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A B S T R A C T

CAR T cells are genetically modified T cells that target specific epitopes. CAR T cell therapy has proven effective 
in difficult-to-treat B cell cancers and is now expanding into hematology and solid tumors. To date, approved 
CAR therapies target only two specific epitopes on cancer cells. Identifying more suitable targets is challenged by 
the lack of truly cancer-specific structures and the potential for on-target off-tumor toxicity.

We analyzed gene expression of potential targets in single-cell data from cancer and healthy tissues. Because 
safety and efficacy can ultimately only be defined clinically, we selected approved and investigational targets for 
which clinical trail data are available. We generated atlases using >300,000 cells from 48 patients with follicular 
lymphoma, multiple myeloma, and B-cell acute lymphoblastic leukemia, and integrated over 3 million cells from 
35 healthy tissues, harmonizing datasets from over 300 donors. To contextualize findings, we compared target 
expression patterns with outcome data from clinical trials, linking target profiles to efficacy and toxicity, and 
ranked 15 investigational targets based on their similarity to approved ones. Target expression did not signifi-
cantly correlate with reported clinical toxicities in patients undergoing therapy. This may be attributed to the 
intricate interplay of patient-specific variables, the limited amount of metadata, and the complexity underlying 
toxicity. Nevertheless, our study serves as a resource for retrospective and prospective target evaluation to 
improve the safety and efficacy of CAR therapies.

1. Introduction

Chimeric antigen receptors (CARs) are fully synthetic receptors that 
endow immune cells, typically T cells, with targeting and lytic abilities 
towards desired target cells [1]. CAR-T cell therapy has emerged as a 
highly dynamic and promising approach in oncology. The field has 
witnessed rapid breakthroughs, including the first successful clinical 
trials in patients with refractory B-ALL in 2012, the landmark FDA 
approval of Kymriah in 2017 for pediatric and young adult patients with 
relapsed or refractory B-ALL, and the subsequent expansion of CAR-T 

therapy to diffuse large B-cell lymphoma (DLBCL) and other B-cell 
malignancies [1–3]. Based on unprecedented response rates and their 
curative potential, CARs against CD19 and BCMA have been approved in 
various B cell malignancies and are thus part of the standard of care for 
these diseases. There have been efforts to move CARs into other hema-
tological malignancies and, especially, solid tumors, with limited suc-
cess so far [4,5].

However, despite these advancements, CAR-T therapy is also 
accompanied by significant controversies and challenges, including se-
vere toxicities, limited success in solid tumors, and issues related to 
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target selection and persistence. A major determinant of CAR therapy 
safety and efficacy is the target choice. The ideal target is ubiquitously 
expressed on cancer cells and not expressed at all in healthy tissues [6,
7]. In reality, these characteristics rarely apply and target expression is 
often shared with other cells and tissues. Such "on-target off-tumor” 
effects [6] can result in a range of sometimes severe and potentially 
life-threatening consequences, including cytokine release syndrome 
(CRS), neurotoxicity, hematotoxicity, and serious organ damage [6,8]. 
Recent studies have advanced our understanding of CAR-associated 
toxicities, including CRS and immune effector cell-associated neuro-
toxicity syndrome (ICANS), by providing frameworks for mitigation and 
predictive strategies [9]. Majzner & Mackall [10] emphasized diffi-
culties in antigen selection and immune escape mechanisms, while 
Fesnak et al. [11] explored engineering variability, challenges in 
non-B-cell malignancies and solid tumors and its impact on therapeutic 
outcomes.

Furthermore, as highlighted by Ghaffari et al. [12], transcriptomic 
and epigenomic analyses offer crucial insights into prioritizing targets 
with high clinical potential while minimizing safety risks, particularly in 
solid tumors. Huang et al. [13] demonstrated the utility of scRNA-Seq in 
identifying transcriptional profiles associated with CAR T cell exhaus-
tion and variability in therapeutic response, providing a foundation for 
improved patient stratification and CAR engineering.

Anti-CD19 CAR T cells, for example, can result in CRS, neurotoxicity, 
and hematotoxicity [14,15], which has been partially linked to target 
co-expression and target availability [5,6]. Importantly, these are 
retrospective findings from the perspective of product development, 
which were discovered only after inception of said treatments in the 
clinic and turned out to be clinically manageable to a large extent [6,
16]. In other cases, however, CAR-induced toxicity might be less 
manageable or even fatal. Examples include CAIX-targeting CAR T cells 
used to treat renal cell carcinoma that caused hepatobiliary toxicity, 
most likely due to shared CAIX expression on the biliary epithelium [17,
18]. Fatal cardiorespiratory failure in a colorectal cancer patient upon 
treatment with CAR T cells targeting HER2 was potentially caused due 
to reactivity against pulmonary and cardiac tissue [4,19]. This un-
derscores the need for a strategic evaluation of investigational targets, 
prioritizing those with clear clinical potential. Thus, a better a priori 
understanding of CAR target expression could help mitigate risk and 
prioritize approaches with higher potential for efficacy with controllable 
safety.

