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Population-level integration of single-cell 
datasets enables multi-scale analysis  
across samples

Carlo De Donno    1,2, Soroor Hediyeh-Zadeh    1, Amir Ali Moinfar1,3, 
Marco Wagenstetter1, Luke Zappia    1,3, Mohammad Lotfollahi    1,4,5   & 
Fabian J. Theis    1,2,3,4,5 

The increasing generation of population-level single-cell atlases has the 
potential to link sample metadata with cellular data. Constructing such 
references requires integration of heterogeneous cohorts with varying 
metadata. Here we present single-cell population level integration (scPoli), 
an open-world learner that incorporates generative models to learn sample 
and cell representations for data integration, label transfer and reference 
mapping. We applied scPoli on population-level atlases of lung and 
peripheral blood mononuclear cells, the latter consisting of 7.8 million cells 
across 2,375 samples. We demonstrate that scPoli can explain sample-level 
biological and technical variations using sample embeddings revealing 
genes associated with batch effects and biological effects. scPoli is further 
applicable to single-cell sequencing assay for transposase-accessible 
chromatin and cross-species datasets, offering insights into chromatin 
accessibility and comparative genomics. We envision scPoli becoming an 
important tool for population-level single-cell data integration facilitating 
atlas use but also interpretation by means of multi-scale analyses.

The advancements in single-cell technologies have enabled the genera-
tion of datasets comprising information from millions of cells. These 
datasets, also called ‘atlases’, include data from different conditions 
and individuals and offer precious insight into cellular processes and 
states in different scenarios. Consortia such as the Human Cell Atlas1 
and the Human BioMolecular Atlas Program2 aim to generate organ- and 
body-level atlases that allow one to study human organs from develop-
ment to aging in healthy and disease samples. A possibility opened by 
these atlases is that of meta-analyses relating cell types and states with 
biological conditions or demographics metadata3,4.

Performing meta-analysis on an atlas requires learning a joint 
representation of all datasets correcting batch effects between them5–7. 
Tremendous efforts have been made to solve the data integration 

problem for single-cell RNA sequencing datasets using approaches 
ranging from statistical8–11 and graph-based12–14 methods to deep learn-
ing models5,15–17. Nonetheless, single-cell data integration remains 
challenging18, especially in the case of many datasets with a variety of 
technical and biological properties.

Many analyses can be accelerated by mapping data on top of an 
atlas. Algorithms for efficient use of reference atlases are known as 
reference mapping methods19–21, which build upon data integration 
algorithms to update an existing atlas by integrating a query dataset. 
Transferring information from reference to query enables efficient 
annotation of the query cells4,20,22,23.

Existing deep learning integration methods 6 rely on 
one-hot-encoded (OHE) vectors to represent conditions15,24. This 
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cells belonging to the same cell type and leverages them to transfer 
annotations and improve data integration by means of an additional 
term in the learning objective called prototype loss. This term encour-
ages the model to reduce the distance between the latent representa-
tion of a cell and its prototype (Methods). We show this leads to better 
preservation of biological signals. Unlabeled cells are classified by 
comparing distances to the prototypes, and the label of the closest 
prototype is assigned as a predicted cell type label. We also exploit the 
distance of each cell to its closest prototype as a proxy for uncertainty. 
Finally, prototypes enable extending an initial reference atlas with novel 
cell types from a labeled query without retraining the reference model 
as opposed to existing methods24.

We illustrate a standard scPoli workflow on a collection of nine 
pancreas studies (see ‘Benchmark datasets’ in Methods) in Fig. 1c–j. 
We build an integrated reference on seven datasets. We use two data-
sets (celseq and celseq2) as an unlabeled query and map them onto 
the reference data. We can observe that query cells are mapped onto 
the reference data (mean integration score of 0.86) and that most 
cells are classified correctly with an accuracy of 80%. A cluster of cells 
(beta cells) that was removed from the reference dataset to mimic an 
unknown cell type scenario is correctly identified. After a principal 
component analysis (PCA) we can observe that the condition embed-
dings learned by scPoli capture similarities between the integrated 
samples.

scPoli accurately integrates datasets and transfers 
annotations
To understand how well scPoli integrates single-cell datasets, and how 
accurately it transfers cell type annotations, we benchmarked our 
model against other methods for data integration and label transfer. We 
included in this comparison both deep learning models (scVI15, scANVI24 
and MARS26) and other types of methods (Seurat v312, Symphony20 and 
a linear support vector machine (SVM)). Out of these models, only our 
method, scANVI and Seurat v3 tackle both data integration and label 
transfer, while some exclusively do integration (scVI and Symphony), 
or classification (MARS and SVM). All of these models, except for MARS 
and Symphony were part of the Luecken et al.6 data integration bench-
mark, where they came out as top performers.

We tested these methods on six datasets, spanning a variety of 
scenarios (see ‘Benchmark datasets’ in Methods) (Supplementary 
Fig. 1). For each dataset a set of studies to use as reference was picked, 
while the rest was used as query. To quantify the performance of data 
integration we used metrics to assess biological conservation and batch 
correction proposed in ref. 6 (Methods).

We found that scPoli outperformed the next best-performing 
model (scANVI) by 5.06% in data integration (Fig. 2a). When we looked 
separately at batch correction and biological conservation metrics, 
we observed that scPoli preserved biologically meaningful signals 
better than other methods. To understand whether the improvements 
stemmed from the use of condition embeddings or from the inclusion 
of the prototype loss, we benchmarked two variants of our model. 
We included a scPoli model with standard OHE vectors to represent 
batch, and a scPoli model trained without prototype loss. We found 
the prototype loss to be the driver of the improvement in biological 
conservation (Fig. 2b).

To assess the quality of the classification achieved during ref-
erence mapping we used two metrics: the weighted averaged and 
the macro-averaged F1 score, with the latter being more sensitive to 
underrepresented cell types. We observed that scPoli outperformed all 
methods except for the linear SVM on the weighted F1 metric (Fig. 2c).  
Out of the models that are capable of both data integration and cell 
type classification, scPoli came out on top (Fig. 2d). When looking at 
the macro-averaged F1 score, scPoli showed comparable performance 
to Seurat v3 and a sizeable improvement over scANVI, indicating better  
performance on underrepresented cell types (Fig. 2e,f). The SVM was 

encoding does not allow a downstream interpretation of the effect 
of each sample on the mapping. Additionally, in the presence of many 
unique condition categories, the number of conditional inputs can 
become close or equal to the number of gene expression measurements 
leading the model to produce inaccurate data representation25. Among 
current reference-building methods10,12,24,26 only scANVI and Seurat v3 
offer cell type classification coupled with a reference mapping algo-
rithm19,21. Yet, while they can integrate annotated data to extend the 
reference, this requires retraining, which is time-consuming and can 
sometimes be not possible due to data sharing restrictions.

