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Recessive variants in WSB2 encoding a substrate receptor of E3
ubiquitin ligase underlie a neurodevelopmental syndrome
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WD40 and SOCS box protein-2 (WSB2), a member of the large family of suppressor of cytokine signaling (SOCS)-box proteins, has
recently been identified as a substrate receptor of cullin 5 E3 ligase that plays an important role in proteomic regulation through
substrate ubiquitination and proteasomal degradation. Here we report five patients from four unrelated families presenting with
neurodevelopmental delay, dysmorphic features, brain structural abnormalities with or without growth restriction, hypotonia, and
microcephaly, all of whom are homozygous for extremely rare and predicted loss-of-function (pLoF) or missense variants in WSB2,
inherited from consanguineous parents. The Wsb2-mutant mice exhibited several neurological findings that included hyperactivity,
altered exploration, and hyper alertness. They also weighed less, had a lower heart rate, and presented an abnormal retinal blood
vessel morphology and vasculature pattern along with decreased total thickness of the retina. Our findings suggest that
homozygous LoF WSB2 variants cause a novel neurodevelopmental disorder in humans with similar neurologic and developmental
findings seen in Wsb2-mutant mouse models.

European Journal of Human Genetics; https://doi.org/10.1038/s41431-025-01863-4

INTRODUCTION
Neurodevelopmental disorders (NDDs) represent a large group of
disorders arising from alterations of tightly coordinated processes
that regulate development and function of the brain, including
intellectual disability (ID), autism spectrum disorders, and epilepsy
[1]. With genomic advances, novel genes and related pathways
are being identified at a rapid pace, but a significant gap
continues to exist in our molecular understanding of NDDs.
Ubiquitination is one of the key regulatory mechanisms that

control protein stability in a myriad of cellular processes, including
neural development [2–4], and its disruption has been linked to
many neurodevelopmental and neurodegenerative disorders [5–7].
The process of protein ubiquitination requires an enzymatic cascade
that consists of a ubiquitin-activating enzyme (E1), ubiquitin-
conjugating enzyme (E2) and an E3 ubiquitin ligase (E3). Although
there are only 2 E1 and 30–50 E2 genes, the human genome
encodes for >600 E3 ubiquitin ligases, which act post-translationally
to regulate the activity and stability of the entire proteome [8]. The

majority of E3s belong to the ‘really interesting new gene’ (RING)-
type gene family. Among the RING-type ligases, Cullin-RING-type
ligases (CRL) are the multi-subunit ligases whose major component
is a specific cullin (CUL) molecule which binds to a RING-box protein
(Rbx1 or Rbx2) and a substrate receptor (SR; via an adapter subunit
in some cases) at its C- and N-terminus, respectively [9]. Since the
original reports associating UBE3A with Angelman syndrome in
1997 [10], approximately fifty-five genes coding for either E3
ubiquitin ligases or CRL SRs have been identified as causative genes
for fifty-eight different forms of NDDs [6, 11, 12]
The human WSB2 (hg38; chr12:118,032,687-118,061,179)

encodes for a CRL SR protein that contains seven WD-repeats
(WD40) spanning most of the protein and a suppressor of cytokine
signaling (SOCS)-box in the C-terminus. WSB2 belongs to a large
family of SOCS-box proteins which shares 65% similarity with a
related protein WSB1[13]. Northern blotting of different mouse
tissues has shown that high levels ofWsb2 transcript are present in
all tissues examined, including brain, heart, and skeletal muscle
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[13]. It is postulated that WSB2 may act as an SR component of
Cullin 5-RBX2-Elongin B/C (CRL5) E3 ubiquitin ligase complex [14],
which mediates the ubiquitination and subsequent proteasomal
degradation of target proteins. Only a few WSB2-targeted
substrates have been identified, including the granulocyte
colony-stimulating factor (G-CSF) receptor [15], interleukin-21 (IL-
21) receptor [16], cyclin D1 [17], p53 [18], and lysine-methylated
RelA [19]. Differential expressions of WSB2 have been reported in
drug-resistant multiple myeloma cell lines [20] and human
melanoma and lung cancer tissue samples [21, 22]. However, this
gene has not been linked with any human disease and its role in
neurodevelopment remains unexplored.
Here, we describe five patients from four unrelated families

affected by developmental delays, brain anomalies, and dys-
morphic features with or without intrauterine growth restriction
(IUGR) and hypotonia, who were found to have homozygous,
ultra-rare, predicted loss-of-function (pLoF) or missense variants in
WSB2. We report the findings from a comprehensive phenotypic
screening of the Wsb2-mutant (mut) mice which suggests
overlapping findings between human disease and mouse model.

