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Abstract. Gene-based rare variant association tests (RVATs) are essen-
tial for uncovering disease mechanisms and identifying potential drug
targets. However, existing RVAT methods often rely on rigid models or
analyze single annotations in isolation, lacking flexible frameworks that
integrate multiple variant annotations. To address this, we introduce
BayesRVAT, a Bayesian framework for RVAT that models variant effects
as a function of multiple annotations. BayesRVAT accommodates diverse
genetic architectures by enabling the specification of priors on variant
effects and estimates gene-trait-specific burden scores through variational
inference, yielding well-calibrated P values via a novel approximate like-
lihood ratio test. We benchmark the framework as a burden test in
simulations and in real data applications from the UK Biobank, demon-
strating that BayesRVAT outperforms other state-of-the-art burden test
strategies. Our results reveal novel biologically meaningful associations,
underscoring BayesRVAT’s potential for accelerating genetic discoveries.
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1 Introduction

Gene-based rare variant association studies (RVATs) focus on rare variants likely
to impact protein function, providing a more interpretable path to understanding
disease biology compared to common variant association studies [8, 31]. Tradi-
tionally, RVATs have been performed using burden tests, which aggregate likely
pathogenic variants based on functional annotations into a gene burden score
and then regress these scores against trait values across individuals in a formal
gene-level association test [2, 18, 19, 29, 25, 5]. Recent burden test models aim
to capture the concept of an allelic series [31, 9], where progressively larger
functional impacts of rare variants within a gene lead to correspondingly stronger
phenotypic effects [32]. However, these approaches are often restricted to a lim-
ited set of consequence annotations or impose fixed aggregation schemes across
multiple genes and traits, potentially missing gene- and trait-specific nuances.

To address these limitations, we present BayesRVAT, a Bayesian framework
for RVAT that enables, for the first time, the flexible aggregation of multiple
variant annotations without enforcing a universally fixed scheme across genes
and traits. BayesRVAT introduces priors on aggregation parameters and infers a
posterior distribution for each analyzed gene and trait. Additionally, by modeling
uncertainty in the aggregation parameters, BayesRVAT produces well-calibrated
association P values using a novel approximate likelihood ratio test. Through
simulations and analysis of twelve blood traits from the UK Biobank (UKB), we
demonstrate that BayesRVAT outperforms other burden test strategies, showcas-
ing the value of our framework in uncovering novel genetic associations.

2 Related work

Burden tests. While our Bayesian RVAT framework is general, we here specialize
it to perform burden tests. Burden tests aggregate the effects of rare variants into
a gene burden score to improve statistical power. This score is then regressed
against a trait of interest in a formal test [8, 25, 24, 35, 40, 36]. While traditional
burden tests have been limited to few annotations such as minor allele frequency
(MAF) and variant consequences [14, 25], BayesRVAT can integrate multiple
annotations leveraging a Bayesian framework.

Allelic series. BayesRVAT can model gene-level effects as a function of multi-
ple rare variants and their functional annotations, effectively capturing allelic
series. The term “allelic series” refers to a collection of variants within a gene
that exhibit a gradation of phenotypic effects based on their severity, suggest-
ing a dose-response relationship between gene functionality and the resulting
phenotype [39, 37]. As allelic series enable the assessment of the feasibility of
pharmacological modulation [37, 10, 31], methods that can accurately capture
these relationships are of significant interest. For example, COAST models allelic
series by weighting variants based on the expected deleteriousness of few func-
tional consequences [31]. Conversely, DeepRVAT uses a data-driven approach to
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BayesRVAT: Bayesian Rare Variant Association Testing 3

learn a trait-gene-agnostic aggregation function from multiple annotations using
neural networks [9]. In contrast to these methods, BayesRVAT can handle larger
sets of variant annotations without enforcing a universally fixed scheme across
genes and traits.