In this Article, we introduce single-cell population level integra-
tion (scPoli), a semi-supervised conditional generative model and 
open-world learner5,27 combined with advances in meta-learning28 that 
is able to learn representations for both cells and samples (or other 
batch covariates). scPoli offers a cell-level and a sample-level view of 
the dataset enabling multi-scale analysis: the simultaneous exploration 
of sample and cell representations.

scPoli uses prototype-based cell label transfer and is augmented 
with an uncertainty estimation mechanism. We demonstrate that 
scPoli is competitive in data integration and cell annotation with other 
methods across six datasets. We further showcase the features of our 
model by integrating a lung atlas and performing reference mapping 
for two queries. We show potential use cases of condition embeddings 
such as sample classification and data integration workflow guidance. 
Finally, we build a reference of 7.8 million peripheral blood mononu-
clear cells (PBMCs) from 2,375 samples and explore the sample-level 
representation obtained with scPoli.

Results
scPoli learns joint cell and sample representations
The variation of gene expression (xi) in a dataset can be ascribed to 
batch effects and biological signals. Similarly to other conditional mod-
els15,29, scPoli aims to regress out batch effects in a nonlinear fashion by 
means of a conditional variable (si) representing batch while retaining 
biological information. Moreover, scPoli posits that cell identities (ki) 
can be represented with learnable cell type prototypes28 modeled using 
latent cell representations (zi) (Fig. 1a). scPoli, therefore, introduces 
two modifications to the conditional variational autoencoder (CVAE) 
architecture widely used for data integration5,15,24 and perturbation 
modeling16,29 in single-cell genomics. These modifications are (1) the 
replacement of OHE vectors with continuous vectors of fixed dimen-
sionality to represent the conditional term, and (2) the usage of cell 
type prototypes to enable label transfer.

CVAE-based methods encode each condition by means of OHE 
representations cOHE

1∶N ∈ ℝN, where N is the number of conditions. These 
are concatenated to the input, and an additional neuron for each condi-
tion is added to the first layer of the encoder neural network. In the case 
of thousands of conditions to be integrated, this approach leads to an 
increase in the number of total trainable parameters that can slow down 
training. scPoli uses learnable condition embeddings semb

1∶N ∈ ℝE of fixed 
dimensionality. These are concatenated to the input and learned at 
training time (Fig. 1a). As a result, scPoli is more scalable than a CVAE 
in scenarios where many conditions are to be integrated (see ‘Scalability 
analysis’ in Methods). Furthermore, these condition embeddings 
capture meaningful representations of each condition and can be 
analyzed, providing insight in large-scale studies. scPoli can also be 
used to integrate multiple conditions simultaneously. This is achieved 
by modeling condition covariates using independent embeddings. 
scPoli can perform reference mapping by freezing the weights of the 
model trained on the reference and learning a new set of M embeddings 
to accommodate the query data conditions (Fig. 1b).

The second addition to CVAE models is the incorporation of pro-
totypes used in meta-learning30. These allow efficient learning across 
tasks and datasets and have been used for cell type classification26. 
scPoli models prototypes using the average latent representation of 
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the best-performing method according to this metric, a result cor-
roborated by previous work in the field31.

Furthermore, scPoli’s integration performance and label transfer 
accuracy were stable across runs and different dataset sizes (Methods 
and Supplementary Fig. 2).

scPoli enables interpretable atlas-level integration
We showcase the data integration capability and quality of label trans-
fer yielded by scPoli on the Human Lung Cell Atlas (HLCA)4, a curated 
collection of 46 datasets of the human lung, with samples from 444 
individuals. The atlas is divided into a core collection of data, which 
comprises data from 166 samples and 11 datasets, and an extended one 
that includes the remaining data. Following the work in the original 
study, we used the HLCA core data for reference building. We inte-
grated data at the sample level to obtain a better resolution of the 

condition embeddings and allow interpretation using sample meta-
data. For prototype training we used the finest annotations, resulting 
in 58 prototypes. We observed that scPoli successfully integrated data 
from different studies (Fig. 3a) while maintaining structure among the 
known cell identities (Fig. 3b). We further assessed the quality of data 
integration and compared it against scANVI. To keep the comparison 
consistent, we also trained scANVI at the sample level. scPoli yielded 
an integration that preserved biologically meaningful variation better 
than scANVI, while achieving similar performance in batch correction 
(Fig. 3c).

When looking at the first two principal components (PCs) of the 
sample embeddings we found that samples from the same studies 
grouped together (Fig. 3d and Supplementary Fig. 3a). We addition-
ally found metadata that covaried with the sample representation. 
These included information regarding properties of the sample such 

Reference building Reference mapping AnalysisRaw reference data

a b

c Cell typeAcinar
Activated stellate
Alpha
Delta
Ductal
Endothelial
Epsilon
Gamma
Macrophage
Mast

Schwann
T cell
Reference
Unknown

celseq
Query celseq2

fluidigmc1
inDrop1
inDrop2
inDrop3
inDrop4
smarter
smartseq2

Quiescent stellate

Study

Cell type

Study

Label transfer

Study

Unknown populations

Study embeddings

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1
PC

2
PC1

d

e

f

g

h

i

j
Int. score = 0.86

acc = 0.80

Reference building

Learned conditional
embeddings

Cell type labels

Encoder

L = LVAE + Lproto

s i

Decoder

Reference
prototypes

G
en

e 
ex

pr
es

si
on

Reference mapping

New query conditional
embeddings

Cell type labels

Encoder Decoder

Reference
prototypes

Fixed
weights Fixed

weights

Label transfer from
closest prototype

G
en

e 
ex

pr
es

si
on

Correct
Wrong
Unknown

s i

s1

ci

s1 sN sMsN

x i z i x i z i

s i

x i›

s i

ci

x i›

celseq2
inDrop4

inDrop2 smartseq2
celseq

fluidigmc1
smarter

inDrop3

inDrop1

Fig. 1 | scPoli enables learning cell-level and sample-level representations. 
a, scPoli reference building: the model integrates different datasets and learns 
condition embeddings for each integrated study and a set of cell type prototypes. 
b, scPoli reference mapping: the model weights are frozen (in gray) and a  
new set of condition embeddings are added to the model. Cell type labels are 
transferred from the closest prototype in the latent space. Example of a standard 
workflow using scPoli on multiple pancreas datasets. c,d, Uniform manifold 
approximation and projection (UMAP) of the raw data to be integrated in a 
reference (13,093 cells), showing cell types (c) and studies (d) by color.  