SUBJECTS AND METHODS
Participant identification and recruitment
This study was approved by the Institutional Review Board (IRB) at Boston
Children’s Hospital (BCH at Boston, MA, USA) under the protocol 10-02-
0253 and University of Miami (IRB protocol 20230140). All patients or their
guardians provided written informed consent under BCH protocol 10-02-
0253, collaborator protocol (HMO-0306-10), or through GeneDx protocol
Research to Expand the Understanding of Genetic Variants: Clinical and
Genetic Correlations, Western Institutional Review Board (protocol#
20171030). Participants were identified through the Manton Center for
Orphan Disease Research, GeneDx, and GeneMatcher [23–25]. Informed
consent has been obtained from all subjects or their legal guardians, and
all clinical investigations adhered to the principles of the Declaration of
Helsinki. All patients were examined by a clinical geneticist and/or
neurologist. Pedigrees and deep phenotypic data for each patient were
collected from collaborating clinicians using a standardized template. Brain
magnetic resonance imaging (MRI) was collected whenever possible and
reviewed by a board-certified neuroradiologist.

Exome and genome sequencing
For the GeneDx exome sequencing cases, using genomic DNA from the
patient and parents, the exonic regions and flanking splice junctions of the
genome were captured using the Clinical Research Exome kit (Agilent
Technologies, Santa Clara, CA) (Patient 1) or the IDT xGen Exome Research
Panel v1.0 (Integrated DNA Technologies, Coralville, IA) (Patient 5).
Massively parallel (NextGen) sequencing was done on an illumina system
with 2x150bp paired-end reads. For exome sequencing of family 3 (Patient
3 and 4), genome capture was done using the IDT xGen Exome Research
Panel v2.0 combined with xGen Human mtDNA Research Panel v1.0
(Integrated DNA Technologies), sequencing done on illumina NOVA-X. For
the GeneDx genome sequencing case (Patient 2), using genomic DNA from
the patient and parents, PCR-free whole genome sequencing libraries were
prepared using illumina® DNA PCR-Free Library Prep following the
manufacturer’s protocol (illumina, San Diego, CA). Massively parallel
(NextGen) sequencing was performed on an illumina NovaSeq6000 with
2x150bp paired-end reads. Reads were aligned to human genome build
GRCh37/UCSC hg19 and analyzed for sequence variants using a custom-
developed analysis tool or Geneyx analysis software for secondary pipeline
using DRAGEN. Reported variants were confirmed, if necessary, by an
appropriate orthogonal method in the patient and, if submitted, in
selected relatives. For both exome and genome cases, additional
sequencing technology and variant interpretation protocol have been
previously described [26]. The general assertion criteria for variant
classification are publicly available on the GeneDx ClinVar submission
page (http://www.ncbi.nlm.nih.gov/clinvar/submitters/26957/).

Molecular modeling
The WSB2 protein structure model was built on the predicted 3D
conformation via AlphaFold [27]. The protein structure illustration and

amino acid mutations were generated by PyMOL (The PyMOL Molecular
Graphics System, version 2.0 Schrödinger).

Mouse strain and phenotyping
The Wsb2-mutant (mut) (C57BL/6N Charles River-Wsb2tm1b(EUCOMM)Hmgu/
Ieg; EM:08073) mice were derived from the International Knockout Mouse
Consortium (Knockout Mouse Project (KOMP) Repository, IKMC project
22842; https://www.mousephenotype.org/data/alleles/MGI:2144041/tm1a
(EUCOMM)Hmgu), which was constructed using the IMPC ‘knockout first’
targeting strategy at Helmholtz Zentrum München, Germany.
From the age of 8–16 weeks, the Wsb2-mut mice were phenotyped

