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Abstract

Direct image-to-graph transformation is a challenging
task that involves solving object detection and relationship
prediction in a single model. Due to this task’s complex-
ity, large training datasets are rare in many domains, mak-
ing the training of deep-learning methods challenging. This
data sparsity necessitates transfer learning strategies akin
to the state-of-the-art in general computer vision. In this
work, we introduce a set of methods enabling cross-domain
and cross-dimension learning for image-to-graph trans-
formers. We propose (1) a regularized edge sampling loss
to effectively learn object relations in multiple domains with
different numbers of edges, (2) a domain adaptation frame-
work for image-to-graph transformers aligning image- and
graph-level features from different domains, and (3) a pro-
jection function that allows using 2D data for training 3D
transformers. We demonstrate our method’s utility in cross-
domain and cross-dimension experiments, where we utilize
labeled data from 2D road networks for simultaneous learn-
ing in vastly different target domains. Our method con-
sistently outperforms standard transfer learning and self-
supervised pretraining on challenging benchmarks, such as
retinal or whole-brain vessel graph extraction.'

1. Introduction

Representing physical relationships via graph represen-
tations has proven to be an efficient and versatile concept
with vast utility in machine learning. Prominent examples
are road network graphs [2], neuron representations and
connections in the brain [45], blood vessels [8], and cell
interactions [55]. Here, typically used voxelized images
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Figure 1. Direct image-to-graph transformation. Whole brain ves-
sel (top) and Agadez road dataset (bottom). The predicted graph
is visualized as an overlay on the real image.

disregard the physical structure’s semantic content. Hence,
constructing graph representations from images (image-to-
graph, see Fig. 1) is a critical challenge for unlocking the
full potential in many real-world applications [27].

Traditionally, image-to-graph transformation involves a
complex multi-stage process of segmentation, identifica-
tion of physical structures and their relations, and itera-
tively pruning the constructed graph, which leads to inac-
curacies and information loss at each step [14]. These dis-
advantages negatively impact prediction accuracy and limit
the application to downstream tasks that require more infor-
mation from the underlying image (e.g., [43,44]). Hence,
there is a clear need for machine learning solutions that fa-
cilitate accurate image-to-graph transformation in a single
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Figure 2. Conceptual overview of our framework. We use a transformer for single-stage image-to-graph transformation. Our three
methodological contributions enable knowledge transfer between vastly different domains in 2D and 3D.

step [4,22]. Recently, vision transformers have been pro-
posed for this task and showed superior performance to tra-
ditional multi-stage approaches [42,54]. However, these ap-
proaches require large sets of annotated 2D data and have
not been shown to generalize to diverse 3D datasets where
graph-level annotations are not widely available.

To address this challenge, we adopt and extend concepts
from the field of inductive transfer learning (TL) (see tax-
onomy in [38]), which have not been explored for image-
to-graph transformation. Inductive TL simultaneously uses
large annotated datasets in the source domain (e.g., 2D
satellite images) and a small set of labeled data in the target
domain (e.g., 3D microscopy images of vascular networks).

Our contribution. Guided by the hypothesis that the un-
derlying graph representations of physical networks are
similar across domains, we introduce a set of methodologi-
cal innovations for image-to-graph transformation:

1. We introduce a loss formulation that regularizes the
number of sampled edges during training, allowing si-
multaneous learning in domains that differ in terms of
the number of objects and relations (Sec. 3.1).

2. We propose a supervised domain adaptation frame-
work for image-to-graph transformers that aligns fea-
tures from different domains (Sec. 3.2).

3. We propose a framework for training 3D image-to-
graph models with 2D data. Our framework introduces
a projection function from the source representation to
a space similar to the target domain (Sec. 3.4).

In extensive experiments on six datasets, we demonstrate
our method’s utility and outperform all baselines, validat-
ing our initial hypothesis. Our method leads to four main
results: 1) we show compelling improvements in image-to-
graph transformation on existing datasets; 2) our method

enables image-to-graph transformation in previously un-
solvable sparse data scenarios; 3) our method outperforms
self-supervised pretraining by a margin and 4) our method
bridges dimensions during training, i.e. we solve the pre-
viously unsolved direct image-to-graph inference for com-
plex 3D vessel images by utilizing 2D road data in an addi-
tional training step. Further ablation studies highlight that
each of our methodological contributions addresses a spe-
cific weakness in the state-of-the-art.

2. Related Works

Image-to-graph transformation. Image-to-graph trans-
formation is an increasingly important field in computer
vision with application to various domains, including road
network extraction from satellite images [51] or 3D vessel
graph extraction from microscopy images [ 1,3]. Traditional
methods solve this task through a multi-step approach in-
volving input segmentation [2, 7, 1 1], skeletonization, and
pruning to generate the graph [14,51]. Deep learning-based
approaches frequently use an object detector followed by
relation prediction [, 3] or require a segmentation map as
input [54]. These approaches’ performances are determined
by the performance of the pipeline’s intermediate stages.
Furthermore, information loss at each stage limits perfor-
mance and applicability to downstream tasks. Lastly, these
methods are tailored to specific domains, rendering them
unsuitable for cross-domain applications, including TL.

We select the Relationformer as our base concept be-
cause it is the most general single-stage transformer concept
that can directly predict the graph from diverse image data
in various domains [39,42]. This generalizability makes it
especially suitable for cross-domain TL.

Transfer learning for transformers. Recent studies
showed effective pretraining for transformers on natural im-
ages. Prevailing architectures involve supervised pretrain-



ing of the model’s backbone on, e.g., ImageNet, coupled
with random initialization of the encoder-decoder compo-
nent [7,33,42]. Dai et al. [12] extend DETR [7] with a
specific pretext task for object detection. Li et al. [28] com-
pared self- and supervised pretraining methods with ran-
dom initialization of a ViT-backbone [13]. They showed
how self-supervised pretraining improves downstream ob-
ject detection without a specific pretext task. Ma et al. [33]
pretrained a transformer architecture on synthetic data and
outperformed self-supervised methods for object detection.
However, generating synthetic data, especially for special-
ized tasks, is typically domain-specific or requires expert
knowledge [25]. Ma et al. [33] find that random weight ini-
tialization remains a robust baseline, often achieving com-
petitive downstream performance. To this date, no study has
explored TL for image-to-graph transformers.