e,f, Integrated reference data colored by cell type (e) and study (f). g, A total of 
3,289 query cells (celseq and celseq2 studies) are projected onto the reference 
data in the reference mapping step. UMAPs show in color the query cells and 
in gray the reference cells. Reference cell type prototypes are shown in bigger 
circles with a black edge. Unlabeled prototypes are shown in bigger gray circles 
with black edges. The accuracy of the label transfer is 80%. h, Cells are colored by 
study or origin after reference mapping. The model achieves a mean integration 
score of 0.86. i, Outcome of the label transfer step from reference to query. j, PCA 
of the condition embeddings learned by scPoli.
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Fig. 3 | scPoli performs interpretable integration and query-to-reference 
mapping on the HLCA. a,b, Uniform manifold approximation and projection 
(UMAP) of the integrated HLCA core after reference building, cells are color coded 
by their study of origin (a) and by cell type (b). DC, dendritic cell. EC, endothelial 
cell. NK, natural killer cell. c, Comparison of integration performance yielded by 
scPoli and the scANVI. d,e, Visualization of the first two PCs obtained with a PCA 
of the sample embeddings learned from the reference data. Samples are color 
coded by their original study (d) and by sample type (e). f, UMAP of the joint query 

and reference datasets after query-to-reference mapping for a healthy query. 
Reference cells are shown in light gray, query cells are colored by the predicted cell 
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as subject type (for example, donor or alive) (Fig. 3d) and anatomical 
location (Supplementary Fig. 3b). Other covariates (for example, sex or 
ethnicity) appeared to be mixed in this space (Supplementary Fig. 3c,d),  
indicating that the main drivers behind batch effects are likely 
to be related to the nature of the tissue, its processing and other  
technical factors.

scPoli propagates high-resolution annotations
One of the main hurdles in atlas building comes from discrepancies in 
annotation terms across datasets. scPoli and other methods that lever-
age these annotations require prior label harmonization labels before 
usage, which requires expert knowledge. Nonetheless, scPoli can work 
on multiple levels of annotation (for example, from coarse to fine) and 
can propagate labels to underclustered datasets during reference build-
ing. scPoli is able to model multiple sets of prototypes for each level 
of annotations. This prior information is then leveraged by optimizing 
the prototype loss on each set of labeled prototypes. To simulate such 
a scenario, we integrated the HLCA, but this time using both a coarse 
and a fine annotation (Supplementary Fig. 4a–c). Additionally, for one 
dataset in the reference (Krasnow2020), we kept only the coarse annota-
tion. We then used scPoli to propagate high-resolution labels to these 
cells obtaining an overall accuracy of 84.4% (Supplementary Fig. 4d).

scPoli enables query-to-reference mapping and label transfer
After building a reference using the HLCA core dataset, we mapped a 
group of healthy samples (Meyer, 2021)32 (Fig. 3f). These data consist of 
six samples and contain nine cell identities not present in the reference. 
As a proxy for uncertainty in cell type prediction, we use the Euclidean 
distance from the closest prototype in the reference. Similarly to the orig-
inal HLCA study, in which a k-nearest neighbor (kNN) graph-based uncer-
tainty was used, we noticed that cells that lay in regions of transitions 
between cell types displayed the highest levels of uncertainty, as well 
as cells whose identities were not present in the reference data (Fig. 3g).  
We considered all cells with an uncertainty higher than the 90% quantile 
as unknown (Supplementary Fig. 5a) and inspected the classification 
performance by cell type (Supplementary Fig. 5b). A subset of novel 
cells were successfully detected as unknown, especially chondrocytes, 
erythrocites and myelinating and non-myelinating Schwann cells. Natu-
ral killer T cells, GammaDelta T cells and regulatory T cells were not 
detected as unknown and were mostly classified as either CD4 T cells or 
CD8 T cells, which could also be a result of overclustering in the original 
atlas33. Overall, scPoli achieved an accuracy of 75%, outperforming the 
model used in the original study, which yielded an accuracy of 69%. 
Label transfer in scPoli happens without the need for the reference 
dataset. scPoli transfers labels by comparing distances to a small set 
of prototypes that are obtained during the reference building step and 
stored within the reference model. This constitutes a big advantage 
in cases where the reference data cannot be shared. Furthermore, we 
observed that scPoli is more robust at detecting unknown cells than 
the methodology involving a kNN graph and scANVI. We compared 
the ratio of true predictions across different thresholds for unknown 
cell type detection for three models and scPoli consistently obtained 
better accuracy (Supplementary Fig. 5c).

To see how scPoli would perform when mapping a query dataset 
from a different condition than the one in reference, we mapped data 
collected from cancer patients. These data contain two cell identities 
not present in the reference (cancer and erythrocytes). We observed 
that scPoli successfully mapped the query dataset (Supplementary 
Fig. 6a). Since this query has a much coarser cell type annotation, 
we mapped the labels obtained with scPoli to the cell types present 
in the query via a mapping obtained from the authors of the study. 
We observed that almost all cancer cells mapped to a cluster whose 
label prediction had high uncertainty and was classified as unknown  
(Supplementary Fig. 6b,c). We observed that 85% of cancer cells and 98% 
of erythrocytes were identified as unknown (Supplementary Fig. 6d).  

Also in this case, scPoli obtained better accuracy across different thresh-
olds for unknown cell type detection compared to a kNN classifier  
and scANVI (Supplementary Fig. 6e).

scPoli enables multi-scale classification of cells and samples
We tested unlabeled sample classification as a potential use case for 
condition embeddings. We integrated a coronavirus disease 2019 
(COVID-19) PBMC dataset by Su et al.34 with large biological signals 
using the sample covariate as condition. The data contains 559,517 
cells from 270 samples across various states of COVID-19. We selected 
30 random samples and set their cell type annotations and sample 
annotations as unknown. We then integrated the data and propagated 
the labels. We first assessed the quality of integration and label transfer, 
which achieved an accuracy of 90% (Fig. 4a,b).