systematically in the German Mouse Clinic (GMC) at Helmholtz
Munich (Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany;
www.mouseclinic.de) as described previously [28–30] and in accordance
with the standardized phenotyping pipeline of the IMPC (IMPReSS: https://
www.mousephenotype.org/impress/index). In brief, a cohort of 14 Wsb2-
mut mice (7 males and 7 females in two batches) with corresponding
wildtype (WT) controls (7 males and 8 females) were compared. The
sample size was determined in the context of the general guidelines of the
IMPC (https://www.mousephenotype.org/about-impc/animal-welfare/
arrive-guidelines/) [31]. Animal numbers may vary depending on the test
performed, as indicated in the text or respective figure/table legend. Body
weight was measured weekly. Further phenotyping measures included
growth/size/body composition, morphology, behavior, cardiovascular,
craniofacial, homeostasis, muscle, reproductive, skeleton, and vision/eye.
Phenotyping protocols are in agreement with the IMPC standard
procedures (https://www.mousephenotype.org/impress/PipelineInfo?
id=14). The method description of the tests presented in the manuscript
can be found in the Supplementary Material.
Mice were housed in individually ventilated cages (IVC) available ad

libitum according to the European Union directive 2010/63/EU,
German laws, and German Mouse Clinic (GMC) housing conditions
(www.mouseclinic.de). All animal care and use in this study met approval
by, and complied with, the rules of the district government of Upper
Bavaria (Regierung von Oberbayern) Germany and were conducted
according to the rules outlined by the Helmholtz Zentrum München
ethical committee.

Statistics
Sample size was chosen according to our previous experience and
common standards. If not stated otherwise, phenotypic data that were
generated by the German Mouse Clinic were analyzed using automated
R-scripts (version 3.2.3). Depending on parameter distribution and the
questions addressed to the data, tests for genotype effects were made by
using Wilcoxon rank sum test, Fisher’s exact test, analysis of variance
(ANOVA) with post-hoc Tukey honestly significant difference (HSD) test
and/or linear models. Where necessary, body weight was included as
confounder. For categorical data, a Fisher’s exact test was used. For each
normally distributed parameter, mean and standard deviation, whereas for
non-normally distributed data, median, 25th percentiles and 75th
percentiles were calculated. For all tests, a p-value < 0.05 has been used
as level of significance in the comparison of phenotypic observations
between mut and WT mice; a correction for multiple testing has not been
performed. All data are publicly and freely available on the GMC
(www.mouseclinic.de/results/phenomap-and-results/index.html) and on
the IMPC portal (https://www.mousephenotype.org/data/search?
term=&type=gene).

RESULTS
Identification of WSB2 variants in five patients from four
families with a syndromic NDD
An international collaboration through Matchmaker Exchange [24]
facilitated the identification of five patients from four unrelated
families carrying homozygous predicted loss-of-function (pLoF) or
missense variants in WSB2 (Fig. 1A and Table 1), inherited from
asymptomatic consanguineous parents. The variants were identi-
fied through exome or genome sequencing and confirmed by
Sanger sequencing. Patient (P) 1 (P:1) harbored a nonsense variant
in the exon 2 of WSB2 (NM_018639.5: c.128G>A, p.Trp43Ter); P:2
had a single nucleotide deletion in exon 3 (NM_018639.5:
c.399delG, p.Gln134ArgfsTer14), resulting in frameshift and
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premature stop gain; P:3 and P:4 (siblings) had the same
homozygous missense variant in exon 9 (NM_018639.5:
c.1121G>A, p.Arg374Gln); and P:5 had a 2-bp deletion at the
end of last exon 9 (NM_018639.5: c.1187_1188delAA,
p.Lys396ArgfsTer19). The variants in P:1 and P:2 were absent from
the Genome Aggregation Database (gnomAD v.4.1.0), while those
from P:3/P:4 and P:5 were seen only as a heterozygous variant
with an extremely low frequency of 3.098 ×10−6 (5/1,614,188) and
1.239 ×10−6 (2/1,614,190), respectively. Furthermore, P:3 and P:4,
siblings carrying the homozygous missense variant, had three
unaffected siblings who were either heterozygous for the variant
or carried the normal allele (pedigree, Supplementary Fig. S1). The
WSB2 gene is highly constrained for variants with a high
probability of pLoF (pLI= 1, LOEUF= 0.363) as well as missense
intolerance (missense Z score= 3.4). Molecular modeling was
performed for the only missense variant in the cohort
(p.Arg374Gln, Fig. 1B), rest being pLoF. The substitution of Gln
for Arg at position 374 likely decreases the strength of the side-
chain interactions between Arg374 (red) and Phe398/Phe404
(blue), which could lead to greater conformational dynamics in the
SOCS box region and potentially affect WSB2’s function in E3
ubiquitin ligase complex formation.

