
SpectriPy: Enhancing Cross-Language Mass
Spectrometry Data Analysis with R and Python
Marilyn De Graeve 1, Wout Bittremieux 2, Thomas Naake 3, Carolin
Huber 4, Matthias Anagho-Mattanovich 5, Nils Hoffmann 6, Pierre
Marchal 7, Victor Chrone 8, Philippine Louail 1, Helge Hecht 9,
Michael Witting 10,11, and Johannes Rainer 1¶

1 Institute for Biomedicine, Eurac Research, Bolzano, Italy 2 Department of Computer Science,
University of Antwerp, Antwerpen, Belgium 3 Genome Biology Unit, European Molecular Biology
Laboratory (EMBL), Heidelberg, Germany 4 Department of Exposure Science, Helmholtz Centre for
Environmental Research - UFZ, Leipzig, Germany 5 Novo Nordisk Foundation Center for Basic
Metabolic Research, University of Copenhagen, Copenhagen, Denmark 6 Institute for Bio- and
Geosciences (IBG-5), Forschungszentrum Jülich GmbH, Jülich, Germany 7 Department of Medical
Oncology, University of Bern, Bern, Switzerland 8 Alphalyse, Odense, Denmark 9 RECETOX, Faculty of
Science, Masaryk University, Brno, Czech Republic 10 Metabolomics and Proteomics Core, Helmholtz
Zentrum München, Munich, Germany 11 Chair of Analytical Food Chemistry, TUM School of Life
Sciences, Technical University of Munich, Freising-Weihenstephan, Germany ¶ Corresponding author

DOI: 10.21105/joss.08070

Software
• Review
• Repository
• Archive

Editor: Daniel S. Katz
Reviewers:

• @Adafede
• @AnthonyOfSeattle

Submitted: 07 April 2025
Published: 19 May 2025

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Figure 1: SpectriPy package logo

Summary
Mass spectrometry (MS) is a key technology used across multiple fields, including biomed-
ical research and life sciences. The data is often times large and complex, and analyses
must be tailored to the experimental and instrumental setups. Excellent software libraries
for such data analysis are available in both R and Python, including R packages from the
RforMassSpectrometry initiative such as Spectra, MsCoreUtils, MetaboAnnotation, and Com-
poundDb (Rainer et al., 2022), as well as Python libraries like matchms (Huber et al., 2020),
spectrum_utils (Bittremieux, 2020), Pyteomics (Goloborodko et al., 2013), and pyOpenMS
(Röst et al., 2014). The reticulate R package (Ushey et al., 2025) provides an R interface to
Python enabling interoperability between the two programming languages. The open-source
SpectriPy R package builds upon reticulate and provides functionality to efficiently translate
between R and Python MS data structures. It can convert between R’s Spectra::Spectra

and Python’s matchms.Spectrum and spectrum_utils.spectrum.MsmsSpectrum objects and

Graeve et al. (2025). SpectriPy: Enhancing Cross-Language Mass Spectrometry Data Analysis with R and Python. Journal of Open Source
Software, 10(109), 8070. https://doi.org/10.21105/joss.08070.

1

https://orcid.org/0000-0001-6916-401X
https://orcid.org/0000-0002-3105-1359
https://orcid.org/0000-0001-7917-5580
https://orcid.org/0000-0002-9355-8948
https://orcid.org/0000-0001-7561-7898
https://orcid.org/0000-0002-6540-6875
https://orcid.org/0009-0006-6567-6257
https://orcid.org/0009-0007-2121-4066
https://orcid.org/0009-0007-5429-6846
https://orcid.org/0000-0001-6744-996X
https://orcid.org/0000-0002-1462-4426
https://orcid.org/0000-0002-6977-7147
https://doi.org/10.21105/joss.08070
https://github.com/openjournals/joss-reviews/issues/8070
https://github.com/rformassspectrometry/SpectriPy
https://doi.org/10.5281/zenodo.15461604
http://danielskatz.org/
https://orcid.org/0000-0001-5934-7525
https://github.com/Adafede
https://github.com/AnthonyOfSeattle
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.08070


includes functionality to directly apply spectral similarity, filtering, normalization, etc. routines
from the Python matchms library on MS data in R. SpectriPy hence enables and simplifies the
integration of R and Python for MS data analysis, empowering data analysts to benefit from
the full power of algorithms in both programming languages. Furthermore, software developers
can reuse algorithms across languages rather than re-implementing them, enhancing efficiency
and collaboration.

Statement of need
Over the past decade, tremendous efforts have been made to develop powerful algorithms and
excellent data analysis software for MS data analysis. Each of these software packages covers
different and in part complementary aspects in the analysis of MS data, but their integration
into a single workflow remains a challenge, in particular across programming languages. To
avoid the need for repeated implementation of algorithms in different programming languages
we developed the SpectriPy package. By leveraging R’s reticulate package, and translating
between R and Python MS data structures, this package enables seamless cross-language
integration of MS data analysis algorithms within unified analysis workflows.

