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A B S T R A C T

Ambient air pollution has been linked to neurodegenerative diseases. Nevertheless, the literature on the effects of 
air pollution on the olfactory system and early cognitive impairment is scarce. In this study, we investigated the 
association between long-term air pollution exposure and odor identification, which can serve as an early in-
dicator of various neurodegenerative conditions. We used data collected in Augsburg, Germany in 2018–2019 for 
the population-based KORA FIT study of 3,059 participants born between 1945–1964. The Sniffin’ Sticks 12-Item 
Test was used to assess each participant’s odor identification. Air pollution concentrations at residential ad-
dresses were estimated using land use regression modeling. We dichotomized the odor identification score to 
normosmia (score ≥ 10) versus hyposmia (score < 7) or anosmia (score < 10) and applied logistic regression. 
The models were adjusted for age, sex, socioeconomic characteristics (education, income, socioeconomic status), 
lifestyle factors (physical activity, smoking, body mass index, alcohol consumption) and disease history (e.g., 
allergies). We observed increased odds of hyposmia or anosmia compared to normosmia per interquartile range 
increase in the concentrations of PNC, PM2.5, PM2.5abs, PMcoarse, PM10, NO2 and NOx [OR (95 % CI): 1.12 (1.02, 
1.24), 1.10 (0.98, 1.25), 1.14 (1.00, 1.30), 1.20 (1.06, 1.35), 1.20 (1.06, 1.36), 1.20 (1.06, 1.37) and 1.13 (1.01, 
1.27); respectively]. For O3, no clear effects were detected. Females and physically active people appeared to be 
more susceptible. No further significant indications of effect modification were found. The results were consistent 
across sensitivity analyses. This study provides robust evidence for an association between long-term exposure to 
traffic-related air pollution and poor odor identification, even in a region with relatively low air pollution levels. 
These findings suggest a potential link between prolonged air pollution exposure and early changes in the ol-
factory system and could be indicative of early signs of detrimental effects on the brain.

1. Introduction

Air pollution is one of the greatest environmental risks to human 
health and poses a major challenge both globally and locally for com-
munities. It is the second highest risk factor for mortality (Health Effects 
Institute, 2024) and a major contributor to the attributable disability- 
adjusted life years (Murray, 2024). Air pollution has been extensively 
associated with various health problems, including cardio-metabolic 
(Wolf et al., 2021; Guo et al., 2022), respiratory (Park et al., 2021), 

and neurological (Kim et al., 2020) diseases, disproportionately 
affecting vulnerable sub-populations such as the elderly, children, and 
people with pre-existing cardiovascular disease or lower socioeconomic 
status (SES) (Tibuakuu et al., 2018).

Odor identification refers to our ability to identify and recall known, 
previously experienced smells (Murphy, 2019), and it relies on our ex-
ecutive (Westervelt et al., 2005) and semantic (Larsson et al., 2000) 
memory, going beyond mere sensory detection. Impaired olfaction en-
tails severe risks and negatively impacts health (Devanand et al., 2015) 
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and well-being (Croy et al., 2014). Low scores can be associated with 
cognitive impairment (Dintica et al., 2019) and serve as an early indi-
cator of several neurodegenerative conditions (Marin et al., 2018), such 
as Parkinson’s and Alzheimer’s disease (Doty and Kamath, 2014).

Air pollution can harm our olfactory and brain health through 
various pathways, as described in previous studies (Ajmani et al., 2016; 
Shehab et al., 2024). Briefly, the olfactory mucosa is directly and 
constantly exposed to the external environment and houses olfactory 
neurons that interact with harmful air pollutants. These pollutants can 
penetrate the protective blood–brain barrier by either compromising the 
olfactory barrier or traveling via axonal transport to the olfactory bulb 
(Merz, 2021). For example, there is evidence that fine particles (PM2.5, 
particulate matter with an aerodynamic diameter of 2.5 µm or less) 
accumulate in the olfactory bulb causing local inflammation (Ajmani 
et al., 2016). Additionally, ultrafine particles (UFP, particulate matter 
with an aerodynamic diameter of 100 nm or less) and other PM2.5 
constituents can move along the olfactory nerve and travel from various 
organs to the brain’s vasculature, triggering inflammatory responses and 
contributing to neuronal damage (Peters, 2023).

Despite increasing interest in the effects of air pollution on the ol-
factory system and early cognitive impairment, significant uncertainties 
and gaps remain in the literature. Existing studies focus on a limited and 
specific range of air pollutants, primarily PM2.5 and nitrogen dioxide 
(NO2) (Adams et al., 2016; Ekström et al., 2022; Cao et al., 2023; Ajmani 
et al., 2016; Zhang et al., 2021; Andersson et al., 2022), with only one 
study addressing particulate matter with an aerodynamic diameter of 
10 µm or less (PM10) (Scussiatto et al., 2023). There is a complete lack of 
research on UFP or particle number concentration (PNC) which is often 
used as a proxy for UFP, particulate matter with aerodynamic diameter 
between 2.5 µm and 10 µm (PMcoarse), PM2.5 absorbance (PM2.5abs), and 
ozone (O3). Previous studies have also had limitations in their exposure 
measurement and design, such as relying on weather station data 
(Adams et al., 2016) or indirect methods for assessing exposure to air 
pollution (Ranft et al., 2009), small sample sizes, and using ecological 
study designs (Guarneros et al., 2009; Hudson et al., 2006). Addition-
ally, previous studies have had strong potential for significant con-
founding (such as by age, sex, smoking, alcohol and residential 
characteristics) and challenges in establishing statistically significant 
associations due to constraints inherent in their data sources (Shehab 
et al., 2024).

