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Abstract—The rapidly growing field of single-cell transcrip-
tomic sequencing (scRNAseq) presents challenges for data anal-
ysis due to its massive datasets. A common method in manifold
learning consists in hypothesizing that datasets lie on a lower
dimensional manifold. This allows to study the geometry of point
clouds by extracting meaningful descriptors like curvature. In
this work, we will present Adaptive Local PCA (AdaL-PCA), a
data-driven method for accurately estimating various notions of
intrinsic curvature on data manifolds, in particular principal
curvatures for surfaces. The model relies on local PCA to estimate
the tangent spaces. The evaluation of AdaL-PCA on sampled
surfaces shows state-of-the-art results. Combined with a PHATE
embedding, the model applied to single-cell RNA sequencing data
allows us to identify key variations in the cellular differentiation.

Index Terms—Principal curvature, Gaussian curvature, single-
cell, principal directions.

I. INTRODUCTION

The estimation of principal curvatures and principal di-
rections is crucial in uncovering directional changes within
data manifolds. Indeed, the mean and Gaussian curvatures
of surfaces have been studied for several decades in com-
puter graphics and some related areas (e.g., [1]–[5]). Re-
cent methods have proposed to estimate curvature over data
manifolds derived from point-cloud data via manifold learn-
ing techniques (e.g., [6]–[8]). However, achieving precision
is challenging given the variations in data density and the
necessity for high-quality samplings. To address this, various
methods have been developed. Volume-based approaches like
diffusion curvature by [9] and [10] heavily depend on ac-
curate distance estimations. Laplace–Beltrami operator-based
approaches, as explored in [11] and [9] encounter limitations
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in accurately estimating curvature from small sample sizes.
Second Fundamental Form-based approaches, as proposed in
[11], demonstrate relatively high-quality curvature estimation
for scalar curvature. However, they rely on fixed parameters
for neighborhood selection. We introduce adaptability into the
estimation process, addressing the challenges associated with
variable data density and the absence of intrinsic curvature
information by dynamically adjusting parameters based on the
local properties of the manifold. This ensures robustness across
diverse manifolds. Our main contributions are:

• We estimate the point-wise Gaussian curvature of point
clouds and their underlying principal curvatures, i.e. How
much the data curves and in which directions it curves the
most.

• We dynamically adjust neighborhood scales for local
PCA and curvature estimation based on the explained
variance ratio. This ensures accurate predictions without
requiring hand-tuning of the parameters.

• We demonstrate the fidelity of our method relative to
ground truth (Gaussian and mean) curvatures on canoni-
cal 2-manifolds.

• We illustrate its application to single-cell data analysis,
where principal curvatures suggest the directions of cell
differentiation.

II. METHODS

For differential geometry preliminaries, we refer the reader
to [12], as an extensive introduction to this topic would be
beyond the scope of this work and its succint presentation.

A. Local PCA

Our method starts with Local PCA as described in [13].
Given a point cloud x1, · · · , xm, we select a neighborhood
Nxi,ϵPCA := {xj : 0 < ∥xj − xi∥ < ϵPCA} around each
point xi for a hyperparameter ϵPCA > 0 that has to be
determined. Each data matrix containing the neighbors of a
point xi is shifted to be centered around xi to get a matrix
Xi =

[
xi1 − xi, . . . , xiNi

− xi

]
where Ni := |Nxi,ϵPCA |. Then,

the columns of Xi are rescaled to Bi = XiDi by applyingIC
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Algorithm 1 Adaptive Local PCA (AdaL-PCA)
Input: Point cloud data x1, . . . , xm ∈ R3, query point p,
kernel function K with supports in [0,1], data bound δ (max-
imum pairwise distance in data), ratio bound ρ0 ∈ (0, 1) for
choosing size of PCA neighborhood.
for r ∈ (0, 0.2δ] do
(Np,r,Dr)← {(q, ∥q − p∥) : 0 < ∥q − p∥ < r}
X← Np,r − p
D← diag(

√
K(Dr/r))

B← DX
UΣVT ← SVD(B)

ρ(r)←
{∑2

i=1 σ
2
i

/∑3
i=1 σ

2
i : σi ∈ Σ

}
end for
ϵPCA ← max({r : ρ(r) > ρ0})
τ ← argminr{ρ(r)}
Return: ϵPCA, τ

a diagonal weighting matrix Di to emphasize the importance
of local data. Finally, SVD decomposition yields a numerical
approximation of the tangent plane. Since, we are interested
mainly in surfaces, the first two eigenvectors are selected as a
basis for the local tangent space and the third one serves as a
normal vector to the surface.