Description
Reproducible examples and use case analyses on how to share and translate MS data structures
between R and Python, and combined Python and R-based analysis workflows for LC-MS/MS
data annotation enabled by SpectriPy can be found in the package’s vignette and in one of
the example workflows of the Metabonaut resource (Louail & Rainer, 2025). In this paper, we
primarily focus on the technical details and features of the package.

Installation
During installation, SpectriPy automatically configures a Python environment and installs all
required libraries. The installation can be configured through several environment variables that
also allow users to disable the automatic setup and instead use an available Python environment
of the host system. Detailed installation instructions can be found in the package’s GitHub
repository and in the package’s vignette.

Translating MS data objects between R and Python
As its core functionality, SpectriPy allows translation between R and Python MS
data structures. In particular, SpectriPy provides the functions rspec_to_pyspec()

and pyspec_to_rspec() to convert between R’s Spectra::Spectra and Python’s
matchms.Spectrum and spectrum_utils.spectrum.MsmsSpectrum objects. These functions
also handle the conversion, and any required renaming and reformatting of spectra metadata,
such as MS level, retention times, or any other arbitrary metadata available in the MS data
object. An example combined R-Python data analysis workflow, which can be realized using
the Quarto system is provided in the following code snippets. In this particular example we
start the analysis in Python, loading and processing the MS data with functions from the
matchms library.

#' Python session:

#' Import data and perform initial processing

import matchms

import matchms.filtering as mms_filt

from matchms.importing import load_from_mgf

mgf_py = list(load_from_mgf(<MGF file>))

Graeve et al. (2025). SpectriPy: Enhancing Cross-Language Mass Spectrometry Data Analysis with R and Python. Journal of Open Source
Software, 10(109), 8070. https://doi.org/10.21105/joss.08070.

2

https://rformassspectrometry.github.io/Metabonaut/articles/SpectriPy_tutorial_metabonaut.html
https://doi.org/10.21105/joss.08070


#' Scale intensities

for i in range(len(mgf_p)):

mgf_py[i] = mms_filt.normalize_intensities(mgf_py[i])

To continue the analysis in R, we could either translate to full MS data to R using the
pyspec_to_rspec() function, or, as shown in the code block below, create a Spectra::Spectra

object using SpectriPy ’s MsBackendPy backend class. This class acts as an interface to the
MS data in the associated Python session. All data from the referenced Python data object is
accessible in R, with the entire or subsets of the data translated on-the-fly from Python to R
only upon request. This strategy ensures memory efficiency and minimizes the number of data
copies.

#' R session:

#' Create an R data object for the MS data in the associated Python session

library(Spectra)

library(SpectriPy)

sps <- Spectra("mgf_py", source = MsBackendPy())

#' Retrieve the MS peaks data for the 1st spectrum

peaksData(sps[1])

The use of the MsBackendPy enables thus seamless and, compared to the alternative
pyspec_to_rspec(), more memory-efficient integration of Python MS data objects into R for
powerful cross-language analysis workflows.

Integrated functionality from the matchms Python library
SpectriPy ’s compareSpectriPy() and filterSpectriPy() functions allow spectra comparison,
and filtering and processing routines, respectively, from the matchms Python library to be called
directly from R. These functions internally translate the MS data from a Spectra::Spectra

object to the respective Python MS data structures, execute the Python functions, and collect
and convert the results to R data types, enabling the integration of functionality from the
matchms Python library directly into R-based analysis workflows.

As such, SpectriPy provides an easy way to compare spectra similarity functions from commonly-
used R and Python libraries, e.g. during LC-MS/MS data annotation. As an example, the
Cosine (i.e., Dot product) and Cosine Hungarian similarity scores are compared between
two sets of spectra, calculated with Spectra’s built-in compareSpectra() and SpectriPy ’s
compareSpectriPy() calling the CosineHungarian function from matchms, respectively.

#' R session:

#' Calculate similarity scores

res_cosine <- compareSpectra(sps1, sps2)

res_cosinehungarian <- compareSpectriPy(

sps1, sps2, param = CosineHungarian(tolerance = 0.1))

#' Plot the similarity scores

plot(res_cosine, res_cosinehungarian, pch = 21, col = "#000000ce",

bg = "#00000060", xlab = "Dot product", ylab = "Cosine Hungarian")

grid()

Graeve et al. (2025). SpectriPy: Enhancing Cross-Language Mass Spectrometry Data Analysis with R and Python. Journal of Open Source
Software, 10(109), 8070. https://doi.org/10.21105/joss.08070.

3

https://doi.org/10.21105/joss.08070


Figure 2: Comparison of different spectra similarity scores calculated with either the Spectra R package
or the Python matchms library.