We examined long-term associations between various air pollutants 
and odor identification using cross-sectional data from a population- 
based cohort in Augsburg, Germany. We hypothesized that prolonged 
residential air pollution exposure would be negatively associated with 
odor identification, an indicator of worse olfactory function and an early 
sign of impacts on the brain. To examine vulnerable sub-populations, we 
further evaluated several participant characteristics as effect modifiers.

2. Methods

2.1. Study population

Health and individual data were retrieved from the Cooperative 
Health Research in the Region of Augsburg (KORA) study in Southern 
Germany, a population-based cohort in the region of Augsburg which 
consists of the city of Augsburg and two adjacent districts (Fig. S1). 
KORA is a regional research platform for population-based studies, 
consisting of four cross-sectional baseline surveys (in 1984/1985, 1989/ 
1990, 1994/1995, and 1999/2001). Details of the design of the KORA 
cohort study can be found elsewhere (Holle et al., 2005). We specifically 
used data from KORA FIT (2018/2019), which is a follow-up examina-
tion of all participants who participated in the four initial KORA baseline 
surveys. The KORA FIT follow-up study was conducted from 22.01.2018 
to 29.06.2019, covering the period from the first participant’s exami-
nation to the last participant’s examination. All living participants born 
between 1945 and 1964 that had provided informed consent to be 

contacted again were invited for a re-examination (n = 3,059 or 64.4 % 
of all eligible persons). KORA FIT participants underwent thorough, 
standardized physical examinations and completed in-person interviews 
(Rooney et al., 2022).

The study methods were approved by the Ethics Committees of the 
Bavarian Chamber of Physicians (KORA-Fit EC No 17040).

2.2. Outcome measurement

Odor identification was evaluated using the Sniffin’ Sticks 12-Item 
Test (SST-12 Item Test, Burghart Messtechnik, Germany), a well- 
established and validated olfactory assessment tool (Hummel et al., 
2001). Each participant was sequentially presented with 12 pens con-
taining everyday odors one at a time and tasked with identifying the 
correct odor from the four options provided (Table S1). The SST-12 Item 
Test toolkit included the following odors: peppermint, fish, coffee, ba-
nana, orange, rose, lemon, pineapple, cinnamon, cloves, leather, and 
licorice. The odor identification score was calculated as the total number 
of correct responses out of the 12 pens. This score was then dichoto-
mized into 1) normal olfactory ability (normosmia), defined as a score of 
10 or higher, and 2) limited olfactory ability (hyposmia) or lack of ol-
factory ability (anosmia), defined as a score below 10 (Cao et al., 2023; 
Hummel et al., 2001; Stogbauer et al., 2020).

2.3. Exposure assessment

Annual mean concentrations of air pollutants were estimated 
through land use regression (LUR) models using data from a 2014–2015 
measurement campaign of 20 air pollution monitoring stations in the 
Augsburg region. These estimates were mapped in a 50 × 50 m grid and 
then assigned to the geocoded residential addresses of the KORA par-
ticipants. These air pollutants included PNC (103/cm3), PM2.5 (μg/m3), 
PM2.5abs (10-5/m) (a surrogate for black carbon linked to vehicle emis-
sions), PMcoarse (μg/m3), PM10 (μg/m3), nitrogen oxides (NO2, NOx) (μg/ 
m3), and O3 (μg/m3). Key methodological details on measurement 
standards, monitoring tools, and missing data handling can be found in 
the Supplementary material (Supplementary materials M1). The LUR 
models performed well, with adjusted leave-one-out cross-validation R2 

of 0.55 (PMcoarse), 0.69 (PM2.5), 0.76 (PM10), 0.81 (O3), 0.82 (NOx), 0.82 
(PNC), 0.83 (PM2.5abs), and 0.89 (NO2). Further information about the 
modeling approach and the models’ performance can be found else-
where (Wolf et al., 2017).