B. Adaptive Local PCA and parameter selection

AdaL-PCA uses the explained variance ratio for the first
two singular values given by

ρ(r) :=

∑2
i=1 σi(r)

2∑3
i=1 σi(r)2

(1)

to select a suitable parameter ϵPCA. This ratio describes the
fraction of data variance captured by the tangent plane ap-
proximated by the span of the first two singular vectors. We
set a threshold γ for the ratio ρ(r) and compute the largest
r-neighborhood that explains a fraction γ of the data variance.
That is,

ϵPCA := max
{
r
∣∣ρ(r) > γ

}
. (2)

We use a similar method to select a radius τi for estimating
the curvature around each data point xi. In this case, we need
a neighborhood large enough to capture the “bending” of the
surface. This is done by computing the lowest value reached
by the graph of the explained variance ratio ρ(r),

τ := argmin
r
{ρ(r)} . (3)

As illustrated in Fig.1 at a point p on a torus, this approach
is motivated by the fact that as the τ -neighborhood increases
past a certain threshold, the variance in data can no longer be
explained by the selected tangent plane. We refer the reader
to Algorithm 1 for a summary of AdaL-PCA’s key steps and
emphasize that both ϵPCA and τ are adjusted at each data point
to capture the local geometry.

Fig. 1. Comparison of the explained variance ratio of the top two singular
values and accuracy (RMSE) of Gaussian curvature estimation w.r.t. increas-
ing radii of ϵ-neighborhood and τ -neighborhood around p on torus.

Fig. 2. Directional curvatures in an ϵ-PCA neighborhood of p.

Algorithm 2 Estimation for Principal Curvature, Gaussian
Curvature, and Mean Curvature

Input: Point cloud data x1, . . . , xm ∈ R3, query point p,
kernel function K with supports in [0,1], the pair (ϵPCA, τ),
the percentage p ∈ (0, 1) of total number of points for
which the largest (smallest) directional curvature κ1 (κ2)
is computed.
(Np,ϵPCA ,DϵPCA)← {(q, ∥q − p∥) : 0 < ∥q − p∥ < ϵPCA}
X← Np,ϵPCA − p
D← diag(

√
K(DϵPCA/ϵPCA))

B← DX
UΣVT ← SVD(B)
O← U[ : 3, : ]
Np,τ ← {q : 0 < ∥q − p∥ < τ}
for q ∈ Np,τ do
vq ← q − p
κq ← 2(O[2] · vq)/||vq||2 {by equation 4}
wq ← K(vq/τ)

end for
C← sort{(κq, wq) : κq in ascending order}
k ← int(p · len(C))
κ1 ← sum({κq · wq : (κq, wq) ∈ C[: k]})/sum({wq})
κ2 ← sum({κq · wq : (κq, wq) ∈ C[−k :]})/sum({wq})
Kp ← κ1 · κ2

Hp ← κ1 + κ2

Return: κ1, κ2, Kp, Hp

C. Curvature Estimation

The directional curvatures κi(T ) at a point xi in a direction
T are approximated (see for instance [14]) by

κi(T ) ≈
2N.T

∥T∥2
+O(t). (4)
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Here T is replaced by the entries of Xi in the proper τi-
neighborhood and N is the orthonormal vector to the frame
obtained by local PCA. The principal curvatures κ1 and κ2

correspond, respectively, to the highest and lowest values of
the directional curvatures.1 In practice, we select a percentage
(20%) of the highest (respectively, lowest) curvatures and
average them (using a Gaussian kernel) to approximate κ1

(respectively, κ2). By selecting the directional vectors T
corresponding to the highest curvatures κT , this averaging
yields principal directions, while we obtain Gaussian curvature
by the product κ1κ2. The time complexity of our current
implementation is O(nτm(m2 + log nτ )), where nτ is an
upper bound on the cardinality of the τ -neighborhoods (in
general nτ ≪ m). This can be improved significantly in
practice with fast PCA algorithms for scalability [15], [16].