Perspective
SpectriPy started as a collaboration of R and Python developers, with the latest contributions
added during the EuBIC-MS Developers Meeting in 2025. Collaborative development will be
further encouraged to extend SpectriPy with additional functionality (e.g., advanced spectra
similarity matching methods spec2vec and ms2deepscore), support for additional libraries (e.g.,
Pyteomics, pyOpenMS), and data structures. New use cases will be integrated into larger
interactive tutorial frameworks such as the Metabonaut resource (Louail & Rainer, 2025),
enabling users to seamlessly integrate R and Python into their MS data analysis pipelines.

Ultimately, the long-term goal is to promote cross-language compatibility and reproducibility
in computational mass spectrometry. By leveraging the strengths of both R and Python,
SpectriPy will help develop flexible and efficient MS data analysis workflows, reduce redundancy
and promote innovation in the field.

Acknowledgements
The authors declare that they do not have any competing financial or personal interests that
could have influenced the work reported in this paper. Part of this work was supported by
the European Union HORIZON-MSCA-2021 project 101073062: “HUMAN - Harmonizing
and unifying blood metabolic analysis networks” to Philippine Louail, Johannes Rainer and
Micheal Witting. Helge Hecht thanks the RECETOX Research Infrastructure (No LM2023069)
financed by the Ministry of Education, Youth and Sports for supportive background. Part of
this project was supported from the European Union’s Horizon 2020 research and innovation
programme under grant agreement 857560 (CETOCOEN Excellence) and from the Horizon
Europe programme under grant agreement 101079789 (EIRENE PPP). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of

Graeve et al. (2025). SpectriPy: Enhancing Cross-Language Mass Spectrometry Data Analysis with R and Python. Journal of Open Source
Software, 10(109), 8070. https://doi.org/10.21105/joss.08070.

4

https://doi.org/10.21105/joss.08070


the European Union or European Research Executive Agency (REA). Neither the European
Union nor the granting authority can be held responsible for any use that may be made of the
information it contains.

References
Bittremieux, W. (2020). Spectrum_utils: A Python package for mass spectrometry data

processing and visualization. Analytical Chemistry, 92(1), 659–661. https://doi.org/10.
1021/acs.analchem.9b04884

Goloborodko, A. A., Levitsky, L. I., Ivanov, M. V., & Gorshkov, M. V. (2013). Pyteomics–a
Python framework for exploratory data analysis and rapid software prototyping in proteomics.
Journal of the American Society for Mass Spectrometry, 24(2), 301–304. https://doi.org/
10.1007/s13361-012-0516-6

Huber, F., Verhoeven, S., Meijer, C., Spreeuw, H., Castilla, E., Geng, C., Van Der Hooft,
J., Rogers, S., Belloum, A., Diblen, F., & Spaaks, J. (2020). Matchms - processing and
similarity evaluation of mass spectrometry data. Journal of Open Source Software, 5(52),
2411. https://doi.org/10.21105/joss.02411

Louail, P., & Rainer, J. (2025). Rformassspectrometry/metabonaut: Metabonaut version 1.0.0
(Version v1.0.0). Zenodo. https://doi.org/10.5281/ZENODO.15062930

Rainer, J., Vicini, A., Salzer, L., Stanstrup, J., Badia, J. M., Neumann, S., Stravs, M.
A., Verri Hernandes, V., Gatto, L., Gibb, S., & Witting, M. (2022). A modular and
expandable ecosystem for metabolomics data annotation in R. Metabolites, 12(2), 173.
https://doi.org/10.3390/metabo12020173

Röst, H. L., Schmitt, U., Aebersold, R., & Malmström, L. (2014). pyOpenMS: A Python-based
interface to the OpenMS mass-spectrometry algorithm library. Proteomics, 14(1), 74–77.
https://doi.org/10.1002/pmic.201300246

Ushey, K., Allaire, J., & Tang, Y. (2025). Reticulate: Interface to ’Python’. https://doi.org/
10.32614/CRAN.package.reticulate

Graeve et al. (2025). SpectriPy: Enhancing Cross-Language Mass Spectrometry Data Analysis with R and Python. Journal of Open Source
Software, 10(109), 8070. https://doi.org/10.21105/joss.08070.

5

https://doi.org/10.1021/acs.analchem.9b04884
https://doi.org/10.1021/acs.analchem.9b04884
https://doi.org/10.1007/s13361-012-0516-6
https://doi.org/10.1007/s13361-012-0516-6
https://doi.org/10.21105/joss.02411
https://doi.org/10.5281/ZENODO.15062930
https://doi.org/10.3390/metabo12020173
https://doi.org/10.1002/pmic.201300246
https://doi.org/10.32614/CRAN.package.reticulate
https://doi.org/10.32614/CRAN.package.reticulate
https://doi.org/10.21105/joss.08070

	Summary
	Statement of need
	Description
	Installation
	Translating MS data objects between R and Python
	Integrated functionality from the matchms Python library

	Perspective
	Acknowledgements
	References