Cross-domain transfer learning. Existing cross-domain
TL approaches are generative or discriminative. Genera-
tive approaches translate images from source to target do-
main on a pixel-level using a generative network [56]. In
restricted settings, they have shown promising results, e.g.,
object detection for day-/nighttime shifts in road scenes [23]
or MRI to CT translation [21]. However, generative ap-
proaches require additional training of the translation net-
work, which is computationally expensive and suffers from
training instability [31]. Discriminative approaches train a
single model to learn a general representation that is trans-
ferable between domains [50]. Some utilize a domain ad-
versarial network that distinguishes whether a sample is
from the source or target domain based on its feature repre-
sentation. Combined with a gradient reversal layer (GRL)
[17], this approach has proven effective in classification
[17], segmentation [49], and object detection [10]. Chen
et al. [10] introduced a domain adaptation (DA) framework
for object detection using the GRL concept with two do-
main classifiers at the image and instance levels. Both are
based on H-divergence theory [5]. To reduce the bias to-
wards the source domain, a consistency regularization pe-
nalizes the Lo-distance between the domain classifiers [10].
To this day, all existing approaches are limited to a rela-
tively small domain shift (e.g., from day to night scenes or
synthetic to real images) instead of a fundamental domain
shift, such as from satellite images to medical scans. Also,
none of the existing approaches have been applied to the
image-to-graph transformation problem.

Cross-dimension transfer learning. 2D to 3D TL is a
highly challenging but promising research direction be-
cause of the abundance of labeled 2D data compared to
the scarcity of 3D data. The few existing approaches
[29,41,52,53] address the challenge, either data-based or
model-based. Data-based approaches augment and project

2D data into 3D space, while model-based approaches aim
to adjust the model to work with multi-dimensional input.
Shen et al. [41] introduced a method that projects 3D point
clouds to pseudo-2D RGB images. Liu et al. [29] intro-
duced a pixel-to-point knowledge transfer that pretrains a
3D model by generating 3D point cloud data from 2D im-
ages with a learned projection function. A model-based ap-
proach by Xie et al. [53] used dimension-specific feature
extractors and a dimension-independent Transformer. Sim-
ilarly, Wang et al. [52] proposed a special tokenizer that
creates 2D-shaped patch embeddings in a standard 2D ViT-
model. All existing approaches either require changes to the
target model, which may limit performance, a specifically
crafted projection function, or additional training (e.g., for
learning an explicit projection function). In our approach,
we seek simplicity in implementation and training as well
as generalizability to new domains and tasks.

3. Methodology

In this section, we describe our three key contributions to
efficiently transfer knowledge from a source domain with
image and graph space denoted as a (Z°,G%) to a target
domain with image and graph space denoted as (Z7,G7)
for an image-to-graph transformer.

3.1. Regularized Edge Sampling Loss

A leading difference between the source and target do-
main in our cross-domain TL setting is the different node
and edge distribution, which poses a challenge because they
dictate the relation loss calculation. Previous works arbi-
trarily pick the number of ground truth edges and fix it
for the relation loss calculation (L,),,) for a specific dataset
[42], which evidently generalizes poorly across varying do-
mains. Generally, such a loss originates from object detec-
tion, where pair-wise relations are classified with a cross-
entropy (CE) loss over a fixed number of edges m. This
includes all active edges .A and an irregular number of ran-
domly sampled background edges B C B. An active edge is
defined as a pair of nodes g, h that is connected by an edge,
ie., ef,lhn — 1. Similarly, for a background edge, ¢ = 0
holds. Then, L.y, is the CE loss on the set of sampled edges
R = AU B with | A|+|B|< m:

Low= Y Ler(el &) (1)
{g,;h}eR
where &% € {0, 1} is the model’s relation prediction for the

respective pair of nodes. Crucially, this formulation ignores
the subset 3 \ B when calculating the loss.

In previous works [42], m is a manually chosen global
hyperparameter, strongly affecting the model’s perfor-
mance. If m is too small, not enough background edges are
sampled; hence, the loss does not penalize over-prediction.



If m is too large, background edges dominate the edge loss
calculation because the edge space is sparse. In that case,
the network under-predicts edges. Furthermore, with only
a small subset of all edges being sampled, the loss gives a
noisy signal regarding edge prediction, which worsens the
learning process overall.

To address these limitations, we introduce our regular-
ized edge sampling loss for transformers, short Lgregc. In
simple terms, Lgeg1¢ adaptively chooses the number of sam-
pled edges. If necessary, Lresit upsamples the edges up to a
fixed ratio between active and background edges. With our
novel approach, we achieve a consistent loss across samples
from different domains. Formally, we introduce our regu-
larized edge sampling below:

R = AU Bis the set of a batch’s upsampled edges. The
number of elements in the upsampled multisets A and B
have the pre-defined ratio r = % where r € [0, 1]. Multi-
sets are necessary because the ratio is achieved by duplicat-
ing random edges in A or 5.

A batch’s labels consist of a ground-truth graph G,, for
each sample n. G, is defined as a tuple of the sample’s
nodes and edges, G,, = (V,,, &,). The set of a batch’s nodes
V and edges & is thus defined as:

N
V=V
n=0

Each active edge a € A = £ is a tuple of two nodes (g, h)
that are connected by the respective edge:

N
and &€ = U En ()

n=0

a=(g,h) €& where g,heV 3)

Each background edge b € B is a tuple of two nodes (j, k)
that are not connected by an edge:

b=(k) e (VxV)\E=B )
Then, the upsampled multiset of active edges Ais:
A=EU 2]z = a; moa Bl &)

with [€|< @ < |B[+r and ¢ € N. Similarly, we define
the upsampled multiset of background edges B as:

B =BU [$1|$1 = bi mod \B|] (6)

with: |[B|<i < @ Notably, only one of the sets is upsam-

pled while the other stays the same because only one of the

conditions in Eq. (5) or Eq. (6) can produce a valid i.
Hence, we define our regularized edge sampling loss as:

»CR,eslt = Z 'CCE (631};, éfl}rll) %)
{g.h}eR

Although the edge ratio r is a hyperparameter, the
model’s performance is relatively insensitive to its value. A

default value of 0.15 showed good results across all datasets
(see Sec. 4 and Supplement), which makes Lgegst benefi-
cial compared to the previous works’ stochastic edge losses.
Furthermore, Lreq1t gives a precise signal regarding edge
prediction and increases convergence speed.