The patients carrying homozygous nonsense or frameshifting
variants had a more severe phenotype including global develop-
mental delay (GDD), generalized hypotonia and muscle weakness,
dysmorphic features, and microcephaly along with abnormal brain
morphology on magnetic resonance imaging (MRI) (Fig. 1C;
Table 2 and Supplementary Table S1). Their other clinical findings
included intrauterine growth restriction (IUGR), low birth weight,
and apnea. All three patients had feeding difficulties with
dependency on enteral nutrition, and two patients had gastro-
intestinal (GI) dysmotility, expressed as dysphagia or constipation.
In comparison, the two siblings (P:3 and P:4) from family 3 carrying
the homozygous missense variant had a milder phenotype. They
did have GDD, hypotonia, mild dysmorphic features, but no IUGR
or microcephaly, and MRI performed at an early age were reported
as normal (the older affected sibling’s MRI at a 11-year age was
abnormal with hypoplasia of the vermis and possible heterotopia
in the left frontal region). History of seizures was present in P:1, P:3
and P:5.
Various dysmorphic features included microcephaly, micro-

gnathia, high-arched palate, foot deformity with high arch,
overlapping toes, and clinodactyly of the 5th finger. Vision
problems were noted in 4 out of 5 patients but they were

Fig. 1 Identification of WSB2 variants in five patients featuring syndromic NDDs. A Representative schematic of WSB2 gene (NM_018639.5)
containing seven WD-repeats and a suppressor of cytokine signaling (SOCS) box in the C-terminus. The WSB2 variants are positioned in WD1,
WD2, and SOCS box domain, respectively. BMolecular modeling ofWSB2missense variant (NM_018639.5: c.1121G>A, p.Arg374Gln). As shown
in the top panel, the wildtype residue’s (Arg374, red) positively charged side chain interacts with the aromatic rings of Phe398 and Phe404
(shown in blue), helping stabilize this region. In contrast, the side chain of Gln374 (red, bottom panel) forms weaker hydrophobic contacts
with these phenylalanine, thereby potentially increasing local flexibility of the SOCS box domain. C Representative magnetic resonance
imaging (MRI) of patient 2 with homozygous c.399del p.(Q134Rfs*14) at 12 months of age. (i) Sagittal T1-weighted MRI showing microcephaly,
callosal hypogenesis (white arrow), tectal dysplasia (yellow arrow), and severe cerebellar hypoplasia/atrophy (dotted oval). (ii and iii) Axial T1-
and T2-weighted MRI show undersulcation and white matter hypomyelination for age. (iv-vi) Coronal T2-weighted with fat suppression show
small olfactory bulbs (black arrows), optic nerves (white arrows), and hippocampi (yellow arrows).
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heterogeneous, including hyperopia, ptosis, bilateral abnormal
pupil morphology, and hypoplastic optic nerves. No hearing issue
was reported.