2.4. Confounders and effect modifiers

We used data on participants’ demographics including age (years) 
and sex (female/male); socioeconomic features including education 
(years), monthly income (€), and socioeconomic status (SES, measured 
by the Helmert Index (Helmert and Shea, 1994), with a range from 1 to 
27, where lower scores indicate lower SES); lifestyle factors including 
physical activity (active or inactive), smoking status (current, ex-, and 
never smokers − Table S2), body mass index (BMI, kg/m2), and alcohol 
consumption (grams per day − Table S2); and chronic diseases including 
diabetes (yes or no), asthma (yes or no), chronic obstructive pulmonary 
disease (COPD, yes or no), hay fever (yes or no), allergies (yes or no), 
and hypertension (yes or no). In addition, we used residential infor-
mation, including an indicator for urbanization, so whether the partic-
ipant resides in Augsburg city or in a surrounding district (©GeoBasis- 
DE/BKG [2019]), a satellite-based index for greenness (normalized 
difference vegetation index [NDVI], 0 to 1) (Dandolo et al., 2022), and 
yearly mean air temperature values (◦C) provided by a high-resolution 
multi-stage regression-based modeling approach (Nikolaou et al., 
2023). A concise summary with key details on NDVI and mean air 
temperature estimations is provided in the Supplementary material
(Supplementary materials M2). Additionally, we used data on each 
participant’s subjective self-reported odor identification ability. Each 
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participant selected the most accurate response for themselves from the 
following options: I have a very good sense of smell, I cannot smell 
everything, sometimes I cannot smell something that other people can 
smell, or I have a very bad sense of smell. We then dichotomized these 
responses into 1) having a very good sense of smell versus 2) not. All 
these variables served as either confounders or effect modifiers in our 
analysis.

2.5. Statistical analysis

We calculated means and standard deviations (SD) for continuous 
health and individual characteristics and residential exposure features, 
and absolute numbers and percentages for categorical variables. To 
assess differences between normosmic and hyposmic or anosmic par-
ticipants, a two-sample t-test was used for continuous variables, a Wil-
coxon rank-sum test if the distribution was deviating from normal, and a 
Chi-square test of independence for categorical variables. We present 
various statistics for air pollution levels: means and SDs, mini-
mum–maximum ranges, and interquartile ranges (IQR). Spearman’s 
correlation coefficient was used to evaluate the correlations between air 
pollutants.

We used logistic regression to examine the associations between 
long-term air pollution exposure and odor identification. Selected 
covariates were added stepwise to the model. The minimum model 
included basic demographics (sex and age). The main model addition-
ally included socioeconomic features (education, income, and SES) and 
lifestyle factors (physical activity, smoking status, BMI, and alcohol 
consumption). Finally, the extended model also included chronic dis-
eases (diabetes, asthma, COPD, hay fever, allergies, and hypertension).

Two-pollutant models were used to evaluate the independent effects 
of each exposure. Using the main model structure, we ran two-pollutant 
models for all combinations of air pollutants with a Spearman correla-
tion coefficient less than or equal to 0.7.

We examined several potential effect modifiers: sex (female vs. 
male), age (< vs. ≥ 65 years old), physical activity (inactive vs. active), 
smoking status (never or ex- vs. current smokers), BMI (non-obese vs. 
obese, i.e., BMI ≥ 30 kg/m2), subjective odor identification ability (very 
good sense of smell vs. not), indicator for city vs. district, greenness (<
vs. ≥ 0.5), and mean air temperature (< first quartile Q1 vs. Q1 − Q3 vs. 
> third quartile Q3).

To evaluate the robustness of our results, we conducted several 
sensitivity analyses: 1) Categorizing the odor identification score 
differently: ≤ 9 for hyposmia or anosmia and > 10 for normosmia, 
effectively excluding a score of 10, which was previously classified 
under normosmia. This approach accounted for an ongoing debate about 
whether a score of 10 should be included in the dichotomization and 
specifically in normosmic subjects (Vandersteen et al., 2022). 2) 
Excluding subjects who reported having a stuffy nose, in two levels. 
Stuffy nose information derived from the question “How freely are you 
breathing through your nose at the moment?” with a response scale of 
1–10 (10 to be completely free) dichotomized into yes or no. We 
considered participants to have a stuffy nose (yes) in two scenarios, with 
a stuffy nose being defined as a score less than 8 and also as a score less 
than 5. 3) Conducting a Bayesian information criterion (BIC) selection 
for the covariates, evaluating all possible combinations.

Results are presented as Odds Ratios (OR) of hyposmia or anosmia 
vs. normosmia together with their corresponding 95 % Confidence In-
tervals (95 % CI) per IQR increase of each air pollutant. Analysis was 
conducted in R 4.3.0 (R Core Team, 2023) and package mgcv (Wood, 
2017). Statistical significance was determined by two-sided p-values <
0.05.

3. Results

3.1. Study population and air pollutants

The flowchart of the study population is shown in Fig. S2. The 
minimum model includes 2,943 participants. For the main model, par-
ticipants with missing values in at least one of the selected covariates 
(age, sex, education, income, SES, physical activity, smoking status, 
BMI, alcohol consumption, diabetes, asthma, COPD, hay fever, allergies, 
and hypertension; n = 237 and n = 390 for the main and extended 
models, respectively) were excluded, leaving the main model with 2,706 
participants and the extended model with 2,553 participants.

The continuous odor identification score as initially retrieved by the 
SST-12 test had a mean of 10.08 with an SD of 1.6 (Table 1) and was left- 
skewed (Fig. S3). After dichotomizing, the binary odor identification 
score categorized 2,143 subjects as normosmic and 800 as hyposmic or 
anosmic (Table 1 and Fig. S3).