The sample-level metadata are organized into four classes: healthy, 
mild, moderate and severe. The sample embeddings of the reference 
data showed variation associated with this phenotypic covariate in 
the two first PCs (adjR2

PC1 0.41, adjR2
PC2 0.16 obtained with an ordi-

nal regression; the adjusted R2 is reported to take into account the 
different numbers of available predictors) (Fig. 4c). We, therefore, 
proceeded to classify the disease state of the query samples using a 
kNN classifier trained on the reference sample embeddings. This clas-
sification yielded an accuracy of 73%. We compared the performance 
and stability of this sample classification against that obtained with a 
classifier trained on sample pseudobulks, and one trained on vectors 
of average latent expression per sample after integration with scVI. 
We did so by splitting the training data into labeled and unlabeled in 
a five-fold cross-validation setting. When we compared the accuracy 
and F1 score obtained by a classifier trained on scPoli sample embed-
dings we observed that these were better than those obtained using 
the other classifiers, with weighted F1 scores of 65.3 ± 2.5%, 59.3 ± 1.3% 
and 58.8 ± 2.1%, for scPoli sample embeddings, mean gene expression 
and mean scVI latent expression, respectively (Fig. 4e).

scPoli supports experimental design in integration workflows
To understand the relationship between technical and phenotypic 
factors in scPoli’s sample embedding we integrated another COVID-19 
dataset consisting of 222,003 cells (Schulte-Schrepping et al.)35, with 99 
samples from 65 patients in two different cohorts (Fig. 5a,b) obtained 
from a multitude of experiments with different technical properties. 
When we examined the sample embedding, we observed the major 
sources of variation to be related to technical factors, suggesting that 
these play a bigger role in batch effects. Indeed, the first two PCs of the 
sample embedding were explained by the experiment (adjR2

PC1 0.94, 
adjR2

PC2 0.97) (Fig. 5c) and the cohort from which the samples were 
obtained (adjR2

PC1 0.73) (Fig. 5d), rather than the disease state (adjR2
PC1 

0.00) (Fig. 5e). We could find association with disease state, but only 
in further PCs (adjR2

PC2 0.41, Fig. 5e,f).
These analyses suggest that, while in more focused studies where 

technical factors are controlled and kept consistent across samples, 
biological signals represent the main source of sample-level hetero-
geneity; in bigger-scale collections of data with a variety of technical 
factors, these variations will dominate. This led us to speculate that, 
since sample embeddings identify major sources of variations in the 
data, they could also guide the choice of the conditions to integrate in 
a data integration workflow. We proceeded to integrate the data using 
other two models conditioned on the covariates that showed associa-
tion with the first PC of the embedding space (experiment and cohort).

Additionally, we trained a model with a dummy batch covariate, 
which was equal for all cells. In this case, scPoli will leverage exclu-
sively cell type annotations and the prototype loss to perform inte-
gration. We observed that the integration yielded by the cohort- and 
experiment-level models displayed a similar quality of integration 
despite the reduction in the number of conditions to integrate (2 for 
the cohort covariate, 16 for experiment, compared to 99 for sample) 
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(Supplementary Fig. 7). All models conditioned on an actual batch 
variable outperformed the one trained on a dummy covariate. This 
demonstrates an important use case of this sample-level representa-
tion. Revealing the main sources of undesired batch effects can in fact 
lead to faster data integration workflows and potentially improve the 
quality of the integrated cell representations by selecting the most 
appropriate batch covariate.

scPoli can model multiple batch covariates
scPoli can model multiple batch covariate using independent embed-
dings which are then concatenated to the gene expression input. Doing 
so will yield a cell embedding and an embedding space for each batch 
condition. We applied this workflow on the Schulte-Schrepping data-
set, where we integrated the data using both ‘experiment’ and ‘sam-
ple’ covariates (Supplementary Fig. 8a,b). This new model yielded 
experiment-level embeddings that varied according to cohort and 
disease information in the two first PCs (Supplementary Fig. 8c–e). 
In addition to this, scPoli produced sample embeddings where the 
experiment-level variation was mitigated in comparison to the one 
observed in the model conditioned only on samples, suggesting that 
scPoli disentangled experiment-level variation from sample-level vari-
ation (Supplementary Fig. 8f–h).

scPoli can integrate data and transfer labels across species
Integrating data collected from different species can be a challeng-
ing task for data integration models. To understand how scPoli would 
perform in such a scenario, we built a reference from cells collected 
from the primal frontal cortex of marmoset and mouse using ortholog 
genes36. scPoli was able to integrate the data from the two species and 
map cells of the same cell type together (Supplementary Fig. 9a,b). We 
then performed reference mapping and label transfer using cells from 
human data as a query. scPoli was able to perform query-to-reference 
mapping across different species and yielded an overall label transfer 
accuracy of 86% (Supplementary Fig. 9c–e).

scPoli can be extended to further data modalities
In this work, we focus on the applications of scPoli on scRNA-seq data; 
nonetheless, with the appropriate adaptations, scPoli can be applied to 
other modalities. To demonstrate this, we used scPoli to integrate a set 
of single-cell sequencing assay for transposase-accessible chromatin 
(scATAC-seq) samples by modeling the likelihood of the input data 
using a Poisson distribution, as proposed in ref. 37. We tested this on 
the NeurIPS 2021 multimodal data integration dataset38, from which 
we used the scATAC-seq modality. scPoli integrated data from different 
samples (Supplementary Fig. 10a) and yielded condition embeddings 
that captured similarities between samples generated at the same site 
(Supplementary Fig. 10b). We assessed the quality of this integration 
by comparing it against that of PeakVI39, a CVAE-based method for 
scATAC-seq data integration, and found that scPoli achieved compa-
rable performance (Supplementary Fig. 10c).

scPoli scales to datasets with thousands of samples
We further leveraged scPoli to build a PBMC atlas comprising roughly 
7.8 million cells from 2,375 samples, 1,977 subjects and 25 datasets. 
We obtained the integrated cell representation (Fig. 6a,b and Sup-
plementary Fig. 11a) and the sample embeddings, which we analyzed 
to examine the dominant sources of variations across samples. We 
observed that, while most of the variance was explained by the first 
PC of this space, substantial signal was still present in the further PCs, 
suggesting that scPoli makes full use of this space to encode informa-
tion useful for batch correction (Supplementary Fig. 11b). We found 
the first PC to be mainly associated with the dataset of origin of the 
sample (Fig. 6c and Supplementary Fig. 11c,d). We used a linear model 
to quantify this association, which yielded an adjusted R2 of 0.97. We 
also observed a strong association with sequencing assay (adjR2 0.86) 

(Fig. 6d and Supplementary Fig. 11g,h) and moderate association with 
disease phenotype (adjR2 0.59) (Fig. 6e and Supplementary Fig. 11e,f). 
When we looked at how information such as sex and ethnicity mapped 
onto the sample embedding obtained with scPoli, we observed no clear 
patterns in the embedding space (Supplementary Fig. 11i–n). We com-
pared the structure in scPoli sample embeddings with that obtained on 
vectors of average gene expression by sample, and observed that, while 
some of the patterns showed similarities, scPoli was more sensitive to 
differences between datasets and preserved more structure overall 
(Supplementary Fig. 12).