Wsb2-mutant mice exhibit an overlapping phenotype with
human patients
The Wsb2-mutant (mut; Wsb2tm1b(EUCOMM)Hmgu, Supplementary
Fig. S2) mouse line was generated and analyzed at the German
Mouse Clinic [32]. Systemic phenotyping of the Wsb2-mut mice
revealed several overlapping phenotypes with human patients
affecting multiple organ systems. Compared to control (con) mice,
both male (M) and female (F) mutant (mut) mice showed reduced
body weight through all the phenotyping pipeline (final body
weight M con vs M mut: 28.2 g vs 21.8 g; p= 0.001; final body
weight F con vs F mut: 23.9 g vs 17.8 g; p < 0.001; T-test), (Fig. 2A).
This finding correlated with lower food intake (M con vs M mut:
1.6 g vs 0.5 g and F con vs F mut: 2.1 g vs 0.2 g; p < 0.001,
ANCOVA), decrease in respiratory exchange ratio (con vs mut,
p < 0.001), and decrease in metabolic rate (con vs mut, p < 0.001)
performed using indirect calorimetry (Supplementary Fig. S3).
Dual-energy X-ray absorptiometry (DXA) analysis revealed a
significantly decreased bone mineral content (BMC) and fat mass
in male Wsb2-mut mice. Body length was slightly reduced in 14-
week-old mutants, when compared to controls (M: 9.71 ± 0.30 cm
vs 9.34 ± 0.45 cm; F: 9.51 ± 0.25 cm vs 9.07 ± 0.15 cm; p < 0.01).
Upon morphological examination, 5/7 female and 4/7 male
mutant mice showed abnormal upper teeth; X-ray analyses also
showed a decreased size of maxillary incisors in mutant mice (3/5
female and 4/5 male mutants). Ophthalmologic examination
revealed an abnormal retinal blood vessel morphology and
vasculature pattern (Fig. 2B, D; p < 0.001) with a reduction in total
retinal thickness in mutant mice compared to controls (Fig. 2C, E;
mean ±SD, left eye: con 231.7 ±14.4 μm vs mut 177.6 ±22.1 μm;
right eye: con 235.4 ±9.8 μm vs mut 180.5 ±22.0 μm; p < 0.001
Wilcoxon rank-sum test).
There were behavioral abnormalities in theWsb2-mut mice such

as decreased vertical exploration, as indexed by reduced rearing
activity (Fig. 3A) and decreased resting time (Fig. 3B), in response
to a novel mildly stressful environment (open field). Additionally,
they exhibited decreased acoustic reactivity to lower sound
pressure levels (Fig. 3C) in the Prepulse Inhibition (PPI)/Acoustic
Startle Response (ASR) test. Further observations indicated
increased locomotor activity (SHIRPA p= 0.03 ANOVA) and more
tail elevation than control mice (92.9%, 13/14 vs 0%, 0/14,
p < 0.00001, Fisher’s Exact test), hinting towards heightened
alertness. Transthoracic echocardiography (TTE, Supplementary
Fig. S4) revealed a significantly reduced heart rate in mut mice
after correcting for lower body weight, confirmed by electro-
cardiogram. Additionally, both male and female homozygous
mutant mice were found to be infertile. In the histological
examination of testes, changes in testicular architecture and cell
composition with severe testicular tubular atrophy and Leydig cell
hyperplasia (Supplementary Fig. S5) were evident in male Wsb2-
mut mice.

DISCUSSION
Cullin-RING-type ligases (CRL), the largest family of E3 ubiquitin
ligases, promote the ubiquitination of approximately 20% of
cellular proteins destined for degradation via ubiquitin-
proteasome system [33]. Mutations in these ubiquitin ligases are
associated with neurodevelopmental phenotype in humans, for
instance cullin3 (CUL3) [34–36] and CUL4B [37, 38], underscoring
the importance of regulated proteolysis in neurons. In this study,
we present five patients with neurodevelopmental disorders
(NDDs) associated with extremely rare variants in WSB2, encoding
a CRL substrate receptor (SR) not previously linked to human
disease.Ta
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The WSB2 protein has been identified as an SR of the Cullin 5-
RBX2-Elongin B/C (CRL5) E3 ubiquitin ligase complex [14]
characterized by the presence of two conserved domains, the
N-terminal 7 WD-40 repeat and the C-terminal suppressor of
cytokine signaling (SOCS)-box domain. A (SOCS)-box consists of a
BC box for Elongin B/C binding [39] and a CUL5 box for CUL5
binding via its amino acid sequence LPΦP (Φ represents a
hydrophobic residue) [14], whereas the WD-40 domain serves as a
rigid scaffold for protein-protein interactions [40]. It is suspected
that the stop-gain (in P:1) and frameshift (in P:2) variants will cause
nonsense-mediated mRNA decay (NMD) and loss of function of
WSB2, whereas the missense (in P:3 and P:4) and frameshift variant
(in P:5) in SOCS-box domain may disrupt its protein interaction
with the CRL5 complex, thus affecting their ability to ubiquitinate
and degrade its protein targets.