3.2. Supervised Domain Adaptation

In our setting, the stark differences between the source
and target domain in image and graph features further am-
plify the TL challenge. Specifically, source and target do-
mains significantly differ in image characteristics such as
background and foreground intensities, signal-to-noise ra-
tio, and background noise, as well as graph characteristics
such as the structures’ radii or edge regularity. Edge reg-
ularity refers to the geometrical straightness of the under-
lying structure. While roads in the U.S. (e.g., highways)
typically have a high edge regularity, vessels in microscopic
images are highly irregular (i.e., the vessel does not follow a
straight line and has high intra-edge curvature). To address
this challenge, we utilize a domain adversarial network on
the image and graph level, respectively. These adversarial
networks are used when jointly pretraining in both domains.
Similar to previous methods [17,30,48], the image-level ad-
versarial network is a small neural network that classifies
the domain based on a sample’s feature representation after
the feature extractor. We treat each image patch p*-¥ at po-
sition u, v as an individual sample and compute the CE loss

Ling = = |Dlogp"" + (1 - D) log (1 - p"")| ®)

u,v

where D € {0, 1} denotes whether the respective sample is
from the source or target domain [10].

To align graph-level features, we view the concatenated
tokenized transformer output 7' € R(#o+#7)xd a5 3 sam-
ple’s abstract graph representation where #o and #r are
the numbers of object and relation tokens, respectively, and
d is the amount of the tokens’ hidden channels. We train a
domain classifier on this abstract graph representation using
the CE loss:

Lgraph = —|DlogT + (1 —D)log (1 -1T) 9)

Both domain classifiers are preceded by a GRL [17] revers-
ing the gradient such that the main network is learning to
maximize the domain loss. This framework forces the net-
work to learn domain invariant representations and, thus,
aligns the source and target domain. Furthermore, we apply
a consistency regularization between both domain classifi-
cations to reduce the bias towards the source domain, as
shown in [10]. This consistency regularization is expressed
by an objective function minimizing the L,-distance be-
tween the domain classifiers’ predictions (i.e., the output



of the classification functions dim,g and dgrapn):
1 U, U
Loxe = || g 2o i 0) = dyrn ()|, 10

where we take the average over the image-level patch clas-
sifications of a sample consisting of || patches.

3.3. Combined Training Loss

Our new regularized edge loss is combined with the other
essential loss components to a final optimization function.
The final loss consists of the L; regression 1oss (Lieg),
the scale-invariant, generalized intersection over union loss
(Lg10v) for the box predictions (with predicted boxes ¥,
and ground truth vy,.y), and a CE classification loss (L)
for object classification [42]. Further, our new regularized
edge sampling loss Lresi; and our three DA losses (Limg,
Loraph, and L) are included. Furthermore, in order to
achieve unique predictions, we compute a bipartite match-
ing between the ground truth and predicted objects utilizing
the Hungarian algorithm [42]. L,eg, Lgiou, and Lresr are
calculated over all object predictions v that are matched to a
ground truth, i.e. where véls = 1, whereas L is calculated
over all object predictions. The combined loss term for our
N object tokens in a batch is defined as:

N
L= Z |:>\rcg£rcg (vf)oxv /Dii)ox)

i=1, [v}_=1]

cls

+ )\gIoULgIOU (U]?)oxv rz}lfz)ox)]

N
+ )\cls Z ‘cClS(Ul’L;)O)U ﬂliaox) (1 1)

i=1
+ >\DA (ﬁimg + Lgraph + ‘Ccst)
+ AResit Z Log(edn, &)
{g,h}eR

LReslt

Wwith Areg, AgloUs Aclss AReslt> and Apa as weights.
3.4. Framework for 2D-to-3D Transfer Learning

This section describes our framework for the challeng-
ing setting of a 2D source domain and a 3D target domain.
This setting is especially relevant given the scarcity of com-
pletely annotated 3D image datasets. At the core of our
framework is a simple projection function II that transforms
source instances into a space similar to the target space,
ie., Il : (Z%,G°) — (Z,G). Since our regularized edge
sampling loss (Sec. 3.1) and domain adaptation framework
(Sec. 3.2) automatically optimize the alignment of source
and target domain characteristics, we do not need to engi-
neer our projection to resemble the target domain character-
istics (e.g., signal-to-noise ratio or the structures’ radiuses).

Thus, we can design our projection function in the most
simple and generalizable form. Intuitively, II projects 2D
data to a 3D space by simply creating an empty 3D volume,
placing the 2D image as a frame in it, and randomly rotating
the entire volume. Formally, II is described by:

1. Resize Z5 from (HZ x WZ°) to the target domain’s
spatial patch size (HT x W7T) by a linear down-
. !
sampling operator D : 7% — ZI5, where D €
S S
RE"WTxH" W™ " & remains unchanged as we use
normalized coordinates.

2. We initialize T in 3D with I = 07" W' D" and place
75" in I at slice location z = 0.5. We also augment
the node coordinates of G := V, E by V' = {[v,0.5] :
v € V}. New graph G’ := (V' E).

3. We apply a random three dimensional rotation matrix
R on I and obtain I € Z. We apply the same R on the
nodes of G’ and obtain V" = {Rv : v € V}. New
graph G := (V" E) € G.

Notably, our approach works out of the box without re-
quiring segmentation masks, handcrafted augmentations,
specifically engineered projections, or changes to the target
model. Furthermore, it naturally extends to new domains
and is trainable end-to-end together with the target task.