The widespread adoption of single-cell transcriptomics (scRNA-Seq) 
has revolutionized our understanding of cellular biology and provides 
unprecedented insights into gene expression [20–22]. Global endeavors 
such as the Human Cell Atlas (HCA) [23] and the Human BioMolecular 
Atlas Program (HuBMAP) [24] create comprehensive large-scale sin-
gle-cell atlases that provide a unique window into tissue heterogeneity. 
Demonstrating the power of scRNA-Seq data to assess safety properties 
of CAR targets, Parker et al. [25] have linked neurotoxicity of 
CD19-targeting CAR T cells with CD19 expression in a small population 
of brain mural cells that maintain blood-brain-barrier permeability. 
Similarly, neurotoxicity in a patient suffering from multiple myeloma 
treated with BCMA-directed CAR T cells was associated with BCMA 
expression in the caudate nucleus of healthy human brain tissue [26].

These previous studies have predominantly focused on exploring a 
specific subset of cells expressing the target of interest [25,26]. How-
ever, with the rapid increase in clinical trials and the consequent 
expansion of CAR target sets, a comprehensive analysis of the global 
expression profiles of CAR targets in both healthy and malignant tissues 
becomes possible [27,28]. Zhang et al. [28] have provided insights into 
target antigen expression across tissues to elucidate toxicity mecha-
nisms. Similarly, Jing et al. [29] examined normal tissue expression 
patterns to predict off-tumor toxicity risks. Building upon these efforts, 
our study integrates transcriptomic data from both healthy and malig-
nant tissues with clinical trial outcomes, offering a broader framework 
for understanding CAR T cell efficacy and toxicity correlations.

To that end, we compile targets that are currently tested in clinical 
trials in (hemato-) oncology with FDA-approval for CAR T cell therapy. 
We then examine global gene expression profiles of CAR targets across 
respective tumor and healthy tissues, quantify their similarity to 
approved targets, and link them with clinical outcome data from pa-
tients who underwent CAR T cell therapy.

Our work aims to provide a comprehensive atlas as a resource for 
both clinical and translational research. While our study cannot estab-
lish direct mechanistic insights into CAR therapy limitations, it consol-
idates key data on target expression and toxicity profiles, enabling future 
work to refine target selection and mitigate risks. This underscores the 
essential role of single-cell transcriptomic analyses in driving future 
strategies in CAR T cell therapy.

2. Results

2.1. Compilation of approved and investigational CAR targets

To investigate whether the observed efficacy and toxicity of CARs 
could be explained by global target expression profiles, we first 
compiled a list of approved and investigational CAR targets across 
clinical trials (Fig. 1a). As of February 2023, there are a total of six FDA 
approved CAR T cell therapies, all utilizing CD19 or BCMA as targets to 
treat patients suffering from follicular lymphoma, multiple myeloma, B- 
cell acute lymphoblastic leukemia, large B cell lymphoma, diffuse large 
B cell lymphoma, mantle cell lymphoma, primary mediastinal B cell 
lymphoma, and high-grade B cell lymphoma (Table S1). By screening 
current clinical trials (www.clinicaltrials.gov) and literature, we accu-
mulated a list of in total 15 investigational targets from clinical trials for 
the same malignancies (Fig. 1a–Table S2).

2.2. Screening of clinical trials for patient outcome data after CAR T cell 
therapy

With the accumulation of clinical trials, a body of CAR T therapy 
outcome data has begun to emerge. These data have the potential to 
provide a better understanding of the intricate relationship between 
molecular characteristics, treatment response and toxicity, and poten-
tially identify key factors that influence therapeutic success. We there-
fore conducted a comprehensive screening of clinical trials involving 
CAR T cell therapy that reported patient outcome data (Table S3). For 
each study, we extracted the number of patients with evidence of pro-
gressive disease, stable disease, partial response, and complete response, 
which was used to calculate the overall response rate by dividing the 
number of patients with a partial or complete response by the total 
number of patients in the study. The data obtained presents a highly 
heterogeneous profile with respect to response rates and observed 
adverse effects across different targets and malignancies (Fig. 1b–e). 
CAR T cell therapies targeting CS1 resulted in lower overall response 
rates compared to other targets. Patients who received CD19-directed 
CAR T cells had relatively low levels of hematotoxicity (Fig. 1c), while 
showing the highest incidence of neurotoxicity (Fig. 1d). Hematotox-
icity was most commonly observed in patients treated with CARs tar-
geting CD22, CS1, and GPRC5D (Fig. 1c). Cytokine release syndrome 
(CRS) rates (grade 1/2) and severe CRS rates (grade 3/4) showed similar 
patterns across targets, with no discernible trend towards a given target 
(Fig. 1e).