Variance component models. In contrast to burden tests, which assume a
uniform effect direction across all variants, variance component approaches allow
for both deleterious and protective effects by employing random effect models.
The most widely used variance component test for rare variants is SKAT [48].
Given the complementary strengths of burden and variance component tests [3],
omnibus tests that combine both, such as SKAT-O [23], have become increasingly
popular[34, 26, 53]. In this work, we demonstrate that BayesRVAT integrates
smoothly within omnibus test procedures, maintaining its power advantages over
other integrated burden tests.

Bayesian inference. BayesRVAT performs Bayesian inference on parameters
modeling variant effects as a function of multiple annotations. Given the in-
tractability of exact posterior computation, we use black-box variational infer-
ence [41], which reformulates the inference problem as an optimization task,
directly optimizing a variational distribution to approximate the true posterior
using gradient-based methods [4, 43, 21, 11, 45]. While Bayesian methods for
RVAT have been previously explored [50, 46, 28, 51], BayesRVAT is the first
unified Bayesian framework that can incorporate multiple genetic architectures
and variant annotations.

3 Method

3.1 The RVAT framework

Gene-level RVATs aggregate selected rare variants within a gene to assess their
collective association with a trait of interest. Formally, given trait values y ∈ RN×1

for N individuals, genotype matrix X = [x1, . . . ,xN ]T ∈ RN×S for S rare
variants in the gene under investigation, annotation matrix A ∈ RS×L comprising
L annotations for these S variants, and covariate matrix F ∈ RN×K for K factors
(e.g., age and sex), the model for gene-level RVAT can be written as

y ∼ N
(
Fα+ g(X,A)β, σ2

nI
)
. (1)

Here α ∈ RK×1 are the covariate effects, g(X,A) = [g(x1,A), . . . , g(xN ,A)]T ∈
RN×1 is the vector of gene burden scores obtained by aggregating variants based
on their annotations through the aggregation function g, β is the effect size of
the gene burden score, and σ2

n is the residual variance. Within this framework,
the association between the gene burden score and the phenotype can be assessed
by testing whether β ̸= 0. Several widely-used RVAT models can be expressed in
this form, each making different assumptions about the aggregation function g:
burden tests use sum- or max-pooling on selected variants[8, 25, 24, 35, 40, 36],
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Fig. 1: Overview of the BayesRVAT framework. (a) In rare variant association
studies (RVAT), rare variants X and their annotations A are aggregated into a gene
burden score, which is tested for association with the phenotype y. BayesRVAT explicitly
introduces aggregation function gϕ(X,A) and a prior over aggregation parameters ϕ.
(b) BayesRVAT enables scalable gene burden testing accounting for multiple annotations.
(c) It also provides annotation importance scores (AIS) for each analyzed gene-trait
pair.

variance component models consider additive random variant effects [48], while
DeepRVAT employs a pretrained neural network function [9]. In contrast, in
BayesRVAT, g is a flexible function of multiple variant annotations with Bayesian
priors on its parameters.

3.2 A Bayesian framework for RVAT

In BayesRVAT, we parameterize the aggregation function gϕ with parameters ϕ
and introduce a prior distribution p(ϕ) that incorporates our prior beliefs on how
to aggregate variants into a burden score based on their annotations (Figure
1a). Introducing compact notations for input data D = {F ,X,A} and model
parameters θ = {α, β, σ2

n}, the model marginal likelihood can be written as

p(y | D,θ) =

∫
p(y | D,θ,ϕ) p(ϕ) dϕ (2)

=

∫
N
(
y
∣∣Fα+ gϕ(X,A)β, σ2

nI
)
p(ϕ) dϕ. (3)

We note that our Bayesian framework allows the data for each gene and trait
to update these prior beliefs, effectively adapting the posterior on aggregation
parameters ϕ to the specific gene/trait pair being analyzed.