4. Experiments and Results

Datasets. We validate our method on a diverse set of six
public image datasets capturing physical networks. We
choose two 2D road datasets, namely a dataset from Mu-
nich (a European city with green vegetation-dominated land
cover) and from Agadez (a historic Tuareg city in Niger
in the Sahara desert). The appearance in satellite images
of these cities and their network structure substantially dif-
fer from the pretraining set as well as from each other; see
Fig. 2. Accurately extracting road graphs is a highly im-
portant task for traffic forecasting and traffic flow model-
ing [15,34]. Next, we choose a synthetic OCTA retina
dataset [35] and a real OCTA dataset [26]. Additionally, we
present experiments on two 3D datasets, namely a synthetic
vessel dataset [40] and a real whole-brain microscopy ves-
sel dataset [47]. Details on the datasets and data generation
can be found in the Supplement.

Training. We pretrain our method on the 20 U.S. cities
dataset [22] jointly with the target dataset. We crop the
source images to overlapping patches, in which we elim-
inate redundant nodes (i.e., nodes of degree 2 with a cur-
vature of fewer than 160 degrees) to train our model on
meaningful nodes [4]. After pretraining, we finetune the
model on the target dataset for 100 epochs. For more de-
tails, please refer to the Supplement and our repository.



Table 1. Main results. Quantitative Results for our cross-domain and cross-dimensional image-to-graph transfer learning framework. The
domain shift increases from top to bottom. We outperform the baselines across all datasets. The best scores per respective metric across
all models for a dataset are highlighted in bold. * Results for supervised pretraining on D) and E) (3D data) are not reported because it is

technically not possible. Additional metrics and standard deviations are given in the Supplement.

Fine Tuning (Pre-)Training Node- | Node- Edge- | Edge- SMD | Topo- Topo-
Training Set Strategy mAPT | mAR?T | mAP{ | mAR?T Prec.t | Rec.
A) TL from roads (2D) to roads (2D)

No Pretraining [ 18] 0.067 0.122 0.021 0.043 0.062 0.369 0.261
Agadez [20] Self-supervised [9] 0.083 0.156 0.030 0.071 0.030 0471 0.459

gade Supervised 0161 | 0237 | 0115 | 0177 | 0023 | 0.783 | 0.711

Ours 0.163 0.244 0.116 0.172 0.022 0.816 0.614

No Pretraining [ 18] 0.083 0.120 0.034 0.054 0.235 0.260 0.247
Munich [20] Self-supervised [9] 0.088 0.145 0.060 0.097 0.155 0.339 0.384

Supervised 0.277 0.336 0.207 0.272 0.091 0.682 0.660

Ours 0.285 0.344 0.224 0.277 0.090 0.726 0.655
B) TL from roads (2D) to synthetic retinal vessels (2D)

No Pretraining [ 18] 0.273 0.375 0.140 0.339 0.005 0.181 0.948
Synthetic Self-supervised [9] 0.136 0.260 0.069 0.223 0.031 0.093 0.927
OCTA [35] Supervised 0.291 0.384 0.170 0.338 0.004 0.211 0.957

Ours 0.415 0.493 0.250 0.415 0.002 0.401 0.890
C) TL from roads (2D) to real retinal vessels (2D)

No Pretraining [ 18] 0.189 0.282 0.108 0.169 0.017 0.737 0.634
OCTA-500 [26] Self-supervised [9] 0.214 0.305 0.135 0.213 0.016 0.763 0.706

Supervised 0.366 0.447 0.276 0.354 0.014 0.862 0.775

Ours 0.491 0.571 0.366 0.489 0.012 0.877 0.817
D) TL from roads (2D) to brain vessels (3D)

No Pretraining [18] 0.162 0.250 0.125 0.201 0.013 - -
Synthetic Self-supervised [9] 0.162 0.252 0.120 0.193 0.014 - -
MRI [40] Supervised * * * * * * *

Ours 0.356 0.450 0.221 0.322 0.013 - -
E) TL from roads (2D) to real whole-brain vessel data (3D)

No Pretraining [ 18] 0.231 0.308 0.249 0.329 0.017 - -
Microscopic Self-supervised [9] 0.344 0.404 0.363 0.425 0.017 - -
images [47] Supervised * * * * * * *

Ours 0.483 0.535 0.523 0.566 0.017 - -

Metrics. We evaluate our method on six metrics from ob-
ject detection and graph similarity tasks. For graph similar-
ity, we report the 2D TOPO-score [6] and the street mover
distance (SMD), which approximates the Wasserstein dis-
tance of the graph [4]. From object detection, we report
mean average recall (mAR) and mean average precision
(mAP) for node- and edge-detection. For more implemen-
tation details, please refer to the Supplement.

Baselines. No prior work has developed transfer learning
techniques for the structural image-to-graph transformation
problem. To evaluate the significance of our proposed meth-
ods, we compare the downstream task performance against
three competing approaches with varying pretraining and
initialization methods. Our first baseline, no pretraining,
is random weight initialization [18], which is considered
standard practice for model initialization when no suitable

pretraining is available. Second, we benchmark against
a state-of-the-art method for self-supervised pretraining,
MoCo v3 [9], which even outperformed supervised pre-
training in some tasks [9]. Self-supervised pretraining is
typically used when the amount of unlabeled data signif-
icantly exceeds that of labeled data in the same (or very
similar) domain. Hence, we pretrain on a large set of un-
labeled data from the same domain in each experiment for
the self-supervised baseline. For more details regarding the
unlabeled dataset, please refer to the Supplement. Third, su-
pervised pretraining, where we pretrain the target model on
the source data without using our methodological contribu-
tions. This approach has been successfully applied for var-
ious vision transformers, including the relationformer [42].
Note that the supervised pretraining baseline is impossible
in 3D scenarios; only a projection function enables the use
of 2D data for pretraining 3D models.



Figure 3. Qualitative results. From left to right: Image, ground
truth graph, no pretraining-baseline, and our method. Datasets in
each row are indicated by the letters for the datasets as in Tab. 1.
Our method consistently outperforms the no pretraining baseline,
which overpredicts the edges and nodes in all datasets but the
OCTA-500, where the fine-tuning set is uncharacteristically large.