2.3. Tumor expression profiles of CAR targets for the treatment of 
follicular lymphoma, multiple myeloma and B-cell acute lymphoblastic 
leukemia

The success of CAR T cell therapy is highly dependent on the precise 
recognition of tumor-specific targets, enabling the subsequent elimina-
tion of cancer cells while minimizing damage to healthy tissue. How-
ever, if the target is expressed at only very low levels, CAR T cells may 
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fail to recognize and eliminate malignant cells. Achieving target selec-
tivity is therefore critical to reducing side effects and improving the 
overall safety of the therapy. Therefore, it is essential to thoroughly 
evaluate expression levels and target density (i.e., the number of cells 
expressing a target above a threshold level) on malignant cells prior to 
administering CAR T cell therapy. To that end, we generated a large- 
scale single cell transcriptional atlas using three single-cell gene 
expression (scRNA-Seq) datasets with 303,190 cells from follicular 
lymphoma (FL), multiple myeloma (MM) and B-cell acute lymphoblastic 
leukemia (B-ALL) tumors [30–32] and analyzed expression levels of 
approved and investigational targets for the treatment of these malig-
nancies (Fig. 2, Fig. S1, Table S4). For the other five B cell lymphomas 
mentioned above, we screened target expression across healthy cell 
populations, as there is currently no scRNA-Seq data available.

For follicular lymphoma, one approved product targets CD19 

(Table S1), and two alternative targets are currently investigated in 
clinical trials: MS4A1 (from here on referred to as CD20) and CD22 
(Table S2). Expression of these targets in 63,136 single cells [32] was 
confined to malignant B cell lymphoma cells, and non-malignant B cells 
and plasma cells, with differences in target density and mean expression 
(Fig. 2a, Fig. S1a–b). The two investigational targets were ordered ac-
cording to their smallest Euclidean distance in gene expression space to 
the approved target CD19. The global expression pattern of CD22 was 
closest to CD19, as CD20 was also expressed on erythroid cell types 
(Fig. 2a, Fig. S1a–b).

For multiple myeloma, BCMA is currently the only target for two 
FDA approved CAR T cell products (Table S1), but we identified eight 
additional investigational targets in clinical trials (Table S2). CAR tar-
gets for the treatment of multiple myeloma were overall highly 
expressed on tumor cells and much less on healthy cells of the 212,400 

Fig. 1. Patient outcome data following CAR T cell therapies show high response rates, but also high toxicity rates. 
a) A list of approved and investigational CAR targets was compiled from literature, FDA data and clinical trials, and expert knowledge. Clinical data provided insights 
into the efficacy (overall response rate) and safety (neurotoxicity, cytokine release syndrome (CRS), hematotoxicity) of CAR T cell therapy. Gene expression of CAR 
targets from clinical trials was evaluated computationally on atlases with over 3 million single cells from malignant and healthy tissues. b) High overall response rate 
(77 % on average), calculated by dividing the number of patients exhibiting partial or complete response by the total number of patients involved in the study 
following CAR T cell therapy, for five targets (approved targets CD19 and BCMA, investigational targets GPRC5D, CS1, and CD22) and nine treated malignancies. c-e) 
A considerable percentage of patients show signs of hematotoxicity (15 % on average) (c), neurotoxicity (26 %) (d), CRS (75 % defined as stages 1 and 2) and severe 
CRS (14 % defined as stages 3 and 4) (e). Each dot represents one clinical study, bars represent 25/75 quantile, whiskers extend to the furthest data point except 
for outliers.
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single cell dataset of Tirier et al. [30] (Fig. 2b, Fig. S1c–d). BCMA, SDC1, 
and SLAMF7 (from here on referred to as CS1) were observed to be 
co-expressed on plasma or B cells, yet were also found to be highly 
expressed on tumor cells (Fig. 2b, Fig. S1c–d). KLRK1 (from here on 
referred to as NKG2D) showed very little overall expression across tumor 
and healthy cell populations. Investigational targets were ordered ac-
cording to their smallest Euclidean distance in gene expression space to 
the approved target BCMA. In terms of global expression pattern, SDC1 
was most similar to BCMA.

In the case of B-cell acute lymphoblastic leukemia, while CD19 re-
mains the sole FDA-approved CAR T cell therapy target, we here 
explored five additional investigational targets to expand the thera-
peutic spectrum. (Table S1, Table S2). Investigational targets demon-
strated only moderate expression levels within malignant cells (Fig. 2c, 
Fig. S1e–f). CD123 was closest to BCMA in terms of its global expression 
pattern (Fig. 2c, Fig. S1e–f), but exhibits some on-target off-tumor 
expression. CD19, IL3RA (from here on referred to as CD123), CD22, 
and BAFFR were expressed on both malignant and healthy cells 
belonging to the B cell lineage. Conversely, CD20 exhibited elevated 
expression levels within healthy cells of the B cell lineage but compar-
atively lower expression levels within malignant cells of the same 

lineage. Investigational targets were ordered according to their smallest 
Euclidean distance in gene expression space to the approved target 
CD19. In terms of global expression pattern, CD123 was most similar to 
CD19.