To understand whether the sample embeddings reflected any 
gene expression patterns across samples, we computed the Pearson 
correlation between the mean expression of each gene in the various 
samples and the PC scores of the embeddings. We thus obtained lists of 
significantly correlated genes with each PC (P < 0.01) and filtered them 
for coefficients of determination larger than 0.3 in absolute value. We 
found the biggest number of correlated genes with the first PC. This 
number did not decrease regularly going further through the PCs, 
and we found PC2, PC4 and PC5 to also have a substantial number of 
correlated genes (Fig. 6f). When we looked at which genes were most 
strongly correlated with PC1, we observed a strong presence of ribo-
somal genes: 14 out of the 15 top negatively correlated genes. This was 
reflected also in a general association of PC1 with the mean ribosomal 
gene fraction of each sample (Supplementary Fig. 13a). On the other 
hand, we did not observe a clear association with mitochondrial gene 
fraction (Supplementary Fig. 13b). We performed a biological process 
and pathway enrichment analyses of the genes correlated with PC1 
and found terms related to the immune and stress response, cytokine 
signaling, neutrophile degranulation and cell activation (Fig. 6g). The 
top negatively correlated gene with PC1 was RPL31 (r = −0.93), which is 
a ribosomal gene involved in the cellular response to stress; the second 
top positively correlated gene, on the other hand, was RHOA (r = 0.85), 
a gene involved in the immune response and that we observed to be 
more highly expressed in disease samples (Supplementary Fig. 13c). 
These findings reflect the associations found with both technical and 
phenotypic covariates and PC1. When we looked at the patterns of 
expression of these genes in the sample and cell embedding spaces, 
we observed that scPoli successfully mixed these signals in the inte-
grated cell representation but also offered the unique feature of explor-
ing them in the sample embedding space where they were preserved  
(Fig. 6h,i). A similar enrichment analysis with PC2- and PC4-correlated 
genes revealed terms related to RNA and DNA metabolism in the first 
case (Supplementary Fig. 13d), and response to stress and cytokine 
production in the second (Supplementary Fig. 13f). We did not perform 
this analysis with PC3, due to the low number of correlated genes. 
We show the expression patterns in both cell and sample embedding 
spaces of genes associated with PC2 (SSR2) and PC4 (TSLPY2) in Sup-
plementary Fig. 13f,g.

We believe that the multi-scale representation obtained by scPoli 
could represent a useful tool for researchers to understand which genes 
drive batch effects the most or are affected by technical factors in the 
data generation process.

Discussion
We have presented scPoli, a generative model for data integration, label 
transfer and reference mapping. scPoli learns representations of the 
input data at different scales by learning cell and sample embeddings. 
This enables multi-scale analyses whereby the user can explore sample 
information in a dedicated latent space, while still having access to an 
integrated single-cell object. By freezing the weights of the model and 
learning new embeddings, scPoli is able to quickly map newly generated 
data onto a previously built reference.

We have shown that scPoli is competitive with state-of-the-art 
methods for data integration and label transfer. Thanks to the use of cell 
type prototypes, scPoli consistently preserved biological information 
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better than other methods. Moreover, scPoli performs label transfer 
in a privacy-aware fashion without the need for the reference data. We 
illustrated the features of our model by integrating the HLCA. scPoli 
outperformed the model used in the original study in data integration 
and yielded a sample latent representation that reflected similarities 
between different samples. We also showcased our model’s reference 

mapping capabilities by mapping an unlabeled query dataset of healthy 
samples and one of cancer samples. Furthermore, we demonstrated 
the viability of scPoli as a scATAC-seq data integration method and its 
ability to perform integration and reference mapping across species.

To understand better the information captured by the sample 
embeddings and potential use cases we investigated three further 
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datasets. Our findings suggest that in smaller-scale studies scPoli 
reveals phenotypical sources of variation and can enable multi-scale 
classification of both cell types and samples. Nonetheless, as the 
complexity and number of samples increase, the sample embeddings 
obtained with our model are more likely to reflect variations of techni-
cal nature. In these cases, scPoli’s sample embeddings can help identify 
the main sources of technical variation driving the batch effects. This 
can be used to guide data integration workflows by identifying the most 
appropriate covariates to use as batch condition and to discover gene 
expression patterns across samples associated with batch effects and 
technical and phenotypic factors. Furthermore, scPoli can integrate 
and model multiple batch covariates, which will yield multiple batch 
embedding spaces and can improve interpretability by disentangling 
dataset-level variation from sample-level variation.

scPoli, like other methods for data integration that leverage CVAE, 
provides the user with a lower-dimensional single-cell integrated object 
and not a corrected count matrix. Moreover, the quality of the inte-
gration will be a function of the number of samples that can be used 
in the reference-building step. As the model integrates samples with 
different technical or phenotypical characteristics, it does a better job 
at regressing out the batch effects.

A limitation of models that make use of cell type information is 
the need for high-quality and harmonized annotation across datasets. 
scPoli is also susceptible to this and requires cell type label harmoniza-
tion before reference building.

We found that the use of prototypes improves the preservation 
of biological information. We use distances from these prototypes 
and a latent cell embedding to transfer labels and yield an uncertainty 
associated with it. While latent representations obtained with VAEs are 
learned on smoother manifolds than vanilla autoencoders, this linear 
approximation remains suboptimal. Nonetheless, this approach has 
been used in foundational work in generative modeling research40–42. 
This limitation becomes relevant for our uncertainty, whose distribu-
tion can vary substantially in different scenarios. Therefore, we recom-
mend users visualize these distributions and choose the best threshold 
for detecting unknown cells manually.

We recommend care when interpreting the sample-level represen-
tations obtained with scPoli. The main sources of variation between 
samples will change across datasets. Different covariates are likely to 
explain these variations in different datasets. This will determine which 
are the most sensible use cases for sample embeddings.