III. RESULTS AND DISCUSSION

Our main contribution is the estimation of the principal
curvatures and principal directions. We mainly focus on the
application of the principal curvatures and principal directions
to biological data and identify key properties and changes in
the geometry of these datasets.

We validate the accuracy of our principal curvature es-
timation by computing Gaussian curvature on toy datasets.
Moreover, we apply our estimation of principal curvature
and Gaussian curvature for single-cell RNA sequencing data
(scRNA-seq).2 Gaussian curvature gives the “intensity” for the
differentiation of cell states, and principal directions give the
directions for the split of the cell lineages.

A. Estimation on Sampled Surfaces

We compare AdaL-PCA’s estimates of Gaussian curvature
against two contemporary methods, Hickok & Blumberg [10]
and Diffusion Curvature [9]. We also quantify AdaL-PCA’s
recovery of ground-truth mean curvature as a validation of the
fidelity of its principal curvatures.

To assess the ability of various models to recover the
Gaussian and mean curvatures, we generate datasets from
three canonical 2-dimensional manifolds: the torus, ellipsoid,
and the hyperbolic paraboloid (saddle). Tables I and II were
generated from 5000 points sampled uniformly from these
surfaces. To study the robustness of each method to noise,
we corrupt each point:

x̃i = xi + ϵi

where each ϵ1, . . . ϵN
iid∼ N (0, σ) and σ between 0.0 and 0.5.

Note that both Hickok & Blumberg’s method and Diffusion
Curvature require manually specified parameters, which must
be tuned for each dataset. By contrast, AdaL-PCA’s heuristics
adapt the method to each dataset. This results in an improved
performance observed in Fig. I and Fig. II. Diffusion Curvature
is an unsigned measure of local curvature for point clouds
sampled from a manifold. Although it differs from Gaussian

1Note that this is sometimes taken as a definition of principal curvatures.
2Implementation details and some examples can be found at https://github.

com/LydiaMez/AdaL-PCA.git.

Fig. 3. Comparison of AdaL-PCA against ground truth for mean curvature
on three toy datasets. Corr stands for Pearson correlation and RMSE stands
for the root means squared error.

TABLE I
Root Mean Square Error (RMSE) and Energy Distance (Eng. Dist) of

Gaussian curvature estimation for different noise levels. For RMSE and
Eng. Dist, smaller is better.

data noise Ours H. & B.
RMSE Eng.Dist RMSE Eng.Dist

0.0 0.462 0.462 1.302 0.646
0.1 1.391 0.725 7.489 3.076

Torus 0.2 2.023 1.026 15.914 4.772
0.3 2.056 1.071 19.143 5.171
0.4 2.060 1.076 19.971 5.168
0.5 2.048 1.059 19.944 5.041

0.0 0.430 0.251 0.388 0.361
0.1 0.849 0.277 6.730 3.407

Ellipsoid 0.2 0.564 0.832 15.647 5.075
0.3 1.760 1.296 20.135 5.576
0.4 1.988 1.565 21.007 5.541
0.5 2.061 1.643 20.852 5.391

0.0 0.293 0.321 2.025 1.154
0.1 0.400 0.405 4.032 1.981

Hyperbolic 0.2 0.567 0.538 10.077 3.588
paraboloid 0.3 0.673 0.674 12.829 4.065

0.4 0.753 0.757 13.532 4.069
0.5 0.776 0.787 13.230 3.908

curvature, numerical experiments detailed in [9] suggest a
correlation. Therefore, we report only the Pearson correlation
for diffusion curvature.