4.1. Results on Cross-domain TL (2D)

Our proposed transfer learning strategy shows excellent
results across 2D datasets. We outperform the baseline
without pretraining and self-supervised pretraining on all
datasets across all object detection and graph similarity met-
rics; see Tab. 1. As the domain shift increases, we signifi-
cantly outperform naive pretraining.

Roads in diverse locations. First, we show that we can
learn to extract road graphs in topographically diverse loca-
tions with vastly variant land cover via TL. On both datasets
(see Tab. 1 A), we tripled the performance across almost all
metrics compared to our baseline. Our results show that
edge detection fails without any form of transfer learning.
Although the self-supervised method improves the baseline
across all metrics, the performance does not reach the level
of supervised pretraining. While our approach yields the
best performance, the difference to the baseline with naive
pretraining is small. We attribute this small difference to the
small domain shift between the source (U.S. roads) and the

target domains, which eases knowledge transfer.

Retinal blood vessels. In the next experiment, we intro-
duce a larger domain shift in our TL. Our target sets are
two retinal blood vessel datasets (see Tab. 1 B and C). Our
method doubles the node and edge detection performance
on the OCTA-500 dataset [26] compared to "no pretrain-
ing.” Furthermore, we significantly increase object detec-
tion and graph similarity metrics across both datasets com-
pared to all baselines. The qualitative examples (Fig. 3)
indicate that this improvement is associated with identify-
ing more correct nodes and edges. We observe that the
self-supervised method does not improve performance on
the synthetic dataset but still achieves minor improvements
for OCTA-500. We attribute this to the differences between
the target sets: in the OCTA-500, only the arterioles and
venules are annotated, leading to an easy topological struc-
ture. The main difficulty here lies in differentiating fore-
ground from background, a task in which contrastive self-
supervised training shows excellent performance. While
this differentiation is easy in the synthetic OCTA dataset,
the main difficulty is learning the topological structure with
many (often overlapping) edges (see Fig. 3 and the Sup-
plement). Learning this complex structure requires label
information, as visible in the superior performance of the
supervised pretraining methods. Naive pretraining still im-
proves performance, but we observe a large (compared to
A) performance difference between naive pretraining and
our method. We attribute this to the larger domain shift,
which is better addressed by our proposed methodology.

4.2. Results on Cross-dimension TL (2D to 3D)

Finally, we explore dimensional shifts in addition to
a stark domain shift. Leveraging our new proposed loss
(Sec. 3.1), our DA framework (Sec. 3.2), and our 2D-3D
projection function (Sec. 3.4), we pretrain models on raw
satellite images for the challenging task of 3D vessel graph
extraction on a synthetic and a real dataset. Our experi-
ments on the VesSAP dataset [47] show strong improve-
ments in all graph similarity and object detection scores
(see Tab. 1 E). The self-supervised method also displays
improvements, which, however, do not reach our method’s
performance. Similarly, our method roughly doubles the
object detection metrics on the 3D MRI dataset compared
to the baselines (see Tab. 1 D).

We do not report results for naive pretraining because,
in contrast to our method, it simply does not allow for 2D-
to-3D TL. Our ablation in Sec. 4.3 shows results for ap-
plying our projection function only, without any use of our
other proposed contributions. When studying the lower-
performing baselines, we observe that self-supervised pre-
training with MoCo v3 leads to higher improvements in
the real microscopic vessel data compared to the synthetic



Table 2. Ablation study on our proposed Loss (Lgresit) and DA
framework in a transfer learning setting (experiments congruent to
Tab. 1). Performance improvements are associated with both our
loss and DA. Both components combined lead to the best results.

Exper- C DA Node | Node | Edge | Edge
iment Reslt mAP | mAR | mAP | mAR
X X 0.389 | 0475 | 0294 | 0.383

C X v 0.456 | 0.538 | 0.351 | 0.464
v v 0.491 | 0.571 | 0.366 | 0.489

X X 0.190 | 0.285 | 0.122 | 0.210

D X v 0.349 | 0443 | 0219 | 0.320
v v 0.356 | 0450 | 0.221 | 0.322

Table 3. Ablation study on our proposed Loss (Lgesit) With and
without pretraining (experiments congruent to Tab. 1). We find
that our loss improves performance in an arbitrary image-to-graph
learning setting. Here, the DA is employed in all experiments.

Exper- Pre- r Node | Node | Edge | Edge
iment | training Reslt | mAP | mAR | mAP | mAR
X X 0.231 | 0.308 | 0.249 | 0.329

E X v 0.410 | 0.464 | 0468 | 0.512
v X 0.424 | 0.488 | 0.449 | 0.510

v v 0.483 | 0.535 | 0.523 | 0.566

MRI dataset. Both datasets have complex topologies that
require supervised training (see Sec. 4.1 ), but only the
real dataset has high-intensity variations, which can be effi-
ciently learned in a self-supervised setting. The qualitative
results in Fig. 3 and the Supplement indicate that the 3D
tasks were often unsolvable without our contributions.

4.3. Ablations on our Methods

In Tab. 2 and 3, we present ablations on the regularized
edge sampling loss (3.1) and DA framework (3.2) for the
2D OCTA-500 [26] (Tab. 2 C), the 3D MRI [40] (Tab. 2 D),
and the 3D brain vessel dataset [47] (Tab. 3 E). Expectedly,
we observe that our DA alone leads to compelling perfor-
mance gains for the 3D setting (almost double the perfor-
mance) and 2D setting across all metrics; see Tab. 2. This is
expected since the domain shift between the source dataset
of satellite images and our medical images is large. Note
that our projection function is always employed for the 3D
dataset since pretraining is otherwise impossible. We fur-
ther observe that employing the projection function alone
diminishes the performance because of the domain gap,
which is only alleviated by our other contributions.