We believe scPoli will be useful as a tool for data integration and 
reference mapping given its improvements in the conservation of 
biological signals. Furthermore, we expect scPoli’s sample-level embed-
dings to provide researchers with another point of view over large-scale 
datasets, and pave the way to multi-scale analyses that investigate and 
link patterns at different scales. Single-cell atlassing is entering the 
stage of population-level studies, which implies the need for models 
across this level of variation.
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Methods
scPoli
scPoli is a semi-supervised generative deep learning method com-
prising two components, an unsupervised backbone based on 
CVAEs27 and a cell type supervised component leveraging prototype 
networks28. In the following we first outline the data generation 
process describing different inputs for the model. Following that, 
we will discuss details about the main components of scPoli and the 
training procedure.

Notation
We denote a collection of single-cell data from different samples 
{X1,… ,Xn}  with sample labels {c1,… , cn}. Within each sample we have 
X = {x1,… ,xj}  cells with cell type annotations {a1,… ,aj}  and sample 
annotation c. A batch of data passed to the model during training will 
contain the single-cell gene expression of a random sample of cells 
from the training data, plus the sample and cell type labels associated 
with each cell {xi, ci,ai}. When we pass multiple condition covariates 
and cell type annotations to the model this becomes {xi, ci,ai}.

CVAEs
Variational autoencoders (VAEs)40 are generative models that employ 
variational inference and deep neural networks to learn the underlying 
distribution of the data they are trained on. These models consist of an 
encoder network that parameterizes the latent variational distribution 
of the data and a decoder network that samples from this distribution 
and maps the data back to the input space. CVAEs15 are an extension of 
such models in which the input data is conditioned on another random 
variable. CVAEs aim to maximize the likelihood of the data, formulated 
following the Bayes chain rule as

pθ(x|c) = ∫
z

pθ(x|z, c)pθ(z|c)dz, (1)

where x is the input gene expression data, z is the latent variable that 
is assumed to parameterize the latent distribution of the data, c is the 
condition variable, and θ is the parameters of the model. Since the 
likelihood as formulated above is in most cases intractable, VAEs use 
amortized inference by approximating the posterior distribution by 
means of a neural network pθ (z|x, c) ∼ qϕ (z|x, c), where ϕ are the param-
eters of said network. The loss used to optimize these models aims to 
jointly reduce the reconstruction error between input and output and 
make qϕ (z|x, c) as close as possible to pθ (z|x, c).

The resulting loss function, also known as evidence lower bound, 
is formulated as

ℒCVAE(θ,ϕ) = −𝔼𝔼z∼qϕ(z|x,c) logpθ(x|z, c) + DKL(qϕ(z|x, c)||p(z)) ) , (2)

where θ and ϕ are respectively the encoder and decoder networks 
parameters, 𝔼𝔼 is the expectation and DKL indicates the Kullback–Leibler 
divergence.

The first term of the loss formulated above is also known as recon-
struction loss, and it might take different forms depending on the 
generative process of the input data. In the case of count data, we 
assume a negative binomial distribution as input; thus the likelihood 
will follow:

pθ (x|c) = NB (μμμ,ααα) . (3)

In the case of scATAC-seq data we assume a Poisson distribution:

pθ (x|c) = Poisson (λλλ) . (4)

The negative log-likelihood of the appropriate distribution is used 
as reconstruction loss during training.

Condition embeddings
The architectural backbone of scPoli builds upon CVAEs, but with an 
important modification. While in a standard CVAE different conditions 
are represented by means of fixed OHE vectors ci ∈ ℤN that are concat-
enated to the input xi ∈ ℝG, scPoli uses learnable embeddings si ∈ ℝE  
of fixed dimensionality E to represent conditions. The learning objec-
tive for this network is akin to that of a standard CVAE, but the embed-
dings s are optimized during training as parameters of the model using 
backpropagation:

ℒCVAE(θ,ϕ, s) = −𝔼𝔼z∼qϕ,s(z|x,c) logpθ,s(x|z, c) + DKL(qϕ,s(z|x, c)||p(z)) ). (5)

Condition embeddings are implemented using the torch.
nn.Embedding class, which takes as input an index indicating the 
condition and outputs the learned embedding. These embeddings 
are randomly initialized and optimized together with the rest of the 
trainable parameters of the network by minimizing the loss function 
used to train the model.

Prototypes for label transfer
scPoli posits that cell identities can be represented using prototypes. 
For each labeled cell type in the data, a prototype pk ∈ ℝD is initialized, 
where D is the dimensionality of the latent space of the CVAE model 
and k represents the cell type label. Prototypes are computed by aver-
aging the latent representation of the data points belonging to each 
particular cell type:

pk =
1

|𝒦𝒦(k)|
∑

i∈𝒦𝒦(k)
zi, (6)

where zi is the latent representation of cell i, k is the cell type label and 
𝒦𝒦 (k) is the set of indices of cells belonging to cell type k:

𝒦𝒦 (k) = {i, |,ai = k} . (7)

Additionally, when the model is trained on partially labeled data, 
a set of unlabeled prototypes are initialized after clustering the unla-
beled data using the Louvain algorithm implementation in Scanpy. 
Assuming that each unlabeled cell is now assigned a cluster j, unlabeled 
prototypes are computed using:

p(unlabeled)j = 1
|𝒥𝒥𝒥j)|

∑
i∈𝒥𝒥𝒥j)

zi, (8)

where zi is the latent representation of cell i, j is the unlabeled cluster 
label and 𝒥𝒥 (j) is the set of indices of cells belonging to cluster j:

𝒥𝒥 (j) = {i, |,ai = j} . (9)

Unlabeled prototypes offer good reference points for down-
stream analyses and novel cell type annotation but are not used for the  
prototype loss computation.

Prototype loss
scPoli’s training objective includes a supervised term we call prototype 
loss. This term has the objective of pulling together cells belonging to the 
same cell type towards their correspondent prototype in latent space.