The study population and air pollutants are described based on the 
sample size of the minimum model in Table 1 (N = 2,943). The sex 
distribution was balanced, with 54.1 % female participants. Participants 
had a mean examination age of 63.1 years. Over one third (37.1 %) of 
the study population was located in the city of Augsburg. Sex, income, 
allergies, hypertension, stuffy nose, subjective odor identification ability 
and indicator for city vs. district were statistically significantly different 
between normosmic and hyposmic or anosmic people (Table 1). The 
yearly mean concentrations of PM2.5 (11.6 μg/m3), PM10 (16.3 μg/m3), 
and NO2 (13.6 μg/m3), were below the current limits set by the Euro-
pean Union air quality standards (UNION P., 2008) but exceeded the 
latest guidelines established by the World Health Organization (WHO) 
(World Health Organization., 2021) (Table 2). The hyposmic or anosmic 
group had statistically significantly higher yearly mean levels of air 
pollution in comparison with the normosmic group for all air pollutants 
except O3 (Table S3). Moderate to strong correlations were observed 
among the air pollutants, excluding O3 (Table 2).

3.2. Air pollution and odor identification

Higher levels of air pollution were found to be associated with worse 
odor identification for all air pollutants (PNC, PM2.5, PM2.5abs, PMcoarse, 
PM10, NO2, NOx) except O3 across all models (minimum, main, and 
extended). Most of these associations (PNC, PM2.5abs, PMcoarse, PM10, 
NO2, NOx) remained statistically significant throughout all three 
models, while the association for PM2.5 persisted only for the minimum 
model. More specifically, as demonstrated in Fig. 1 and Table S4, we 
observed increased odds of hyposmia or anosmia compared to nor-
mosmia per IQR increase in the yearly mean concentrations of PNC, 
PM2.5, PM2.5abs, PMcoarse, PM10, NO2, and NOx [main model: OR (95 % 
CI): 1.12 (1.02, 1.24), 1.10 (0.98, 1.25), 1.14 (1.00, 1.3), 1.20 (1.06, 
1.35), 1.20 (1.06, 1.36), 1.20 (1.06, 1.37) and 1.13 (1.01, 1.27); 
respectively]. For O3, no clear effects were detected.

3.2.1. Two-pollutant models
The results of the two-pollutant models are presented in Fig. 2 and 

Table S5. After adjusting for NO2, the effect of PM10 was no longer 
statistically significant, and vice versa. No other differences were 
observed.

3.2.2. Effect modification
We did not observe statistically significant changes in the associa-

tions between air pollution and odor identification when testing for ef-
fect modification in most cases (Fig. 3 and Tables S6-S14). Females 
appeared more vulnerable than males, particularly for PNC, PM2.5abs, 
PM10, and NOx, where the OR (95 % CI) were 1.24 (1.07, 1.44), 1.28 
(1.05, 1.56), 1.34 (1.12, 1.61), and 1.26 (1.07, 1.49), respectively in 
females, compared to 1.02 (0.89, 1.16), 1.01 (0.84, 1.21), 1.07 (0.91, 
1.26), and 1.01 (0.87, 1.18), respectively in males, with p-interaction =
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0.05, 0.07, 0.09, and 0.04, respectively (Table S6). Similarly, physically 
active individuals showed stronger associations than the inactive ones, 
for example for PNC, PM2.5abs, and NOx [OR (95 % CI): 1.18 (1.04, 1.33) 
vs. 0.99 (0.83, 1.19), 1.19 (1.01, 1.39) vs. 1.01 (0.79, 1.30), and 1.19 
(1.04, 1.36) vs 1.00 (0.81, 1.23)] (Table S8). Additionally, smokers 
tended to have consistently higher ORs compared to non-smokers, with 
the strongest difference observed for PM2.5abs, where smokers had OR 
(95 % CI) of 1.31 (0.92, 1.87) vs. 1.10 (0.95, 1.27) in non-smokers 
(Table S9). High levels of air pollution did impact individuals who 
perceived their odor identification ability as very good more than those 
who did not. The strongest differences were observed for PM2.5abs and 
NO2 [OR (95 % CI): 1.29 (1.06, 1.56) vs. 0.99 (0.82, 1.20), p-interaction 
= 0.05, and 1.36 (1.12, 1.64) vs. 1.06 (0.89, 1.27), p-interaction = 0.08, 
respectively] (Table S11).

3.2.3. Sensitivity analysis
By excluding scores of 10 from the normosmic category, 795 

individuals were dropped for each model. The results were consistent 
with those from the main analysis (Fig. S4 and Table S15). Additionally, 
excluding participants with a stuffy nose resulted in the removal of 972 
and 142 subjects for the cut-offs of 8 and 5, respectively. The results 
from this sensitivity test were largely consistent with the main analysis, 
except for the OR for PM2.5, which became statistically significant for 
participants with almost completely clear noses (Fig. S5 and Table S16). 
The BIC-based selection resulted in a model only adjusting for age, sex, 
and SES, yet the results remained consistent with the main analysis 
(Fig. S6).

4. Discussion

The present study investigated associations between long-term 
exposure to a wide spectrum of dominant air pollutants and odor 
identification, an indicator of olfactory and early cognitive impairment. 
We used cross-sectional data from 2,943 middle-aged to older 

Table 1 
Descriptive statistics of participant characteristics in the KORA FIT cohort study (N = 2,943).