Patient eligibility for CAR T cell therapy is often determined based on 
the expression of the target. We therefore evaluated target expression in 
individual patients suffering from follicular lymphoma, multiple 
myeloma and B-cell acute lymphoblastic leukemia (Fig. 2d–f). All tar-
gets employed in follicular lymphoma and multiple myeloma treatment 
consistently exhibited high expression levels in malignant cells across 20 
follicular lymphoma patients (Fig. 2d) and 20 multiple myeloma pa-
tients (Fig. 2e). Notably in multiple myeloma, CD19, NKG2D, and CD56 
lacked a consistently high target density across all patients (Fig. 2e). For 
targets related to B-cell acute lymphoblastic leukemia treatment, target 
densities were generally low (Fig. 2f). While CD19, CD123, BAFFR, and 
CD22 were expressed across all or most patients at least slightly, ROR1 
and CD20 were hardly expressed at all (Fig. 2f).

Based on the expression of targets across malignant cells in follicular 
lymphoma, multiple myeloma, and B-cell acute lymphoblastic leukemia 
samples, we visualized distance and similarity between approved and 
investigational targets in PCA space. Target distances in PCA space were 

Fig. 2. CAR target expression on single malignant and healthy cells of patients suffering from follicular lymphoma (FL), multiple myeloma (MM) and 
acute lymphoblastic leukemia (B-ALL). 
a,b,c) Variable expression of CAR targets on tumor and healthy cells for FL (a), MM (b) and B-ALL (c). Dot size indicates the fraction of cells per cell type expressing a 
target, color intensity shows mean normalized gene expression per cell type. FDA-approved targets (CD19 and BCMA) are underlined. Targets were ordered according 
to their similarity to approved targets by calculating the Euclidean distance in normalized gene expression space. d,e,f) Patient wise expression of CAR targets on 
healthy and malignant cells for FL (d), MM (e), and B-ALL (f). Due to poor sequencing depth, target densities in B-ALL data were generally low. g,h,i) Gene 
expression similarity on malignant cells for FL (g), MM (h) and B-ALL (i) targets in the first two principal components PC1 and PC2. j) Overall response rates in 
patients (calculated by dividing the number of patients exhibiting partial or complete response by the total number of patients involved in the study) seems un-
correlated to mean CAR target frequency of malignant cells per patient. Since target densities in B-ALL data were generally low, B-ALL targets were excluded.
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comparable to target similarities according to Euclidean distance. After 
dimension reduction, the targets for follicular lymphoma (CD19, CD22, 
and CD22) appear similarly distant to each other (Fig. 2g). For multiple 
myeloma, seven investigational targets cluster, albeit without strong 
proximity to the approved BCMA (Fig. 2h). For B-ALL, CD19 appears 
distant from targets in trials (Fig. 2i). Upon investigating the interplay 
between CAR target expression profiles and patient outcome, we noted a 
uniform distribution of points across both axes with no clear correlation 
between the mean frequency of target gene expression on malignant 
cells per patient and the observed overall response rate (Fig. 2j).

2.4. CAR target expression across healthy cell populations

CAR T cells are designed to recognize and attack cells that express the 
target antigen upon infusion into patients. However, there is a risk of 
unintended damage if the target is also expressed on healthy cells. This 
may result in unwanted toxicity, especially if the target is located in vital 
organs or tissues [6]. To investigate the potential association between 
expression of CAR targets in healthy cell populations and observed 
adverse on-target off-tumor effects, we screened 32 scRNA-Seq datasets 
spanning a total of 3,629,817 single cells and 35 healthy tissues across 
the human body [33–63] (Fig. 3, Fig. S2a, Table S4). Targets were 
grouped according to availability of clinical data and ordered according 
to their smallest average Euclidean distance to approved targets in gene 
expression space across all cell populations and tissues (see Methods for 
details).

Expression of the approved targets CD19 and BCMA was high in B 
cells or cells of the B cell lineage, such as plasma cells (Fig. 3). For three 
more targets, clinical data is available: The investigational target 
GPRC5D exhibited the closest global expression pattern to CD19 and 
BCMA, although with lower overall expression levels (Fig. 3). In 
particular, GPRC5D showed overall low expression in brain cell pop-
ulations, including astrocytes, microglial cells, and neurons (Fig. 3b). 
CD22 expression was mostly confined to B cells, but was also present in 
brain oligodendrocytes (Fig. 3b) and myeloid cells, such as basophils or 
mast cells (Fig. 3c and d). CS1 demonstrated a broader expression 
pattern across immune cells in multiple tissues, including T cells, NK 
cells, and myeloid cells in lung, lymph nodes, and spleen (Fig. 3c–e).