ℒprototype =
1
N

K
∑
k=1

N
∑
i=1

1𝒦𝒦(k)(ai)d(zi,pk), (10)

1𝒦𝒦(k)(ai) ∶= {
1 ifai ∈ 𝒦𝒦𝒦k)

0 ifai ∉ 𝒦𝒦𝒦k)
, (11)

where K is the number of cell types in the data, ai is the cell type annota-
tion of cell i and d (⋅, ⋅) is a distance function. The distance is computed 
only between the latent representation of a cell and the prototype of 
the cell type to which said cell belongs. In this work we formulate this 
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distance as the Minkowski distance between a cell and its prototype. 
This distance is equivalent to the Euclidean distance when p = 2 and to 
the Manhattan distance when p = 1. Nonetheless, any distance metric 
could potentially be used.

d (zi,pk) = (|zi − pk|
p)

1
p , (12)

scPoli can be trained on multiple sets of prototypes (for example, 
from multiple cell type annotations) in parallel, in this case (10) is 
expanded as:

ℒprototype =
1
N

L
∑
l=1

K
∑
k=1

N
∑
i=1

1𝒦𝒦(k(l)) (a
(l)
i ) d (zi,pk(l) ) , (13)

where L is the number of cell type annotations provided to the model 
and a(l)i  is the cell annotation index for cell i and annotation l.

scPoli training
We describe the procedure used to train an scPoli model when building 
a reference of performing query-to-reference mapping below:

•	 Reference building

•	 Pretraining: initialize N condition embeddings, where N is the num-
ber of samples present in the reference. The model receives gene 
expression x(ref)i ∈ ℝG  (where G is the number of input features), 
which is concatenated to the sample embedding of the correspond-
ing sample si ∈ ℝE as input (where E is the embedding dimensional-
ity). When multiple condition labels are passed to the model, the 
embeddings for each condition {s(i)i ,… , s(k)i } are concatenated to the 
input, where k is the number of condition covariates passed. The 
objective function ℒCVAE (5) is optimized on the reference dataset.

•	 Fine-tuning: initialize cell type prototypes using (6) and optimize 
ℒCVAE + ηℒprototype , where η is a hyperparameter that tunes the 
strength of the prototype loss; store learned prototypes with the 
model.

•	 Reference mapping

•	 Pretraining: freeze the weights of the encoder and decoder net-
works from the reference model, and initialize M additional sample 
embeddings where M is the number of samples in the query. These 
embeddings constitute the only trainable parameters when train-
ing on query data. The model receives gene expression x(query)i ∈ ℝG 
concatenated to sample embeddings si ∈ ℝE  as input. The model 
needs to be provided with the same number of condition covari-
ates as the reference model. The objective function ℒCVAE (5) is 
optimized on the query dataset.

•	 Fine-tuning: initialize labeled prototypes in the query dataset if 
any labeled cells are present, the unlabeled data are clustered 
using the Louvain algorithm and unlabeled prototypes are initial-
ized for the detected clusters using (8). Optimize ℒCVAE + ηℒprototype
; if all cells in the query are unlabeled, this learning objective is 
reduced to ℒCVAE. Unlabeled prototypes are not used for prototype 
loss computation and are only used for downstream analyses.

scPoli is optimized using Adam and a default learning rate of 
0.001. The ratio of pretraining/fine-tuning epochs we use is 0.9, but the  
optimal value might vary depending on the input dataset.

Cell type label transfer and uncertainty quantification
scPoli assigns to unlabeled cell i with latent representation zi the cell 
type identity k of the closest prototype p in latent space:

a(pred)i = arg min
k∈𝔎𝔎

d(zi,pk). (14)

The minimum distance between the latent representation and any 
reference prototype is used as a proxy for uncertainty for unknown 
cell type detection.

ui = min
k∈𝔎𝔎

d(zi,pk), (15)

where 𝔎𝔎 is the set of cell type identities present in the data.
We do not fix a default value for this uncertainty above which a cell 

should be classified as unknown. In our experiments, we observed the 
distributions of uncertainties and picked a quantile as the cutoff value. 
When we expected more unknown cells in the unlabeled data, for exam-
ple in the cancer query, we picked lower quantiles. Another possible 
approach could be the one proposed by ref. 4. The authors held out a 
few labeled datasets as query and then after mapping them they looked 
for the most optimal uncertainty threshold by generating a receiver 
operating characteristic (ROC) curve tracking correct label transfer.

This uncertainty does not have an upper bound, but we offer the 
option to scale and normalize it to have values between 0 and 1.

Scalability analysis
The introduction of learnable condition embeddings that replace OHE 
vectors to represent conditions leads to a difference in the number of 
trainable parameters between the scPoli CVAE and a standard CVAE 
network. Let G be the dimensionality of the gene expression input, E 
the dimensionality of condition embeddings in scPoli, N the number 
of conditions, D the latent space dimensionality, and Henc and Hdec the 
widths of the input layers of the encoder and decoder, respectively. 
When comparing these two models with the same number and width 
of hidden layers and latent dimensionality and ignoring bias terms of 
the fully connected layers, scPoli introduces E × N parameters in the 
embedding matrix, (G + E) × Henc parameters at the input layer of the 
encoder and (D + E) × Hdec  at the decoder. A standard CVAE has 
(G + N) × Henc  and (D + N) × Hdec  at the encoder and decoder input, 
respectively. From this, it can be derived that scPoli will have fewer 
trainable parameters than a standard CVAE when:

E < N×H
N+H

whereH = Henc + Hdec.

This inequation results in

E < H ifN≫ H

E < H
2

ifN ≈ H

E < N ifN≪ H.

Considering the common choice of 100 or lower for H, and the 
common choice of values below 25 for E, we can see that scPoli results 
in a lower number of parameters in the case of a relatively high number 
of conditions N (Supplementary Fig. 14). While it will be comparable 
with a standard CVAE in the case of few conditions to integrate.

Hyperparameters and training
We performed a hyperparameter search on the pancreas dataset of 
the benchmark datasets. We included parameters such as the depth of 
encoder and decoder, the weight η for the prototype loss, the embed-
ding dimensionality, the latent dimensionality and the KL annealing 
parameter. We fixed the width of the hidden layer to be the square root 
of the number of features in the input data, as is done in15. We tried to 
fix as many hyperparameters as possible to keep the computational 
overhead within a reasonable limit. We selected the set of hyperpa-
rameters that yielded the best integration performance and then used 
these to obtain results for the benchmarks displayed in Fig. 2. A table 
with the grid of values considered during our hyperparameter search 
is available at Supplementary Table 1.
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Hyperparameters of trained models
A table with the hyperparameters used for training the models pre-
sented in this work is available at Supplementary Table 2.