Variable category Variable Mean ± SD / N (%) Missings P-value

Hyposmia or anosmia 
(N = 800)

Normosmia 
(N = 2,143)

Total 
(N = 2,943)

Demographic Sex (female) 379 (47.4) 1,214 (56.6) 1,593 (54.1) − < 0.001
Age (years) 64.6 ± 5.4 62.6 ± 5.4 63.1 ± 5.5 − 0.064

Lifestyle Education (years) 11.9 ± 2.6 12.0 ± 2.6 12 ± 2.6 − 0.120
Alcohol (g/day) 15.7 ± 20.8 14.4 ± 18.8 14.7 ± 19.4 2 0.226
BMI (kg/m2) 28.2 ± 5.4 28.1 ± 5.3 28.2 ± 5.3 2 0.070
Smoking status  2 0.584
Current smoker 121 (15.1) 302 (14.1) 423 (14.4)  
Former smoker 318 (39.8) 894 (41.7) 1,212 (41.2)  
Never smoker 360 (45.0) 946 (44.1) 1,306 (44.4)  
Physical activity (active) 568 (71.0) 1,557 (72.7) 2,125 (72.2) − 0.729

Socioeconomic Social class (1 to 27) 14.4 ± 5.0 15.0 ± 5.0 14.9 ± 5.0 15 0.240
Income (€) 1,631 ± 838.9 1,769 ± 863.5 1,731 ± 858.9 236 < 0.001

Medical Allergies (yes) 229 (28.6) 699 (32.6) 928 (31.5) 79 0.048
COPD (yes) 25 (3.1) 49 (2.3) 74 (2.5) 62 0.236
Asthma (yes) 66 (8.3) 161 (7.5) 227 (7.7) 70 0.506
Hay fever (yes) 118 (14.8) 382 (17.8) 500 (17.0) 55 0.057
Diabetes (yes) 75 (9.4) 159 (7.4) 234 (8.0) 4 0.098
Hypertension (yes) 435 (54.4) 1,027 (47.9) 1,462 (49.7) 8 0.002
Stuffy nose (yes)     
Cut-off 8 300 (37.5) 672 (31.6) 972 (33.0) − < 0.001
Cut-off 5 40 (5.0) 102 (4.8) 142 (4.8) − 0.862
Subjective odor identification ability 
(very good)

359 (44.9) 1,323 (61.7) 1,681 (57.1) 1 < 0.001

Residential Indicator for city versus district (city) 331 (41.3) 763 (35.6) 1,094 (37.1) − 0.005
Mean air temperature (◦C) 9.9 ± 0.4 9.8 ± 0.3 9.8 ± 0.4 168 0.058
NDVI (0 to 1) 0.45 (0.09) 0.46 (0.09) 0.46 (0.09) − 0.006

Outcome Odor identification (0 to 12) − − 10.08 (1.6) − −

Hyposmia or anosmia: odor identification score < 10; normosmia: odor identification score ≥ 10; Differences between normosmic versus hyposmic or anosmic were 
quantified by two-sample t-test or Wilcoxon test, if not normally distributed, and Chi2 test, respectively; SD = standard deviation; The numbers in brackets represent 
percentages, while the ± values indicate SD; BMI = body mass index; NDVI = normalized difference vegetation index.

Table 2 
Descriptive statistics for the annual average air pollution concentrations at the residential locations of the KORA FIT participants (N = 2,943).

Air pollutant Mean ± SD Range IQR Spearman correlation coefficients

PNC PM2.5 PM2.5abs PMcoarse PM10 NO2 NOx O3

PNC (103/cm3) 7.0 ± 1.7 3.0–13.7 1.9 1       
PM2.5 (µg/m3) 11.6 ± 1.0 7.8–14.2 1.4 0.72 1      
PM2.5abs (10-5/m) 1.2 ± 0.2 0.7–1.7 0.3 0.77 0.69 1     
PMcoarse (µg/m3) 4.8 ± 1.1 2.5–8.2 1.4 0.74 0.59 0.81 1    
PM10 (µg/m3) 16.3 ± 1.4 12.9–22.0 2.0 0.82 0.60 0.77 0.79 1   
NO2 (µg/m3) 13.6 ± 4.2 6.9–28.3 6.3 0.77 0.77 0.85 0.81 0.70 1  
NOx (µg/m3) 21.3 ± 6.7 3.9–44.0 8.7 0.91 0.80 0.74 0.72 0.74 0.85 1 
O3 (µg/m3) 39.1 ± 2.3 31.7–45.7 3.5 − 0.07 − 0.23 − 0.08 0.16 0.06 − 0.18 − 0.14 1

SD = standard deviation; The ± values indicate SD; IQR = interquartile range; PNC = particle number concentration; PM2.5 = particulate matter (PM) with an 
aerodynamic diameter less than 2.5 μm; PM2.5abs = PM2.5 absorbance; PMcoarse = PM between 2.5 and 10 μm; PM10 = PM with an aerodynamic diameter less than 10 
μm; NO2 = nitrogen dioxide; NOx = nitrogen oxides; O3 = ozone.
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individuals who participated in a population-based cohort in Augsburg, 
Germany. We observed that long-term exposure to higher air pollution 
levels was associated with impaired odor identification, and the findings 
were robust in sensitivity analyses. We observed strong associations for 
traffic-related pollutants such as NO2, PNC, and PM2.5abs. Females and 
physically active people were found to be more susceptible to this 
negative air pollution impact on odor identification.