For targets without patient outcome data from clinical trials, CD20 
was most similar to CD19 and BCMA and was expressed in cells of the B 
cell lineage, such as B cells and plasma cells, and in a narrow range of 
immune cells, particularly monocytes (Fig. 3). SDC1 expression was 
predominantly restricted to plasma cells, but could also be detected in 
specific cell populations of the liver (Fig. 3g) and kidney (Fig. 3h). CD56 
was expressed in endothelial cells (Fig. 3a) and showed high expression 
in various brain cell types, including astrocytes, cerebellar epithelial 
cells, microglial cells, neurons, and oligodendrocytes (Fig. 3b). CD38 
was observed across a broad spectrum of immune cell types, including 
lymphatic endothelial cells, innate lymphoid cells, T cells, and NK cells, 
but also in astrocytes, neurons, and pericytes (Fig. 3b–f). CD123 was 
predominantly expressed in monocytes, macrophages, dendritic cells, 
and mast cells but also exhibited expression in neurons (Fig. 3b). NKG2D 
expression was limited to a narrow range of immune cells, including T 
cells and NK cells (Fig. 3a). CD44 displayed a broad expression pattern 
across screened tissues (Fig. 3). ROR1 exhibited a narrow expression 
pattern across immune cells but was highly expressed in vital cell types 
of the brain, including astrocytes, neurons, oligodendrocytes, microglia, 
and was also expressed in cardiomyocytes of the heart (Fig. 3b–f). 
BAFFR expression was mainly confined to B cells and plasma cells 
(Fig. 3). CD137 showed low expression levels across immune cell types 
from multiple tissues, primarily lymphocytes and lymphatic endothelial 
cells (Fig. 3a–h). CD30 expression was confined to a narrow range of 
immune cells, but was also expressed in various brain cell types, such as 
astrocytes, microglial cells, and neurons (Fig. 3b). Based on Euclidean 
distance to approved targets in gene expression space across all screened 
cell populations and tissues (see Fig. S2a), CD79A showed the least 

similar expression pattern to approved targets and was predominantly 
restricted to B cells and plasma cells (Fig. 3a–h).

We visualized distance and similarity between approved and inves-
tigational targets additionally in a two-dimensional PCA space 
(Fig. S2b). A substantial proportion of the targets exhibited notable 
proximity, indicating their similarity in expression patterns. The genes 
CD56, ROR1, CD38, CD44, and CD79A stood out by exhibiting consid-
erable separation from the rest of the target set, signifying pronounced 
dissimilar expression patterns and a higher potential for undesired ef-
fects (Fig. S2b).

2.5. The impact of CAR target expression for efficacy and toxicity 
estimation

Naively, target gene expression in healthy tissue is expected to 
impact on-target off-tumor effects and therapy toxicity [25,26]. While 
some association between target expression on HSPCs and hematotox-
icity (Fig. S2d) as well as target expression on immune cells in the lymph 
nodes and CRS (Fig. S2h, rightmost plot) seems plausible, our analysis 
did not reveal any significant correlation between global CAR target 
expression profiles and reported clinical toxicity effects (all Pearson 
correlations had Bonferroni-adjusted p-values above 0.05). When 
assessing hematotoxicity (Fig. S2c–f), neurotoxicity (Fig. S2g), and CRS 
(Fig. S2h), we observed an overall heterogeneous pattern between 
scRNA-Seq profiles and the occurrence of toxicity.

3. Discussion

CAR T cell therapy is a powerful approach for the treatment of 
relapsed or refractory B cell malignancies [64–66]. Despite clinical 
success, a wider application is hindered by considerable and often 
life-threatening adverse effects, such as on-target, off-tumor toxicities 
[8], which have been shown for a number of CARs [25,67–71], posing 
significant challenges to broad clinical application. Therefore, careful 
target selection and analysis of safety and potential risks is essential 
before initiating clinical testing.

We provide a comprehensive review of current targets from reported 
clinical trials in malignancies with FDA approval for CAR T cell therapy. 
Additionally, we screened clinical trials to generate patient outcome 
data following administered CAR T cell therapies. We interpreted 
observed toxicity effects in conjunction with global target expression 
profiles by generating a transcriptional landscape of more than 300,000 
cells across follicular lymphoma, multiple myeloma, and B-cell acute 
lymphoblastic leukemia, as well over 3 million cells across 35 healthy 
tissues and more than 300 donors.

While our findings provide valuable insights into CAR T cell target 
expression, several effects warrant further investigation. Differences in 
response rates may stem from antigen heterogeneity, microenviron-
mental factors, and antigen density variability, while the limited cor-
relation between target expression and toxicity likely reflects the 
influence of systemic immune activation and cytokine cascades. Addi-
tionally, high incidence of cytokine release syndrome (CRS) highlights 
the predominant role of global immune dynamics over target-specific 
expression.