Optimization. The optimization of model parameters θ by maximum likelihood
is intractable for a general aggregation function gϕ(X,A) due to the integral
over ϕ. To address this, we use black-box variational inference [41], which approx-
imates the true posterior p(ϕ | y,D,θ) with a simpler variational distribution
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qψ(ϕ) parameterized by ψ. Within this framework, we optimize both the model
parameters θ and the variational parameters ψ by maximizing the Evidence
Lower Bound (ELBO):

ELBO(θ,ψ) = Eqψ(ϕ)

[
log p(y | D,θ,ϕ)− log

qψ(ϕ)

p(ϕ)

]
, (4)

which provides a lower bound on the log marginal likelihood of the data. We
assume a mean-field Gaussian variational posterior for qψ(ϕ) and approximate
the expectation using Monte Carlo sampling. To optimize the ELBO, we use
gradient descent with the reparameterization trick to propagate gradients through
the Monte Carlo estimator [43, 21]. By maximizing the ELBO, we jointly estimate

the values of θ̂ and the variational parameters ψ̂, providing approximations of
the maximum likelihood estimator of θ and the exact posterior distribution,
respectively.

Association testing. Within the BayesRVAT framework in Eq (3), we can assess
associations between gene burden scores and trait values by testing the hypothesis
β ̸= 0 (Figure 1b). As the likelihood ratio test statistic is intractable due to
the integral over ϕ in the alternative hypothesis, we introduce an approximate
Likelihood Ratio Test statistic. Briefly, we replace the intractable log marginal like-
lihood under the alternative hypothesis with the importance-weighted variational
evidence lower bound (IW-ELBO) [6]:

IW-ELBO(θ̂, ψ̂) = Eϕ1,...,ϕK∼qψ̂(ϕ)

[
log

(
1

K

K∑
k=1

p(y | D, θ̂,ϕk) p(ϕk)

qψ̂(ϕk)

)]
, (5)

which is computed using the approximate maximum likelihood estimators θ̂ and
the variational posterior qψ̂(ϕ), obtained by optimizing the ELBO. The IW-
ELBO is a tighter bound on the log marginal likelihood compared to the standard
ELBO, leading to more accurate P values. We note that this approximation
yields conservative P values as it replaces the log marginal likelihood under the
alternative hypothesis with its lower bound, while the log marginal likelihood
under the null hypothesis can be computed exactly. Consequently, this leads to
lower test statistics than an exact likelihood ratio test, and thus, conservative P
values.

Annotation Importance Scores. Similar to sensitivity analysis [15], we can
evaluate the importance of a set of annotations by comparing the gene burden
scores computed using all annotations (denoted as A1) with the scores obtained
by setting a subset of annotations to their median values (denoted as A0).
Specifically, we compute the expected value of the difference between these two
burden scores:

s = Eϕ∼qψ̂(ϕ)[gϕ(X,A1)− gϕ(X,A0)]. (6)

The result s ∈ RN×1 quantifies how much each individual’s gene burden is
influenced by the annotations under investigation. We refer to these scores as
Annotation Importance Scores (AIS, Figure 1c).
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3.3 Specialization to Bayesian burden test

While the introduced framework is general and can be applied to a variety
of RVAT models by choosing different forms of g, we here specialize it to the
gene burden test, where we aggregate variant effects based on their functional
annotations rather than individual variant effects.

Choice of aggregation function. After preprocessing annotations A to ensure
that higher values correspond to more deleterious effects (Supplementary
Information), we assume linear variant effects in A and use an additive model
with saturation to collapse the contributions of multiple variants into a single
gene burden score:

gϕ(X,A) = sigmoid(X(Aϕ)− b0). (7)

Here, b0 is a bias term that ensures individuals carrying no rare variants receive
a burden score close to zero. The sigmoid function introduces a saturation
mechanism, reflecting the biological intuition that once gene function is sufficiently
impaired, additional variant effects do not further increase the burden. This choice
of g specializes BayesRVAT to a burden test, as the parameters ϕ capture the
effects of different annotations rather than individual variants, which is a key
characteristic of burden tests.