To our knowledge, our study is the first to explore the association 
between long-term exposure to such a broad range of air pollutants and 
odor identification, including air pollutants such as PNC, PM2.5abs and 
PMcoarse, utilizing a comprehensive, population-based cohort dataset. 
Moreover, this study is the first to report statistically significant asso-
ciations between impaired odor identification and PNC, PM2.5abs, and 
PMcoarse.

Air pollution, even at relatively low levels like those in the Augsburg 
region of southern Germany, was shown to be adversely linked with 
odor identification. While Germany’s air quality is generally considered 
good, it still falls short of the more stringent 2021 air quality guidelines 
set by the WHO, which recommends annual average levels of no more 
than 5 μg/m3 for PM2.5, 15 μg/m3 for PM10, and 10 μg/m3 for NO2 
(World Health Organization., 2021). Currently, there are no established 
thresholds for UFP. Our research demonstrated that prolonged exposure 
to these air pollutants, even at concentrations below the European Union 
guideline thresholds, is associated with poor odor identification, so 
problematic olfaction and indicative of early impairments in brain 
function. This underscores the need for more rigorous air quality stan-
dards to protect public health.

Traffic-related air pollution has a key role. Shi et al. found a strong 
statistical link between annual PM2.5 levels from traffic and fossil fuel 
combustion and the incidence of dementia (Shi et al., 2023). PM2.5 
particles, ranging down to nanometers in size, are influenced by fuel 
type, the chemical reactions that occur during formation, and absorbed 
substances. For example, black carbon, which is a primary UFP from 
combustion, can grow into larger fine particles over time (Peters, 2023). 
Additionally, there are secondary components such as sulfates, nitrates, 
and ammonium which are formed from gaseous precursors and which 
indicate aged and combustion-related PM2.5. While these secondary 
components are less toxic, they are still associated with various health 
risks (Peters, 2023).

Odor identification is a well-established early marker of cognitive 
decline and various neurodegenerative disorders, making it a critical 

tool of extensive scientific investigation (Adams et al., 2016; Ekström 
et al., 2022; Cao et al., 2023; Ajmani et al., 2016; Andersson et al., 2022; 
Scussiatto et al., 2023). Despite its importance, other key components of 
olfactory testing such as odor threshold (the lowest concentration of a 
particular odor that one can detect) and odor discrimination (the ability 
to identify the unique odor among three options) (Hummel et al., 1997) 
are often overlooked in research (Shehab et al., 2024), mostly due to 
practical considerations such as examination time constraints. When 
combined with odor identification, these tests form a comprehensive 
score known as the threshold-discrimination-identification score 
(Trentin et al., 2022). Inclusion of all three tests in new cohort studies 
and follow-ups of existing studies would enhance the comprehensive-
ness of olfactory assessment and provide a more holistic measure of 
early cognitive decline for future research.

Impaired olfactory function, particularly the sense of smell which is 
closely connected to brain areas such as the hippocampus (Dhilla Albers 
et al., 2016), assessed through standardized tests, has been widely 
acknowledged as a potential early marker of cognitive impairment 
(Dintica et al., 2019; Tian et al., 2023; Tahmasebi et al., 2020), and a 
significant predictor of conditions such as Alzheimer’s disease 
(Devanand, 2016; Wilson et al., 2009). Moreover, there is evidence of a 
harmful impact of air pollution on cognitive health (Schikowski and 
Altuğ, 2020) with studies linking long-term exposure to PM2.5 and NO2 
with an increased risk for neuroinflammation, oxidative stress, and 
subsequent cognitive dysfunction (Power et al., 2016). Thus, existing 
evidence suggests that both reduced olfactory function and air pollution 
exposure serve as critical predictors of cognitive impairment.

Our olfactory system is directly and consistently exposed to air 
pollution. Particles, such as PM2.5, accumulate in the olfactory bulb, 
causing local inflammation (Ajmani et al., 2016). UFP and PM2.5 con-
stituents are also able to travel to the brain’s vasculature, triggering 
inflammatory responses and contributing to neuronal damage (Peters, 
2023). UFP is particularly important. Given their size (equal to or less 
than 100 nm), they can translocate along the olfactory nerve to reach the 
olfactory region of the brain (Peters, 2023), and it is more plausible that 
they can directly penetrate the blood–brain barrier instead of working 
through systemic inflammation to neuronal inflammation (Oberdörster 
et al., 2004). Additionally, smaller particle sizes are linked with higher 
levels of oxidative stress (Underwood, 2017).