Findings in tumor immunology underscores the importance of im-
mune cell exhaustion, regulatory T cells (Tregs), and tumor microenvi-
ronment dynamics in shaping immune responses and toxicity outcomes, 
with recent studies suggesting that immune suppression driven by Tregs 
and tumor-associated macrophages (TAMs) can modulate CAR T cell 
efficacy and toxicity, potentially influencing the relationship between 
target gene expression and clinical outcomes [72,73]. Consistent with 
these observations, longitudinal data from CAR T cell therapies indicate 
that CD19-targeted therapies induce durable remissions with minimal 
long-term toxicity in certain subsets of patients, whereas BCMA-targeted 
CAR T cells show shorter-lived remissions. These insights highlight the 
need for refined target selection and therapy optimization by integrating 
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Fig. 3. Gene expression screening of approved and investigational CAR targets on a healthy transcriptional atlas reveals widespread on-target, off-tumor 
expression. 
a) Expression of CAR targets with (top) and without (bottom) clinical data on pooled immune cells from all healthy tissues (left), bone marrow (middle) and blood 
(right). Approved targets CD19 and BCMA are underlined. b) Expression of CAR targets across brain (b), lung (c), lymph nodes (d), spleen (e), heart (f), liver (g) and 
kidney (h) tissues. Dot size indicates the fraction of cells per cell type expressing a target, color intensity shows mean normalized gene expression per cell type. 
Targets with and without clinical data were respectively ordered according to their smallest Euclidean distance in gene expression space to the approved targets.
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single-cell transcriptomic data with detailed clinical metadata to better 
link profiles with outcomes.

We are not the first to utilize scRNA-Seq for assessing the potential of 
on-target off-tumor toxicities in CAR T cell therapy. However, previous 
approaches either did not take target expression levels into account 
[27], lacked gene expression analysis of tumor data [25–28], were 
limited to a few tissues [28], or focused entirely on a specific subset of 
cells expressing the target of interest [25,26]. Our study thus provides 
the first comprehensive global analysis of CAR target expression in 
tumor and healthy tissues and compares these results with clinical pa-
tient outcome data.

Unfortunately, scRNA-Seq data is not available for all malignancies 
with FDA approval for CAR T cell therapy, most likely due to distortions 
during the single cell dissociation step in the sampling process [74,75].

Our findings, including those reported in previous work [76], sug-
gest that target expression patterns offer initial insights into patient 
selection and therapeutic potential. However, significant heterogeneity 
in publicly available sequencing datasets limits the ability to translate 
these findings into actionable recommendations for clinicians. Larger 
datasets with more diverse patient representation and integrated clinical 
metadata will be essential for deriving metrics that reliably inform pa-
tient stratification and therapy outcomes. As of now, the most value of 
our study comes from the ability to spot potential off-tumor areas of 
toxicity.

Our analysis might also be limited by the sequencing-induced 3′ bias 
of the chosen public data that may lead to an incomplete characteriza-
tion of isoforms [77,78]. For example, we were only able to detect the 
gene CD44, which shows a high expression pattern across a multitude of 
cell types, rather than specific CD44 isoforms, such as CD44v6, which is 
specifically implicated in tumor progression and metastasis [79–81]. To 
address this, complementary approaches, including full-length tran-
script sequencing (e.g., Smart-Seq3) and long-read sequencing tech-
nologies, are needed to capture isoform-specific expression patterns. 
Furthermore, proteomic validation of isoform expression on the protein 
level could provide additional translational insights. Also, while 
scRNA-Seq undoubtedly has great potential to benefit CAR T research 
[76], it is possible that gene expression results may not always correlate 
with protein expression. To overcome this limitation, large-scale protein 
expression screening data may be necessary, which we expect to become 
accessible in the coming years.

Notably, the full extent of potential risks associated with off-tumor 
activity of CAR T cells is still not well understood [82]. Therefore, our 
study does not aim to evaluate the relative merits or shortcomings of any 
given CAR target, it merely provides a way to identify potential 
off-tumor activity and guide the selection of CAR targets before trans-
lation into clinics.

The lack of a significant correlation between global scRNA-Seq 
profiles of targets and clinically reported toxicity is not entirely unex-
pected, considering the complex nature of toxicity effects and our 
limited understanding of their emergence. Hematotoxicity, neurotox-
icity, and cytokine release syndrome associated with CAR T cell therapy 
are multifactorial in nature, influenced by various factors such as im-
mune system activation, cytokine dysregulation, and interactions with 
the tumor microenvironment [6,16]. Our findings highlight that the 
presence of target mRNA expression alone is not a definitive indicator of 
toxicity, as evident from CSF1R, which was strongly expressed in 
microglia cells but did not result in observed toxicity upon CAR devel-
opment [76]. This highlights the complexity of correlating gene 
expression with clinical outcomes and the necessity for multi-faceted 
analytical approaches. In a recent study [83], infections (non-target 
toxicity) were identified as a significant cause of non-relapse mortality 
post-CAR-T therapy, constituting 47.6 % of such deaths. The observed 
toxicities in CAR-T therapy therefore might not always be linked to the 
global expression of target genes in healthy cells, suggesting a more 
complex interplay. Further investigation into downstream immune re-
sponses is essential to fully understand these dynamics.