B. Curvature estimation for single-cell data

We apply our model to single-cell data for cell state dif-
ferentiation direction discovery. We use RNA sequencing data
for human embryonic stem cells available at [17], collected
over 27 days during which cells start as embryonic stem
cells and then progressively differentiate into different cellular
lineages. Low-dimensional manifold visualization of this data
using PHATE (Fig. 4, A) shows that embryonic cells (days
0-3, displayed in red) branch into two lineages: endoderm
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TABLE II
Pearson Correlation Coefficient (Pearson Corr.) of Gaussian curvature

estimation for different noise levels.

data noise Ours Diffusion Curvature

0.0 0.996 0.445
0.1 0.865 0.270

Torus 0.2 0.633 0.304
0.3 0.550 0.308
0.4 0.440 0.273
0.5 0.408 0.243

0.0 0.988 0.149
0.1 0.325 0.057

Ellipsoid 0.2 0.124 0.002
0.3 -0.153 0.017
0.4 -0.131 0.044
0.5 -0.018 0.048
0.0 0.747 0.398
0.1 0.603 0.333

Hyperbolic 0.2 0.481 0.282
paraboloid 0.3 0.428 0.336

0.4 0.386 0.342
0.5 0.363 0.327

Fig. 4. Gaussian curvature and principal directions of embryonic
stem cell differentiation. (A) PHATE visualization of scRNA-seq data
color-coded by time intervals. (B) PHATE plot colored by Gaussian
curvature values. (C, D) Principal directions at different stages of
development of cells.

(upper split) and ectoderm (lower split) around day 6. Further
differentiation occurs during days 12-27. This is reflected
in Fig. 4B with relatively constant zero curvature values at
days 0-3 and a transition into a region of high variations
in curvature. We observe starting from day 3 a transition
into very low negative values of curvature and then a rapid
progression into higher values close to zero as we approach
day 27. This is consistent with the fact that the region 0-3
days corresponds to the stem state and the region 12-27 to the
differentiated state. In addition to the signed curvature that
provides a better appreciation of the cellular differentiation

Fig. 5. Gaussian curvature and principal directions on IPSC dataset
using AdaL-PCA.

into several lineages (cell types), the principal directions in
Fig. 4C, D obtained from projecting the three-dimensional
principal directions using the PHATE embedding allow us to
track the state towards which the cells differentiate, adding
directional information.

We estimated the curvature of a publicly available single-
cell induced pluripotent stem cell (iPSC) reprogramming. In
this dataset, mass cytometry is used to quantitatively mea-
sure 33 protein biomarkers in 2005 mouse fibroblast cells
induced to undergo reprogramming into stem cell state. Low-
dimensional PHATE visualization of this data shows fibrob-
lasts progressing to a point of divergence where two lineages
emerge, one that successfully undergoes reprogramming and
another that undergoes apoptosis (cell death). Our model cor-
rectly identifies the initial branching point as having negative
values of Gaussian curvature indicating saddle-like divergent
paths out of the branching point (Fig. 5). Moreover, the
principal directions on the diverging branch correctly identify
the directions in which the cell lineages diverge.

IV. CONCLUSION

We introduced Adaptive Local PCA (AdaL-PCA), a novel
method for estimating intrinsic curvature on data manifolds,
with a focus on principal curvatures and directions. By dynam-
ically adjusting neighborhood scales based on the explained
variance ratio, AdaL-PCA provides robust and accurate cur-
vature estimates without requiring manual parameter tuning.
This adaptability effectively handles variations in data density
and the lack of prior curvature information, making it ideal
for complex, diverse datasets. We validated AdaL-PCA on
synthetic surfaces, demonstrating its ability to recover Gaus-
sian and mean curvatures even in noisy settings. Additionally,
we applied it to human embryonic single-cell RNA sequenc-
ing data, revealing key directions of cellular differentiation
and providing biologically meaningful insights. These results
highlight AdaL-PCA’s potential in both geometric data anal-
ysis and practical applications like single-cell studies. Future
work may extend the method to higher dimensions for scalar
curvature estimation and improve efficiency by integrating
neural network-based local distribution estimation or exploring
alternative local PCA frameworks.
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