Next, we ablate on our loss. When applying the DA,
adding our Lgeg loss further improves the performance
(Tab. 2), indicating its strength in stabilizing and improving
the loss landscape to train better networks. Additionally, we
ablate our proposed Lgeg)t in an experiment with and with-
out TL. Importantly, our experiments show that Lregt is

a general contribution that improves image-to-graph trans-
formation for TL as well as for general network training
(Tab. 3). In a TL setting, Lgegit is particularly useful as
it reduces the data-specific hyperparameter search. Inter-
estingly, our loss improves not only edge detection but also
node detection metrics across our ablations. These improve-
ments can be attributed to the transformer’s cross-attention
modules, which treat node and edge detection as joint pre-
diction tasks instead of separate problems. Consequently,
both metrics improve jointly. For further ablation studies,
e.g., experiments without the domain adversarial networks
or an alternative over-sampling of the parameter r, please
refer to the Supplement. In conclusion, we note that each
individual contribution enhances the overall performance of
the graph prediction task.

5. Discussion and Conclusion

In this work, we propose a framework for cross-domain
and cross-dimension transfer learning for image-to-graph
transformers. At the core of this work are our strong empiri-
cal results, which show that our proposed inductive transfer
learning method outperforms competing approaches across
six benchmark datasets that contain 2D and 3D images by a
margin. We achieve these results through our three method-
ological contributions, which we ablate individually. We
conclude that transfer learning has the potential to substan-
tially reduce data requirements for highly complex geomet-
ric deep learning tasks, such as transformer-based image-to-
graph inference, see Supplement. Our work shows that this
holds especially when the targeted graph representations are
defined by a similar physical principle or physical network.
In the presented work, this shared principle is the transport
of physical units (cars and blood) in a physical network.

Limitations and future work. Our problem setting is
specific to image-to-graph tasks and our learning scenario
in which we have some labeled data in both domains. Fu-
ture work should investigate how our solution translates to
different settings. Furthermore, we use a dimensionality-
dependent feature extractor, which might limit generaliz-
ability to other dimensions. Future work should explore the
development of strong dimension-invariant graph extractors
to allow further generalization.
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Supplementary Material

Cross-domain and Cross-dimension Learning
for Image-to-Graph Transformers

6. Additional ablation studies

Additionally to our main experiments, we present ablation
studies on further aspects of our proposed framework. These ab-
lation studies give a deeper understanding of the components’ dy-
namics and guide future reimplementations and adaptions.

6.1. Generalizability

In Table 4, we present the results of our experiment E) (see Ta-
ble 1) with one additional configuration. In this configuration, we
pretrain the model on the synthetic OCTA dataset [35] instead of
the U.S. cities dataset [22]. This pretraining strategy outperforms
all baselines and increases the performance compared to our main
experimental setting (see Section 4). We attribute this improve-
ment to the smaller domain gap between the new source domain
(i.e., retinal blood vessels) and the target domain (i.e., a mouse’s
cerebrovasculature). These results show how our method gener-
alizes seamlessly to new domains. Furthermore, they substantiate
the rationale behind our experimental design: by showcasing the
utility of our method in a challenging setting, focused on the most
intricate transfer learning scenarios, we establish its effectiveness
in more straightforward transfer learning situations (as presented
in Table 4 as well.

6.2. Regularized edge sampling loss

Next, we conduct an ablation study on the effect of the regular-
ized edge sampling loss. As explained in Section 4, the new loss
stabilizes training and increases convergence speed. This effect is
shown in Figure 4, where the training loss decreases faster from
the beginning on and convergences towards a lower level com-
pared to the baseline loss formulation. This effect can be observed
across all datasets and training strategies. Also, we experiment
with different foreground-to-background-edge ratios r (see Sec-
tion 3.1). Table 5 shows that the performance stays stable across
a large range of r-values. These results underline our hypothesis
from Section 3.1 that £presin reduces the hyperparameter space
because it does not require careful optimization.

Furthermore, we study the effect of different edge-sampling
strategies on our loss formulation in Table 6. Specifically, we
compare our fixed-ratio upsampling strategy with a varying-r up-
sampling (i.e., for each batch, we randomly choose r with a uni-
form distribution in (, 1]), and a fixed-ratio subsampling strategy.
The decreased performance with a varying-r upsampling strategy
shows that a fixed r is important for our loss formulation. We fur-
ther find that subsampling is a valid alternative in scenarios where
data is extremely scarce (e.g., Experiment A) but performs worse
when more data is available (e.g., Experiment E). Notably, Shit
et al. [42] proposed a one-sided subsampling strategy, i.e., sub-
sampling only the background edges if the ratio is above a certain
ratio. This strategy is problematic when the target dataset contains
dense graphs, in which our loss formulation upsamples the back-
ground edges (see Table 7 for dataset statistics). Furthermore, the
official relationformer repository does use a dynamic subsampling

strategy but selects background edges up to an absolute threshold
m, which introduces strong hyperparameter sensitivity. Table 7
shows that up- or sub-sampling only one edge type (e.g., the back-
ground edges) would not be sufficient.

6.3. Domain adaptation framework

Table 8 shows an ablation study of our domain adaptation
framework’s components. Limg, Lgraph, and Lcs¢ refer to the
optimization terms from Section 3.2. Using the image-level align-
ment alone already yields a performance increase of around 30 %
compared to not using our framework at all. We attribute this ob-
servation to the large image-level differences between the source
and target domain, which hinders knowledge transfer in the feature
extractor if an adversarial does not mitigate it. The graph-level ad-
versarial slightly decreases the performance when being applied
without consistency regularization (i.e., L.s¢). This decrease is
likely caused by the abstraction level of the transformer’s tok-
enized graph representation. Without any further guidance (e.g.,
by the image-level domain classifier through consistency regular-
ization), the graph-level classifier does not provide a precise gradi-
ent toward a domain-invariant representation. Combining all three
components yields the best results, supporting our hypothesis that
the graph-level adversarial needs regularization by the image-level
adversarial.

Furthermore, we study the impact of our projection function
and loss formulation without applying our domain adaptation
framework. Table 9 shows that our other contributions alone en-
able transfer learning across dimensions. This enables transfer
learning without access to the target domain during pretraining.
However, even in these cases, our DA framework yields the best
performance. Table 2 shows a similar trend in cases without di-
mension shift.

