. To ensure that higher
scores represent better mixing, the silhouette metric is subtracted
from 1. The ASW is computed separately for each cell label to assess
the mixing within cells of the same label. Finally, the individual ASW
scores for each cell label are averaged to obtain an overall measure of
batch mixing.

Enrichment analysis

Enrichment analysis was performed with respect to four sets of
regulatory elements: distal enhancers, super-enhancers, highly
expressed genes and highly variable genes.

Annotations for distal enhancers in the hg38 genome assembly
were downloaded from ENCODE Registry of CREs (v.3, screen.encode-
project.org)®. They were then subset to distal cCCREs with enhancer-like
signatures (dELS) and CTCF-bound cCREs with enhancer-like signa-
tures (CTCF-bound, dELS).

Super-enhancersweredownloaded fromSEdb2.0 (www.licpathway.
net/sedb/)*". Only bone marrow samples were included.

Highly expressed genes were computed using the preprocessed
single-cell RNA sequencing data from the NeurIPS dataset. They
were defined as the top 2,000 genes ranked by mean expression
across all cells.

Highly variable genes were computed with scanpy® (v.1.9.2)
using Seurat-based highly variable gene selection with default
parameter settings.

We filtered annotations to overlap with at least one peak of the
NeurlPS dataset. Region overlap was determined using the pyRanges
package (v.0.0.124). Odds ratios and significance were computed using
the Fisher exact testimplemented inscipy (v.1.10.1) and corrected for
multiple testing with Benjamini-Hochberg at a false discovery rate
of 0.05.

Correlation with gene expression analysis

We used the peak annotation of CellRanger ATAC to subset high-count
peaks to promoter regions. CellRanger annotates a peak as a promoter
if it overlaps with the promoter region (-1,000 bp, +100 bp) of any
transcriptionstartsite*. Then, we computed the Spearman correlation
between a cell’s fragment count in the promoter peaks and the gene
expression count using scipy, taking only cells with a fragment count
>1into account. As this correlation can be driven by cells with a high
total fragment count, we restricted the computation to cells whose
total fragment count was in the 0.25-0.75 quantile.

Normalized accessibility
We can use the learned latent space and generative model of Poisson
VAE and Binary VAE to produce denoised and normalized estimates
of accessibility, controlling for sequencing depth®. To this end, we
defined the normalized accessibility of the model output using the
median total fragment countacross all cells. For cisTopic, we used the
imputed and normalized accessibility scores.

We compared the normalized accessibility of the models by com-
putingthe celltype separation using the silhouette widthand ROC AUC.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.
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Data availability

Raw published data for the NeurlPS, Satpathy, the Fly and the
sci-ATAC-seq3 datasets are available from the GEO under accession
codes GSE194122, GSE129785, GSE163697 and GSE149683, respectively.
Annotations for distal enhancers in the hg38 genome assembly were
downloaded from ENCODE Registry of CREs (v.3, screen.encodepro-
ject.org). Super-enhancers were downloaded from SEdb v.2.0 (www.
licpathway.net/sedb/).

Code availability

All models, code and notebooks to reproduce our analysis and
figures, as well as a tutorial notebook to use the Poisson VAE model,
areavailable at github.com/theislab/scatac_poisson_reproducibility.
The code has additionally been archived and is available on Zenodo
at https://doi.org/10.5281/zenod0.8356171 (ref. 33). The Poisson VAE
modelis available as an extension of the scvi-tools suite at github.com/
lauradmartens/scvi-tools.
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Extended Data Fig.1| Comparison of read and fragment counts. a, b) Read
count (a) and fragment count (b) distribution on the Satpathy dataset'.

¢, d) Read count (c) and fragment count (d) distribution of the sci-ATAC-seq3
dataset’. Plotted is a10% random subset as the dataset consists of -700 K cells.

e) Fragment count distribution on the fly dataset”. CellRanger ATAC read counts
were unavailable for this dataset as we generated fragment counts directly with
Signac. f, g) Pie chart showing the percentage of all non-zero peaks with 1,2, or
more than 2 reads for the Satpathy dataset (f), sciATAC-seq3 dataset (10% random

subset) (g). h) Pie chart with the percentage of all non-zero peaks with one or
more than one fragment for the fly dataset (read counts are not available for this
dataset).i, j) Variance of read counts across cells against mean read counts for the
Satpathy dataset (i) and sciATAC-seq3 dataset (j). Each dot represents one peak
region. When fragment ends (reads) are counted, the variance of read counts is
around twice the mean (gray dotted line), which is not consistent with a Poisson
distribution (solid gray line). k, I, m) Same as (i, j), but for fragment counts.
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VAE and the Binary VAE model on the NeurIPS" dataset for all cell-peaks and only
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Poisson VAE and Binary VAE model at different downsampling thresholds.
Pvalues were computed using the two-sided paired t-test. In boxplots, the central
line denotes the median, boxes represent the interquartile range (IQR), and
whiskers show the distribution except for outliers. Outliers are all points outside
1.5times the IQR.
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accuracy scores were computed using a 40:60-weighted mean of batch
correction and bioconservation scores. Pvalues were computed using the two-
sided paired Wilcoxon test; Benjamini-Hochberg corrected. Error bars represent
the 95% confidence interval over ten cross-validation runs. b) Overall score
computed from different bioconservation and batch correction weightings.
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Extended DataFig. 9 | Peak length distribution and correlation of gene
expression with chromatin accessibility counts for selected marker genes.

a) Peak distribution length for peaks in the top 0.05 quantile (n = 5727) and
bottom 0-0.95 quantile (n =110,760) according to the fraction of counts above
the binarization threshold. High-count peaks are significantly longer. The Pvalue
was computed using a two-sided Wilcoxon test. b) Expression of genes (rows)
associated with each cell type (columns). CRIL isinvolved in the red blood cell
lineage (Proerythroblast, Erythroblast, Normoblast). CD74 is expressed in
antigen-presenting cells and is known to regulate mature B-cell survival®. MAFB
isatranscription factor that represses erythrocyte programs in myeloid cells*.
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greater than 0. Pvalues were adjusted for multiple testing using the Benjamini-
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Extended Data Fig. 10 | Cell type separation on promoters of marker genes.
a, b, ¢) Log-normalized gene expression against normalized accessibility for

the Poisson VAE (top row), Binary VAE model (middle row), and cisTopic model
(bottom row) for the (a) CD74 gene, (b) CRIL gene, and (c) MAFB gene. Cell type
separation is measured with the silhouette width and area under the ROC curve

and is better with the Poisson VAE model for CRIL and MAFB and second for CD74.
d) Multiple biological factors contribute to DNA accessibility in single cells to

be quantitative rather than binary. They include a diploid genome, density of
chromatin packaging, nucleosome spacing, TFs ina peak region preventing the
Tn5 from binding, and sequence preferences of Tn5.
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