Although direct correlations between scRNA-Seq target expression 
patterns and clinical toxicity are complex, our comprehensive analysis 
provides a foundational understanding for further clinical research. 
While not providing a direct link between CAR target expression in 
healthy tissues and risk for clinical toxicity, it will serve as a valuable 
resource to assess potential off-tumor activity and guide the selection of 
CAR targets before translation into clinics.

Future clinical trials must focus on integrating single-cell tran-
scriptomic profiling at key stages, e.g. during selection, therapy, and in 
follow-up, while ensuring the collection of comprehensive and stan-
dardized clinical metadata that is critical to assess the predictive value of 
transcriptomic data for therapy outcomes and toxicity. With the growing 
complexity of multidimensional datasets, systematic evaluation of 
integration methods is becoming increasingly important and highly 
warranted before clinical decision-making. In this study, we selected the 
scVI algorithm based on its benchmarking performance [84].

Looking ahead, continued accumulation of scRNA-Seq data from 
patients, along with increasing availability of clinical toxicity data, will 
play a crucial role in enhancing our understanding of toxicities associ-
ated with CAR-T cell therapy.

Early identification of potential safety concerns associated with CAR 
T cell therapy will facilitate a safer and more efficient treatment 
development. The careful assessment and monitoring of specific cell 
populations during therapy will help to ultimately gain a better under-
standing of potential risks and benefits of novel CAR T targets.

4. Methods

4.1. Collection of CAR target antigens

CAR target antigens with FDA approval were obtained from the 
website www.fda.gov. For antigens in clinical trials (“Early Phase 1, 
Phase 1, Phase 2, Phase 3, Phase 4, Not Applicable”) as of February 
2023, we screened www.clinicalTrials.gov, applying the search criteria 
of the intervention/treatment: “CAR T Cell Therapy, CAR T, CAR” to 
various malignancies. See Table S1 and Table S2 for further details and 
an overview of these target antigens.

4.2. Screening clinical trials for patient outcome data

We obtained a list of ongoing clinical trials utilizing CAR T cell 
therapy as of March 2023 by thoroughly examining the websites https:// 
clinicaltrials.gov/ (search criteria: “car-t” or “chimeric antigen recep-
tor”, filtering by completed and terminated trials) and https://pubmed. 
ncbi.nlm.nih.gov/(search criteria: “car-t” or “chimeric antigen recep-
tor”, filtering by clinical trials). Papers of respective clinical studies were 
obtained from PubMed and were manually screened to extract the 
clinical trial identifier, which was then used to eliminate duplicates. As 
the focus of our study was to evaluate the efficacy of different CAR T cell 
products, we selected trials evaluating CAR T products and excluded any 
differing studies. All trials were screened by two independent in-
dividuals to avoid human error. Subsequently, these trials were carefully 
assessed to acquire detailed information of the CAR target and reported 
efficacy (number of patients exhibiting partial or complete response and 
patient death) and toxicity (number of patients displaying signs of 
hematotoxicity, neurotoxicity, or CRS and patient death) data of pa-
tients. To define hematotoxicity, we extended our analysis beyond the 
conventional Immune Effector Cell-Associated Hematotoxicity (ICAHT) 
grading by incorporating additional hematological parameters such as 
anemia, lymphopenia, thrombocytopenia, infections, and leukopenia, 
which may provide a more nuanced understanding of the overall 
toxicity profile. The overall response rate was determined by dividing 
the number of patients exhibiting partial or complete response by the 
total number of patients involved in the study. For CRS, mild stages 1 
and 2 were defined as "CRS," while severe stages 3 and 4 were classified 
as "severe CRS". The list of clinical trials with reported patient outcomes 
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is shown in Table S3.

4.3. Single-cell transcriptome analysis

All preprocessing and analysis steps of scRNA-Seq data were run in 
python 3 using Scanpy [85] v.1.4.6 to 1.6.1 and anndata [86] v.0.7.1 to 
0.7.5 except stated otherwise. All scRNA-Seq figures were plotted using 
matplotlib and seaborn.

4.3.1. Preprocessing publicly available scRNA-Seq data of healthy and 
malignant cells

We obtained raw, annotated count data for cells of healthy and 
malignant tissues using the python-based data repository sfaira [87] and 
cellxgene (https://cellxgene.cziscience.com). To ensure consistency and 
mitigate sequencing biases, 28 out of 35 data collections generated using 
3′ sequencing platforms (e.g., 10X Chromium) were included, thereby 
avoiding variability introduced by mixing full-length and 3′ sequencing 
methods. An overview of used scRNA-Seq datasets can be found in 
Table S4. Count data was converted to the anndata format, if necessary. 
To quantitatively analyze the expression of CAR target antigens across 
tissues, comparable preprocessing steps were carried out for each 
dataset separately. Barcodes were filtered for each sample to retain 
high-quality cells, defined based on the distribution of UMI counts, gene 
expression, and mitochondrial content, with specific thresholds deter-
mined after manual quality control (QC) and visual inspection.