All patients in this study exhibited global developmental delay
and four of them showed abnormal brain morphology on MRI.
Single-cell RNA sequencing data from human samples indicate that
the major isoform of human WSB2 gene (NM_018639.5) is
ubiquitously expressed across various brain regions, with a notable
enrichment in the neocortex after late fetal period (Supplementary
Fig. S6). Consistently, Wsb2-mutant mice exhibited behavioral
abnormalities, including hyperactivity, altered exploration, and
hyper alertness, although potential structural brain changes remain
unknown. Similarly, the low birth weight and failure to thrive
phenotype seen in three of the five patients (P:1, P:2 and P:5)
carrying homozygous pLoF variants was also seen in both male and
female Wsb2-mutant mice. The visual findings in human patients
are relatively mild and heterogeneous (Supplementary Table S1) but
the retinal abnormalities seen in Wsb2-mutant mutant,

Fig. 2 Wsb2-mutant mice exhibited with lower body weight and retinal abnormalities in both males and females. A Shows the body
weight at different ages (4–15 week) between control andWsb2-mut mice. n= 7–8 mice per group and per genotype, median and interquartile
range shown. B–E Show the retinal abnormalities inWsb2-mut mice, including irregular retinal blood vessel morphology (B, D) and reduced total
retinal thickness (C, E) as shown in the left eye. For control group: n= 15, 8 females and 7 males; and forWsb2-mut mice: n= 11, 6 females and 5
males. The right eye showed a similar phenotype. Red boxes in (C) represent an arbitrary evaluation of total retinal thickness, using equally sized
rectangles over the retinal layers in control and Wsb2-mut mice to illustrate the reduction in thickness across all retinal layers.

Fig. 3 Behavioral testing revealed decreased exploratory behavior in response to a novel environment and blunted acoustic reactivity in
Wsb2-mutant mice. In the novel open field test, the mutant mice showed decreased rearing activity (A) and decreased resting time (B) when
compared to control mice. C Prepulse Inhibition (PPI)/Acoustic Startle Response (ASR) testing showed decreased acoustic reactivity in the
mutant mice at lower non-startling sound pressure levels. Con control, mut mutant, NS no stimulus.
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characterized by decreased retinal thickness and abnormal retinal
blood vessel morphology and vasculature patterns suggests the
need for future ophthalmology evaluation. Similarly, future cardiac
evaluation should be considered as patient P:5 has been diagnosed
with Wenckebach second-degree heart block at 8 year of age and
lower heart rates have been noted in Wsb2-mut mice.
WSB2 may regulate various developmental and physiological

processes given its role in ubiquitination and its widespread
expression. The phenotypic findings from human patients and
mutant mice suggest that it may be involved in growth regulation,
neurodevelopment, retinal vascular development, and autonomic
regulation, though the precise molecular mechanisms remain to
be elucidated. Previous studies on WSB2 have primarily concen-
trated on its expression in cancer tissue and cells, as well as its
roles in carcinogenesis [20–22]. From these studies, a limited
number of WSB2 substrates have been characterized, including
the G-CSF receptor and IL-21 receptor in immune cells [15, 16],
cyclin D1 (Ccnd1) [17], p53 [18], and chromatin-bound methylated
RelA [19], summarized in Supplementary Table S2. Among these
substrates, Ccnd1, along with its catalytic counterpart cyclin-
dependent kinase 4 (Cdk4), plays a crucial role in regulating G1

phase length and influences the decision of neural stem cells to
proliferate or differentiate [41–44]. Overexpression of Ccnd1-Cdk4
shortens G1 phase, delays neurogenesis, and promotes the
generation and expansion of basal progenitors [43]. Similarly,
the transcription factor p53, a well-known tumor suppressor
[45, 46], is broadly expressed in the brain and its excessive
activation can lead to developmental defects and increased
neuronal cell death in various human diseases, correlating with a
range of phenotypes, including craniofacial, cardiovascular, and
neuronal defects [47–55]. Beyond these substrates, other poten-
tially critical proteins that may be regulated by WSB2 are yet to be
determined.
In summary, our study provides evidence that recessive WSB2

variants result in a new neurodevelopmental disorder character-
ized by global developmental delays, hypotonia, seizures,
abnormal brain morphology, dysmorphic features, and failure to
thrive. Future in vitro studies and mouse models of human WSB2
mutations are needed to further elucidate WSB2 function, its
downstream targets, and the precise mechanisms by which WSB2
mutations contribute to disease pathogenesis.
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