6.4. Adversarial learning coefficient

In Table 10, we ablate on the domain adversarial learning co-
efficient a. « is the factor with which the gradient in the GRL
is multiplied before passing it to the respective model component,
i.e., the feature extractor for the image-level adversarial and the
encoder-decoder for the graph-level adversarial (see Section 3.2).
We use the « schedule proposed by Chen et al. [10], which in-
creases «v during the training until reaching a fixed maximum. Ta-
ble 10 shows that the right choice of « is crucial and that a sub-
optimal value can decrease downstream performance. We attribute
this observation to the model’s tradeoff between learning to pro-
duce domain-invariant features (i.e., domain confusion) and task
learning (i.e., graph extraction). If « is too large, the adversarial
loss dominates the task loss, and the network does not learn how
to produce meaningful features. If it is too small, the domain gap
between the source and target domain stays too large, and knowl-
edge transfer is impeded. Figure 5 shows how a small « (e.g.,
a = 0.3) is not sufficient to learn domain-invariant features while
an a-value that is too large does not increase domain confusion but
obstructs learning the core task. Note that the specific o value must
be optimized for the used datasets and is not domain-invariant.

6.5. Target dataset size

Lastly, Figure 6 shows the results of an ablation study on the
target dataset size. We plot the harmonic mean of node and edge



Table 4. Ablation study on the pretraining dataset. As the domain gap between the source and target domain decreases, the downstream

performance increases. We show that our method is generalizable across different pretraining datasets.

Fine Tuning | (Pre-)Training

Node-

Node-

Edge-

Edge-

Training Set | Strategy mAP1 mART mAP! mAR?T SMD |
No Pretraining [ 18] 0.231 0.308 0.249  0.329 0.017
. . Self-supervised [9] 0.344 0404  0.363 0.425 0.017
Microscopic .
images [17] Supervised * * * * *
£es Ours, pretr. on cities 0.483 0.535 0.523 0.566 0.017
Ours, pretr. on OCTA  0.548  0.583  0.588  0.615 0.016
3 A
S 251
50
g
g
g2
1.5 ¢
30 40 50 60 70 80 90 100
Epoch

Figure 4. Training loss curves. The orange line depicts the training loss without our regularized edge sampling loss £ resin and the blue
line with £ gesin, respectively. £ resin Shows faster convergence from the beginning on.

Table 5. Ablation study on the loss ratio r for £ gesin as described
in Section 3.1 (experiments congruent to Table 1). We observe that
L Resin 1 stable across varying loss ratios and does not require
sensitive hyperparameter tuning.

Experi- Node Node Edge Edge
ment mAP mAR mAP mAR
0.05 0.3539 04446 0.2166 0.3102

0.1 03564 0.4498 0.2209 0.3218

0.15 0.3470 04380 0.2164 0.3122

D 0.2 0.3532 04449 0.2203 0.3193
0.3 0.3451 04351 0.2183 0.3153

0.5 03470 0.4407 0.2231 0.3242

0.8 0.3462 04394 0.2253 0.3288

mAP (see Section 4) of our method and the no-pretraining base-
line against the size of the target dataset. We observe that our
method consistently outperforms the baseline across all dataset
sizes. However, as the number of samples increases, the perfor-
mance difference between the two methods decreases. This obser-
vation is expected because transfer learning becomes less effective
(and is also less required) when enough target domain samples
are available. Our framework is especially useful if target data is

scarce.

7. Model & training details

To find the optimal hyperparameters, we follow a three-step
approach. First, we optimize the model architecture hyperparam-
eters (e.g., model size) with a random weight initialization (i.e.,
no transfer learning) on the target task. Then, we fix these hy-
perparameters for the remainder of the optimization process. An
overview of the model hyperparameters for each experiment can
be found in Table 11. Second, we optimize the training hyper-
parameters (e.g., learning rate or batch size) for pretraining on
the source task with the fixed model architecture hyperparame-
ters from step 1. Third, we use the pretrained model with the best
performance on the source task and optimize the training parame-
ters on the target task for each training strategy separately on the
validation set. We follow this approach because optimizing the
whole pipeline (including pretraining and fine-tuning) in a brute-
force manner would require too many resources in terms of com-
putational power and energy consumption. Table 12 depicts the
training hyperparameters for the target task for all the experiments
listed in Section 4.



Table 6. Ablation study on different edge sampling strategies.

Experiment A

Experiment E

Strate;
gy node-mAP edge-mAP | node-mAP edge-mAP
subsampling 0.172 0.125 0.237 0.277
varying-r 0.156 0.115 0.218 0.134
oversampling (ours) 0.173 0.129 0.267 0.323
Table 7. Edge statistics for the used datasets. The varying ratios TTTT TTT]
between active and background edges underline the utility of our
dynamic loss formulation. Different datasets require upsampling
for active and background edges. 0.6 .
Avg. Avg. edge  Upsampling  Upsampling
Dataset Edges ratio background active g
20 U.S. Cities 6.37 0.53 92.5% 7.5% %
Agadez 5.05 0.75 96.2% 3.8% = 04l i
Munich 4.69 0.77 97.1% 2.9% B~ ’
Synth. OCTA | 32.57 0.05 1.4% 98.6%
OCTA-500 11.07 0.18 47.5% 52.5%
Synth. MRI 22.37 0.07 0.3% 99.7% —
Microscopy 33.31 0.05 0.3% 99.7% N0 pretraining
02| — Ours |
L1l I
L § 103 10*
0.8 Number of samples
T Figure 6. Fl-scores (y-axis) over different target dataset sizes (x-
= 0.6 N axis). The F1-score is calculated between the node and edge mAP
8= as described in Section 9. The orange line depicts the F1-scores
< .. . . . .
= of the no-pretraining baseline, and the blue line with our contribu-
g 04| N tions, as described in Section 4. The x-axis is in logarithmic scale.
E We observe that our contributions are significantly reducing data
o requirements, especially when data is scarce.
0.2 .
a total area of 720 km?. The satellite images are retrieved in the
| | | | | |

0 10 20 30 40 50

Pretraining epoch

Figure 5. cka-similarity [24] (y-axis) between the feature repre-
sentations of source and target domain during pretraining. alpha
must be sufficiently large such that the similarity increases dur-
ing training. From a certain threshold on, the similarity does not
increase further. We associate a high similarity between both do-
mains with the model learning domain-invariant features.