Choice of Priors. We set priors on the parameters ϕ to reflect biological
knowledge about the expected effects of different annotations (Supplementary
Figure 1). For example, we apply strong priors to pLoF variants, ensuring that
carriers are highly likely to receive a gene burden score close to one. In contrast,
for other non-synonymous variants, we use weaker priors with greater variability,
accounting for the uncertainty on their effects. For functional, regulatory and
splicing annotation scores, we apply priors that allow moderate, positive adjust-
ments to the burden score. Full details on the choice of priors are provided in
Supplementary Information.

3.4 Implementation Details

We implemented BayesRVAT using PyTorch, leveraging its automatic differen-
tiation capabilities for optimization. For optimizing the ELBO, we initialized
the variational parameters ψ to match the prior p(ϕ), randomly initialized the
effect sizes of covariates α and the gene-level effect β to ≈ 0, and the residual
variance σ2

n to one. We used the Adam optimizer with a learning rate of 1× 10−2,
operating in full-batch mode. To approximate the expectation in the ELBO,
we used a single Monte Carlo sample per gradient step. The optimization was
performed for a maximum of 5,000 gradient steps; however, we terminated the
optimization after 1,000 steps if the P value exceeded 0.05, indicating a lack of
signal. For estimating the IW-ELBO to compute P values during association
testing, we approximated the outer expectation by averaging 64 Monte Carlo
estimates, each using K = 8 importance samples. Notably, the accuracy of the
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resulting P values can be adjusted by varying the number of importance samples
(Supplementary Figure 6). Finally, for calculating the annotation importance
scores, we computed the expectations of burden score differences over 64 Monte
Carlo samples. In real data analyses, traits were rank-inverse transformed to a
unit Gaussian distribution—a standard practice in genetic analyses[38, 30].

4 Experiments

4.1 Dataset preprocessing and variant annotations.

All experiments were performed using the UKB cohort [7], based on the latest
release of the whole-exome sequencing (WES) data. Individual and variant
quality control (QC) was conducted following the protocols described in the
GeneBass study [19]. For variant annotations, we used the same set of annotations
considered in [9], which we ultimately collapsed into 25 annotations: three based
on variant consequences(pLoF 5, missense and other non-synonymous variants,
using VEP [33]), MAF, five functional impact scores (CADD [42], SIFT [22],
PolyPhen-2 [1], PrimateAI [44], and Condel [13]) , two splicing impact predictions
(SpliceAI [16] delta score and the AbSpliceDNA [47] score), eight RNA-binding
protein binding propensity scores (delta scores from DeepRiPE [12]), and six
regulatory annotations (principal components of DeepSEA [52] delta embeddings).
We used the phred scale to encode each annotation, ensuring that higher values
corresponded to higher pathogenicity[26]. The processed dataset consisted of
329,087 unrelated European individuals, 5,845,828 variants with MAF ≤ 0.1%,
16,458 genes, and 25 variant annotations. Full details on the individual and
variant quality control (QC) and the preprocessing of the variant annotations
can be found in Supplementary Information.

4.2 Methods Considered

We compared BayesRVAT with several commonly used burden score strategies:

– pLoF: A burden test based on the sum of pLoF variants;
– ACAT-Conseq: Burden tests were performed separately for the sum of

pLoF, missense, and other non-synonymous variants, and the results were
aggregated using the Aggregated Cauchy Association Test (ACAT) [27]. This
approach is similar to the allelic series burden test model described in [31];

– ACAT-MultiAnnot: Burden tests were performed across all consequence
categories and continuous annotations used in BayesRVAT, resulting in a
total of 25 tests per gene. These results were then aggregated using the ACAT
method. This strategy is similar to the burden test implemented in [26].

All burden tests were implemented as likelihood ratio tests within a linear model
framework, adjusting for age, sex, the top twenty genetic principal components
and WES batch effect covariates (Supplementary Information).