Computational cost analysis
We ran scPoli for 100 epochs (80 pretraining) on the same dataset 
(PBMC benchmarking data, 4,000 highly variable genes (HVG)) under- 
or oversampled to reach sizes of 1K, 10K, 100K and 1M cells. The model 
was trained with either a sparse or a dense input matrix to test the dif-
ference in memory consumption and training time between the two. 
We tracked the time needed to train the model for 100 epochs and max 
memory consumption during training net of the memory needed to 
store the data. The experiment was run on a server with two Intel Xeon 
Platinum 8280L 2.70 GHz central processing units and an NVIDIA v100 
graphics processing unit. The results of this analysis are available in 
Supplementary Fig. 15.

scATAC-seq integration
We adapted scPoli to work on scATAC-seq data by using a Poisson like-
lihood for modeling fragment counts. Fragment counts are obtained 
by aggregating odd and neighboring even reads. This approach was 
proposed by ref. 37. We ran PeakVI using comparable parameters to 
obtain a comparison.

Association with PCs
We compute the association between a covariate and a PC by fitting a 
linear model with the covariate as the predictor and the values of the PC 
as dependent variable. We fit this model by using the lm() function in R. 
After fitting the model, we report the adjusted R2, which is defined as:

R2
adj = 1 − (1 − R2) n − 1

n − p − 1 ,

where n is the number of samples and p is the number of predictors.

Benchmarks
Integration methods. We benchmarked the data integration perfor-
mance of our model against various state-of-the-art methods. These 
include:

•	 scArches scVI (v0.5.3): we ran the model using default 
parameters;

•	 scArches scANVI (v0.5.3): we ran the model using default 
parameters;

•	 Seurat v3 (v4.0.3): we followed the tutorial43 and used super-
vised PCA for reducing the data dimensionality to 50;

•	 Symphony (v0.1.0): we followed the vignette44 and ran the model 
using default parameters.

Cell type classification methods. We benchmarked the performance 
on label transfer and cell type classification against the following 
methods:

•	 scArches scANVI (v0.5.3): we ran the model using default 
parameters;

•	 MARS: we ran the model using default parameters;
•	 Seurat v3 (v4.0.3): we followed the vignette43 and ran the model 

using default parameters;
•	 SVM: we fit a LinearSVC object from scikit-learn (v0.24.2) on the 

reference data.

Metrics
We quantified the quality of the data integration using the following 
metrics from the scIB (v 1.0.0) package and Luecken et al. Cell type ASW 
(average silhouette width), isolated label F1, isolated label silhouette, 
NMI (normalized mutual information) and ARI (adjusted Rand index) 
were used as biological conservation metrics. To quantify batch mixing 

we used PC regression, graph connectivity and batch ASW. The overall 
integration score is a weighted average of the average batch mixing 
score and the average biological conservation score, with weight 0.4 and 
0.6 respectively. Descriptions for these metrics can be found in ref. 6.  
To quantify label transfer accuracy we used the weighted averaged and 
macro-averaged F1 score.

Weighted F1 score: average of the F1 scores obtained for each class, 
weighted by their support.

Macro F1 score: average of the F1 scores obtained for each class, 
without any weighting.

An overview of the used metrics can be found in Supplementary 
Table 3.

Datasets
The HLCA. We obtained the HLCA core dataset from the authors of the 
study4. The dataset consists of 584,884 lung cells from 166 samples and 
107 subjects. Gene expression is subset to 2,000 selected genes, which 
we used for model training. Different levels of cell type annotation and 
sample and patient metadata are curated and available.

PBMC atlas. The atlas contains 7,800,850 PBMC cells from 2,375 sam-
ples, representing cells from 25 datasets, 1,977 healthy or diseased 
donors. For model training and analysis, 10,000 HVGs were selected. 
A coarse annotation consisting of 14 cell types was used for initializing 
scPoli’s prototypes. The data and metadata were curated by scientists at 
the Chan-Zuckerberg Initiative and collected from refs. 19,35,43,45–61.

Schulte-Schrepping et al. dataset. This is a published35 PBMC dataset 
of 65 patients with COVID-19 and healthy controls. The dataset contains 
99 samples and 222,003 cells, and was downloaded as part of the Fred-
hutch COVID-19 collection available at ref. 62. For model training and 
analysis 4,000 HVGs were used.

Su et al. dataset. This is a published34 PBMC dataset of 129 COVID-19 
patients and 16 healthy controls. The dataset contains 270 samples and 
559,517 cells, and was downloaded as part of the Fredhutch COVID-19 
collection available at ref. 62. For model training and analysis 2,000 
HVGs were used.

Cross-species dataset. These data consist of the transcriptomics pro-
filing of the primary motor cortex of 305,638 single nuclei in humans, 
marmoset monkeys and mice36. The dataset was downloaded from 
ref. 63, which contains expression profiles based on the one-to-one 
orthologs (15,860 genes in total) defined in the three species. A total 
of 2,000 HVGs were selected on the basis of the reference datasets.

scATAC-seq dataset. We obtained the scATAC-seq data from ref. 64. 
The data were published for the NeurIPS 2021 competition on multi-
modal single-cell integration. We isolated only the ATAC features and 
trained the model on those. We filtered peaks that were detected on 
less than 5% of cells. After these preprocessing steps the data consisted 
of 69,249 cells and 16,134 features.

Benchmark datasets
All datasets used for benchmarking were obtained from ref. 65 unless 
specified otherwise. Count data were used for all datasets.

Immune. The immune PBMC dataset used for benchmarking was 
obtained from refs. 6,66. The dataset contains 32,484 cells from 4 
studies and 16 cell types. The data was subset to the 4,000 most highly 
variable genes before further analysis.

Pancreas. The data contain 16,382 pancreas cells from 8 different 
batches. The cells are annotated and assigned to 14 cell types. A total 
of 4,000 HVGs were used for model training and analysis.
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Brain. The mouse brain dataset consists of 332,129 cells and 4 batches. 
Ten cell types are present. The data were subset to the 4,000 most 
highly variable genes before further analysis.

Endocrine. The data consist of 25,919 cells in 4 batches and 14 cell types. 
A total of 4,000 highly variable genes were selected for downstream 
analyses.

Tumor. The tumor atlas was obtained from refs. 67,68. The dataset is 
a collection of 14 studies on various types of cancer. It contains 317,111 
cells annotated in 25 cell types. We selected 4,000 HVGs for model 
training.

Lung. The lung data were obtained from refs. 6,66. These data consist 
of 32,472 lung cells from 3 batches and 17 cell types. A total of 4,000 
HVGs were used for model training.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All datasets analyzed in this manuscript are public and have been pub-
lished in other papers. We have referenced them in the manuscript and, 
when necessary, made them available at http://github.com/theislab/
scPoli_reproduce.

Code availability
The software is available as part of https://scarches.readthedocs.io. 
The code used to generate the results is available at http://github.com/
theislab/scPoli_reproduce.
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