However, there is a lack of evidence clarifying or suggesting mech-
anisms underlying our findings in females and physically active 

Fig. 1. Associations between various air pollutants and odor identification; Odds Ratios are presented for hyposmia or anosmia (odor identification score < 10) vs. 
normosmia (odor identification score ≥ 10) per interquartile range (IQR) increase in each air pollutant (PNC, PM2.5, PM2.5abs, PMcoarse, PM10, NO2, NOx and O3); 
Error bars present 95 % Confidence Intervals; Minimum model: each pollutant, sex and age; Main model: minimum model, education, income, socioeconomic status, 
physical activity, smoking status, body mass index and alcohol consumption; Extended model: main model, diabetes, asthma, chronic obstructive pulmonary disease, 
hay fever, allergies and hypertension; PNC = particle number concentration; PM2.5 = particulate matter (PM) with an aerodynamic diameter less than 2.5 μm; 
PM2.5abs = PM2.5 absorbance; PMcoarse = PM between 2.5 and 10 μm; PM10 = PM with an aerodynamic diameter less than 10 μm; NO2 = nitrogen dioxide; NOx =

nitrogen oxides; O3 = ozone.
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individuals. The greater susceptibility observed in females may be 
related to hormonal changes, such as the significant decline in estrogen 
levels during and after menopause, which aligns with the age range of 
our study. This hormonal shift is associated with cognitive issues 
(Sherwin, 2003), and air pollution has been suggested to disrupt sex 
hormones during the menopausal transition (Wang et al., 2024). Bio-
logical factors, such as differences in blood–brain barrier permeability, 
may also play a role, as the integrity of this barrier seems to have a more 
direct impact on cognitive impairment in females due to the influence of 
hormones on its structure (Moon et al., 2021). Additionally, females’ 
higher number of neurons and glial cells than males in olfactory regions 
(Oliveira-Pinto et al., 2014) could make them more vulnerable to 

olfactory damage (Doty, 2015). Physically active individuals may be 
more susceptible to the effects of air pollution on impaired sense of smell 
and cognitive decline due to increased respiratory rates and higher 
exposure levels during exercise, which can lead to greater inhalation of 
harmful pollutants. Exercise-induced oxidative stress (Powers et al., 
2020) may exacerbate the neurotoxic effects of air pollution and un-
dermine the health benefits of physical activity in the context of higher 
air pollution levels (Pasqua et al., 2018). We additionally observed 
consistently higher OR for the smokers, even if not statistically signifi-
cant, which can be attributed to the high concentration of UFP in smoke. 
This increased exposure may make smokers more susceptible to related 
olfaction and cognitive impairment (Underwood, 2017).

Fig. 2. Associations between selected air pollutants and odor identification for single-exposure main model and two-exposure main model; Odds Ratios (OR) are 
presented for hyposmia or anosmia (odor identification score < 10) vs. normosmia (odor identification score ≥ 10) per interquartile range (IQR) increase in each air 
pollutant (PNC, PM2.5, PM2.5abs, PMcoarse, PM10, NO2, NOx and O3); Error bars present 95 % Confidence Intervals (CI); Main model: each pollutant, sex, age, edu-
cation, income, socioeconomic status, physical activity, smoking status, body mass index and alcohol consumption; PNC = particle number concentration; PM2.5 =

particulate matter (PM) with an aerodynamic diameter less than 2.5 μm; PM2.5abs = PM2.5 absorbance; PMcoarse = PM between 2.5 and 10 μm; PM10 = PM with an 
aerodynamic diameter less than 10 μm; NO2 = nitrogen dioxide; NOx = nitrogen oxides; O3 = ozone; unadjusted: single-exposure main model; adj.: adjusted with a 
second exposure variable additional to the main model.
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Fig. 3. Associations between various air pollutants and odor identification modified by sex, age, physical activity, smoking, body mass index (BMI), subjective odor 
identification ability, urbanization, normalized difference vegetation index (NDVI) and air temperature; Main model was used: minimum model (each pollutant, sex 
and age), education, income, socio-economic status, physical activity, smoking status, body mass index and alcohol consumption; Odds Ratios (OR) are presented for 
hyposmia or anosmia (odor identification score < 10) vs. normosmia (odor identification score ≥ 10) per interquartile range (IQR) increase in each air pollutant 
(PNC, PM2.5, PM2.5abs, PMcoarse, PM10, NO2, NOx and O3); Error bars present 95 % Confidence Intervals (CI); PNC = particle number concentration; PM2.5 = par-
ticulate matter (PM) with an aerodynamic diameter less than 2.5 μm; PM2.5abs = PM2.5 absorbance; PMcoarse = PM between 2.5 and 10 μm; PM10 = PM with an 
aerodynamic diameter less than 10 μm; NO2 = nitrogen dioxide; NOx = nitrogen oxides; O3 = ozone; Stars indicate statistically significant interaction (p-value 
< 0.05).
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In Germany, we were only able to identify one comparable study 
which was published 15 years ago. Ranft et al. found an adverse asso-
ciation between traffic-related air pollution, estimated by the proximity 
of the home address to a busy road, and mild cognitive impairment in 
older women (Ranft et al., 2009). In Europe, two additional studies have 
been published to date, both conducted in Sweden. Andersson et al. 
observed that long-term exposure to PM2.5 improved odor identification 
ability (Andersson et al., 2022), which contradicts most of the literature 
and our own findings. Ekstroem et al. showed that exposure to resi-
dential PM2.5 and NOx over a 5-year period had a negative impact on 
olfaction (Ekström et al., 2022), consistent with our results. All other 
studies have been carried out in the Americas, mostly in the United 
States (US) and Mexico. Ajmani et al. observed that prolonged PM2.5 
exposure was associated with poor olfactory functioning in older US 
urban residents (Ajmani et al., 2016). Similarly, Adams et al. found that 
NO2 was linked with worse olfaction in older US subjects (Adams et al., 
2016), which aligns with our results. Zhang et al. also reported an as-
sociation between PM2.5 and anosmia in middle-aged to older in-
dividuals in the US (Zhang et al., 2021). Cao et al., using data from the 
Sister Study which focused exclusively on women, did not find strong 
evidence connecting PM2.5 and NO2 with reduced odor identification 
(Cao et al., 2023). In contrast, our study showed stronger associations in 
females. In Mexico, studies comparing young and middle-aged subjects 
living in highly polluted cities versus those in less polluted cities re-
ported that residents of the highly polluted cities had worse olfactory 
ability (Guarneros et al., 2009; Hudson et al., 2006). A study in Brazil 
exhibited a strong relationship between high PM10 levels and poor ol-
factory function, with the effects being more pronounced in men 
(Scussiatto et al., 2023). Conversely, our findings indicated that the 
association was stronger in females.