5 pLoF is defined as any of the following variant consequences: splice donor, frameshift,
splice acceptor, stop gained, stop lost or start lost.
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Fig. 2: Evaluation of calibration and power in BayesRVAT using synthetic data.
(a) QQ plot assessing the calibration of P values from BayesRVAT on synthetic data
generated under the null model with no genetic effects. (b) Statistical power comparison
between BayesRVAT, pLoF burden test, ACAT-Conseq and ACAT-MultiAnnot across
varying numbers of contributing continuous annotations: simulating only effects from
pLoF and missense consequences (C), and considering additional effects from 1, 2, 5,
10, and 15 continuous annotations. Power is measured at the exome-wide significance
threshold of P < 2.5× 10−6, computed over 100 replicates for each scenario.

4.3 Simulations

Simulation Setup. We used synthetic data to assess both the calibration
and power of BayesRVAT under various simulated conditions, based on 100,000
individuals from the processed UKB cohort. To evaluate power, we simulated
additive genetic effects from a gene burden test using the additive model with
saturation in Eq 7. We varied key parameters such as sample size, variance
explained by the burden, and the number of continuous annotations contributing
to the burden score. Power was estimated at the exome-wide significance threshold
of P < 2.5×10−6, with 100 replicates performed for each simulation configuration.
To assess calibration, we simulated phenotypes under a null model with no genetic
effects. Full details on the simulation procedures are provided in Supplementary
Information.

Results. BayesRVAT showed well-calibrated P values when simulating under the
null model with no genetic effects (Figure 2a). In power assessments, BayesR-
VAT maintained robustness across various numbers of contributing annotations,
showing resilience to the inclusion of non-informative annotations (Figure 2b).
Furthermore, as the number of causal annotations increased, BayesRVAT con-
sistently outperformed alternative methods, sustaining higher power in more
complex genetic architectures with many contributing annotations (Figure 2b).
The superior performance of BayesRVAT was maintained across varying sample
sizes and levels of variance explained by genetics (Supplementary Figure 2).

4.4 Analysis of blood biomarkers

Setup. We applied BayesRVAT to analyze twelve key blood traits from the
UKB cohort (Supplementary Information). We compared the performance of
BayesRVAT with the pLoF, ACAT-Conseq and ACAT-MultiAnnot burden tests.
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Fig. 3: Analysis of blood biomarkers in the UK Biobank. (a) Number of significant
gene-trait associations (Bonferroni-adjusted P < 0.05) discovered by BayesRVAT,
ACAT-MultiAnnot, ACAT-Conseq, and pLoF burden tests for each analyzed blood
trait. (b) Cumulative number of discoveries at varying Bonferroni-adjusted significance
thresholds α. (c) QQ plot showing the distribution of P values from BayesRVAT in real
data and under a null with permuted genotype data, confirming well-calibrated P values.
(d) Burden scores learned by BayesRVAT for ANGPTL4 and HDL cholesterol across
burden percentiles, showing individuals carrying pLoF mutations in red. (e) Annotation
importance scores (AIS) from BayesRVAT for the association between ANGPTL4 and
HDL cholesterol, which highlights contributions from missense, SIFT, DeepRiPE, and
DeepSEA annotations.

Results. BayesRVAT identified a greater number of significant gene-trait as-
sociations compared to other methods (132 for BayesRVAT vs 120 for ACAT-
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10 Nappi et al.

Fig. 4: Integration of BayesRVAT and other burden tests with variance
component models. Comparison of cumulative significant gene-trait discoveries
(Bonferroni-adjusted P < 0.05) across various methods: BayesRVAT + SKAT, ACAT-
MultiAnnot + SKAT, ACAT-Conseq + SKAT, and pLoF + SKAT. We also report
BayesRVAT without SKAT integration, highlighting its superior performance compared
to other optimal tests even without SKAT integration.