Respective filtering thresholds were defined after visual inspection of 
each sample (for exact threshold values, see code provided on GitHub). 
Cells with more than 20 % of mitochondrial-encoded genes, indicating 
dying or stressed cells, were excluded after threshold validation through 
manual QC.

Genes that were detected in less than 20 cells per datasets were 
excluded for further analysis. UMI counts of each cell were normalized 
using the SCRAN algorithm as implemented in the R-based package [88,
89]. Briefly, size factors that correlate with the amount of counts of 
captured cells were estimated by preliminarily clustering the data using 
the Louvain algorithm implemented in Scanpy with a resolution of 0.5 
before running ComputeSumFactors (min.mean = 0.1). The estimated 
size factors were then used for cell normalization. Finally, the data was 
log-transformed (log(count+1)).

4.3.2. Feature selection and target antigen expression analysis
The top 4000 variable genes were identified based on normalized 

dispersion as described previously [77] using Scanpy’s pp.high-
ly_variable_genes with flavor = cell_ranger. Briefly, genes were ordered 
along their mean expression in several bins. For each bin, genes with the 
highest variance-to-mean ratio were selected as highly variable. To 
efficiently capture the underlying data structure in two dimensions, 
principal component analysis (PCA) dimension reduction was carried 
out by computing 15 principal components on highly variable genes 
using Scanpy’s pp.pca. Next, a neighborhood graph was computed on 
the first 50 principal components using Scanpy’s pp.neighbors with 15 
neighbors. For 2D visualization, embedding the neighborhood graph via 
UMAP [90] was done by running Scanpy’s tl.umap with an effective 
minimum distance between embedded points of 0.5. Cell annotation 
labels were provided by the authors of the respective study and were 
carefully inspected and relabeled if necessary to facilitate global com-
parisons of cell populations (see Table S4 for details). To account for 
technical batch effects, such as sequencing depth or library preparation 
between datasets, we used scVI (Single-cell Variational Inference) [91] 
to integrate datasets of respective healthy tissues in an organ-wise 
fashion. Integration was not performed across distinct malignancies to 
preserve the integrity of disease-specific biological features. This 
approach ensures that biological variation specific to a condition re-
mains intact, while minimizing potential artifacts that could arise from 
aligning datasets with inherently different biological contexts. The scVI 
method was chosen due to its demonstrated efficacy in benchmarking 

studies, where it excelled in addressing complex integration challenges 
in single-cell datasets [84].

4.3.3. Reference mapping and label transfer of B-cell acute lymphoblastic 
leukemia data

To obtain reliable cell annotations, we mapped raw count data of 
unlabeled B-cell acute lymphoblastic leukemia cells [31] to an anno-
tated reference of fetal bone marrow cells [92] using the 
semi-supervised variational auto-encoder model scANVI [93]. Briefly, 
the SCVI Model was trained on the raw, annotated reference data with 2 
hidden layers and a dropout rate of 0.2 (for the exact parameters, see 
code provided on GitHub). Next, we initialized the scanVI model from 
the pretrained scVI model, before training the scANVI model for 20 
epochs with 100 samples per label. Afterwards, we created a new query 
model instance before training the query data with a weight_decay of 
0 for 100 epochs. The latent representation and the label predictions 
were obtained using get_latent_representation() and predict(), respec-
tively. Finally, we computed a neighborhood graph with 15 neighbors 
using the scANVI representation, before embedding the graph using 
UMAP as mentioned before.

4.3.4. Target distance evaluation
For FL, MM, and B-ALL samples, Euclidean distances between targets 

were calculated by comparing expression values of each investigational 
target to expression values of the approved target across cells. For 
healthy tissues, Euclidean distances between targets were calculated by 
comparing expression values of each investigational target to the 
average expression values of both approved targets across cells. 
Euclidean distances were calculated using Scipy’s spatial.distance.cdist. 
Resulting similarity values were min-max normalized.

Target similarities in PCA space for FL, MM, and B-ALL samples were 
calculated by first subsetting the data to malignant cells and investiga-
tional and approved CAR targets, before transposing the count matrix 
and calculating a PCA embedding using Scanpy’s sc.tl.pca with default 
parameters. For target similarities in PCA space across healthy tissues, 
the count matrix was subsetted to include only investigational and 
approved CAR targets, before transposing the count matrix and calcu-
lating a PCA embedding using Scanpy’s sc.tl.pca with default 
parameters.
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