Two reviews (Ajmani et al., 2016; Shehab et al., 2024) have high-
lighted common limitations in previous studies. They noted that previ-
ous studies have used proxies for air pollution exposure, had small 
sample sizes, had potential for significant confounding, and had chal-
lenges in establishing statistically significant associations. Both reviews 
reached similar conclusions and emphasized the need for more 
comprehensive research to address the existing gaps in the evidence. In 
our approach, we employed highly resolved and reliable LUR models for 
assessing air pollution exposure, focusing on traffic-related air pollut-
ants at the residential addresses of our participants. Our study utilized a 
substantial sample size of almost 3,000 subjects and included a 
comprehensive, well-established cohort with an extensive dataset 
covering demographic, lifestyle, socioeconomic, and medical informa-
tion. Additionally, we applied three distinct covariate models to thor-
oughly account for potential confounding factors. As a result of these 
rigorous methodologies, the statistically significant associations we 
found for many air pollutants can be considered robust and reliable.

This study is also subject to some limitations. We lacked data on odor 
threshold and discrimination scores, which prevented a more compre-
hensive olfactory assessment. However, odor identification alone serves 
as a well-established indicator of olfactory dysfunction and an early sign 
of neurodegeneration and is used in most existing research, providing 
reliable insights and meeting our study’s objectives. The use of one- and 
two-pollutant models limited our ability to adopt a holistic exposure 
approach due to the challenge of multi-collinearity, a common issue in 
air pollution and health analyses. Not all environmental variables were 
available for KORA FIT’s examination years (2018 and 2019), and 
exposure periods longer than one-year averages were not considered, 
which may have increased the risk of exposure misclassification. How-
ever, studies conducted in Europe have shown that while overall air 
pollution levels may change over time, the spatial variability of air 
pollutants remains relatively stable over long periods (Eeftens et al., 
2011; Wang et al., 2013; Cesaroni et al., 2012; De Hoogh et al., 2018; 
Brunekreef et al., 2021). The study population comes from a small re-
gion, making it challenging to generalize the findings to populations 
with different demographic or exposure conditions. The population 

does, however, encompass both rural and urban areas. Our study also 
focuses on a specific age range, which may explain the absence of effects 
of aging. While we adjusted for known confounders, the possibility of 
residual confounding due to unmeasured factors or the cross-sectional 
nature of our study, which does not account for time-varying variables 
for example, cannot be entirely ruled out. However, we adjusted for 
multiple confounders in different models and the results remained 
robust. The seasonal variability of O3 may affect its association with 
olfactory function, but our annual exposure averages with comparably 
low concentration levels and small exposure contrasts cannot capture 
this. Future research should incorporate season-specific analyses to 
better understand the impact of O3 on olfactory function.

Recognizing the lack of such analyses at a national level in Germany 
and beyond, as well as the literature gap concerning the use of large and 
comprehensive cohort data, our next step is to build on the presented 
results by conducting a countrywide analysis using data from the 
German National Cohort (NAKO) (Peters et al., 2022). Furthermore, to 
bridge another evidence gap on this topic, we plan to integrate data from 
the KORA (Holle et al., 2005) FFF4 study and combine insights from two 
cohorts (KORA and SALIA (Schikowski et al., 2005) to further enhance 
the current evidence in the field through a longitudinal study.

Researchers in this field should take note of the lack of research 
conducted in Asia, Africa, and Oceania, as well as in multi-country 
studies. Addressing these gaps could yield valuable and insightful con-
tributions to the field. Additionally, it would be beneficial for future 
research to consider the role of neurodegenerative disease status in data 
collection, as olfactory function is closely linked to these conditions. 
Integrating information on neurodegeneration could provide deeper 
insights into the observed associations.

5. Conclusion

This study provides robust evidence for significant associations be-
tween long-term exposure to traffic-related air pollution and impaired 
odor identification, even in regions with comparatively low air pollution 
levels. Additionally, this study found heightened vulnerability among 
females and physically active people. The study results highlight a po-
tential connection between sustained air pollution exposure and cogni-
tive decline and supports the evidence for particle translocation from the 
nose to the brain.
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