MultiAnnot, 94 for ACAT-Conseq, and 88 for pLoF; Bonferroni-adjusted P < 0.05;
Figure 3a-b; Supplementary Figure 3), while demonstrating well-calibrated
P values under the null, obtained permuting genotype data (Figure 3c). Interest-
ingly, BayesRVAT consistently outperformed the ACAT-MultiAnnot burden test
(Supplementary Figure 3), except in cases where strong deviations from the
allelic series assumptions occurred—such as when other annotations had stronger
effects than pLoF variants (Supplementary Figure 4). Among the associations
uniquely identified by BayesRVAT, several showed strong biological relevance. For
instance, BayesRVAT uniquely detected an association between ANGPTL4 and
HDL cholesterol (BayesRVAT-P < 5× 10−7 vs ACAT-MultiAnnot-P > 5× 10−6

vs pLoF-P > 5 × 10−4). ANGPTL4 is a key regulator of lipid metabolism,
inhibiting lipoprotein lipase, which affects triglyceride breakdown and HDL
cholesterol levels, with certain variants associated with increased HDL and cardio-
vascular protection [49]. In this case, BayesRVAT’s burden score assigned higher
weight to annotations beyond loss-of-function (pLoF) mutations (Figure 3d),
with AIS scores indicating contributions from missense, SIFT, DeepRiPE, and
DeepSEA annotations (Figure 3e). Additional interesting hits are presented in
Supplementary Figure 5.

4.5 Optimal test integrating BayesRVAT burden with variance
component tests

To further evaluate the performance of BayesRVAT, we integrated it into an
optimal test that combines both burden and the SKAT variance component
model. Following recent methodologies [31, 26, 9], we used ACAT to combine
the burden and SKAT test results. This approach is equivalent to the optimal
SKAT test SKAT-O initially introduced in [23]. We compared the performance of
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BayesRVAT + SKAT against other optimal tests integrating alternative burden
models with SKAT, including pLoF, ACAT-Conseq, and ACAT-MultiAnnot.
Even without SKAT integration, BayesRVAT outperformed all other methods (164
for BayesRVAT vs 145 for ACAT-MultiAnnot + SKAT, 126 for ACAT-Conseq +
SKAT, and 124 for pLoF + SKAT; Bonferroni-adjusted α = 0.05; Figure 4).
When integrated with SKAT, BayesRVAT showed a modest further improvement,
identifying 4 additional significant associations (Bonferroni-adjusted α = 0.05;
Figure 4).

5 Discussion

In this work, we introduced BayesRVAT, a new Bayesian model for RVAT. By
leveraging variational inference and an approximate likelihood ratio test for asso-
ciation testing, BayesRVAT provides a flexible framework that can accommodate
multiple aggregation functions and prior assumption. We specialized BayesRVAT
to a Bayesian burden test and demonstrated its utility through synthetic and real
data analyses. In real data, BayesRVAT identified multiple biologically meaningful
hits missed by other approaches. For example, BayesRVAT uniquely identified
associations such as ANGPTL4 with HDL cholesterol (Figure 3d-e), consistent
with ANGPTL4 ’s established role in lipid metabolism [49]. It also detected
associations between EPB42 and glycated hemoglobin (Supplementary Figure
5), in line with recent findings linking EPB42 variants to glycemic traits [20],
and between NPC1L1 and apolipoprotein B (Supplementary Figure 5), re-
flecting its impact on lipid transport and metabolism [17]. Additionally, when
integrated with variance component models (e.g., SKAT), BayesRVAT continued
to outperform alternative models, demonstrating broad applicability.

In ongoing work, we are exploring priors that model individual variant’s
effects rather than effects from variant annotations, an approach that provides
flexibility similar to omnibus methods integrating burden and variance component
tests [34, 26, 23]. We are also using BayesRVAT to investigate the benefits and
limitations of learning posteriors across genes and traits, inspired by recent
advances in RVAT methodologies [9]. Lastly, we aim to leverage BayesRVAT to
study traits where traditional RVATs have been less successful, such as psychiatric
conditions and imaging-derived phenotypes.
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