8. Datasets

In the following, we describe the properties and sampling of
our six diverse image datasets and the unlabeled datasets we used
for the self-supervised baseline.

8.1. Training set - 20 U.S. Cities

[22] is a city-scale dataset consisting of satellite remote sensing
(SRS) images from 20 U.S. cities and their road graphs covering

RGB format via the Google Maps API [19]. The corresponding
road network graphs are extracted from OpenStreetMap [20]. We
cut the resulting images and labels into overlapping patches of
128x128 pixels with a spatial resolution of one meter per pixel.
In these patches, we eliminate redundant nodes (i.e., nodes of de-
gree 2 with a curvature of fewer than 160 degrees) to simplify the
prediction task [4].

8.2. Agadez and Munich, cities around the globe

We create our own image dataset from OpenStreetMap” covering
areas that differ from those covered by the 20 U.S. cities dataset in
terms of geographical and structural characteristics. Geographical
characteristics refer to the area’s natural features (e.g., vegetation),
while structural characteristics relate to anthropogenic (human-
made) structures that affect an area’s surface (e.g., street type) or
layout (e.g., city type). The complete dataset contains a 4 km?
area of 11 cities with different characteristics in different parts of
the world. Both source images and labels were obtained in the
same manner as for the 20 U.S. cities dataset [22]. Our dataset is

Zhttps://www.openstreetmap.org


https://www.openstreetmap.org

Table 8. Ablation study on our domain adaptation framework in a transfer learning setting (experiments congruent to Table 1). Limg,
Lgraph, and Lcs: refer to the optimization terms from Section 3.2. We find that performance improvements are associated with all
adaptation components. Using the complete optimization term as presented in Section 3.3 yields the best results.

Exper- r. r r Node Node Edge Edge
iment 1mg graph =t | mAP mAR mAP mAR
X X X 0.3423 0.4341 0.2581 0.3414

v X X 0.4286 0.5073 0.3293 0.4264

C X v X 0.3264 0.4136 0.2355 0.3117
v v X 0.4071 0.4980 0.2685 0.3831

v v v 0.4909 0.5712 0.3656 0.4887

Table 9. The performance of our contributions with and without
our DA framework in the additional experiment from Table 4. We
show that smaller domain gaps (here, from OCTA to microscopy
images) can be bridged without our DA framework even with di-
mension shift.

Method | node-mAP  node-mAR  edge-mAP  edge-mAR
No Pretraining 0.231 0.308 0.249 0.329
No DA 0.508 0.549 0.551 0.584
Ours 0.548 0.583 0.588 0.615

Table 10. Ablation study on the domain adversarial learning coef-
ficient o (experiments congruent to Table 1). o must be optimized
such that the adversarial loss balances with the graph extraction
loss. An « value of 0 is equivalent to not using the domain adap-
tation framework.

Experi- Node Node Edge Edge
ment mAP mAR mAP mAR
0.0 0.3884 04755 0.2947 0.3767

0.1 03123 04076 0.2258 0.3044

0.3 0.3381 0.4287 0.2439 0.3240

C 0.5 04563 0.5395 0.3614 0.4618
0.8 0.4623 0.5458 0.3464 0.4687

1.0 04909 0.5712 0.3656 0.4887

1.5 03914 04726 0.2854 0.3897

2.0 0.0530 0.1719 0.0214 0.0451

accessible in our GitHub repository *.

For our experiments, we choose two cities, Agadez and Mu-
nich, whose characteristics differ from the 20 U.S. cities dataset in
different aspects as displayed in Table 13. We strategically choose
those cities to investigate how differences in specific characteris-
tics between the source and target domain affect knowledge trans-
fer and how transfer learning strategies should be adapted to these
differences. We especially test our hypothesis that surface-level
characteristics are captured by different components than layout-
level characteristics. These new datasets enable the verification
because Agadez differs from 20 U.S. cities in surface-level char-
acteristics (e.g., vegetation, street type, and buildings) but shares
a similar city layout (i.e., grid plan). Note that although Agadez

3GitHub repository will be made publicly available upon acceptance

has a historical city center, we chose a part of the city that follows
the typical grid layout. Contrary to this, Munich is similar to U.S.
cities in surface-level characteristics while following a different
city layout (i.e., a historical European city layout). We test each
city dataset separately.

8.3. Synthetic OCTA

The synthetic Optical Coherence Tomography Angiography
(OCTA) dataset [35] consists of synthetic OCTA scans with in-
trinsically matching ground truth labels, namely the corresponding
segmentation map and the vessel graphs. The images were created
using a simulation based on the physiological principles of an-
giogenesis to replicate the intricate retinal vascular plexuses [40],
followed by incorporating physics-based modifications to emulate
the image acquisition process of OCTA along with the usual arti-
facts. We project the 3D OCTA images along the main axis, split
them scan-wise between training and testing sets, and extract 2600
overlapping samples of 128 x 128 pixels. For training our self-
supervised baseline, we use the same procedure on 200 additional
synthetic OCTA scans to extract almost 100,000 patches.

8.4. OCTA-500

The OCTA-500 dataset [26] includes 300 OCTA scans with a 6
mm X 6 mm field of view. The 400 x 400 large en-face projection
images were manually annotated with sparse vessel labels. We ex-
tract the graphs from these segmentation maps using the method
presented by Drees et al. [14]. We split the scans patient-wise
between training and testing sets and create around 3000 overlap-
ping patches with a spatial size of 128 x 128. Furthermore, we
combine the OCTA scans from OCTA-500 with the scans of the
ROSE dataset [32] to obtain around 40,000 patches for training
our self-supervised baseline. This combination is necessary for an
unlabeled dataset large enough for self-supervised pretraining.

8.5. Synthetic MRI

The Synthetic MRI dataset [46] is a synthetical 3D dataset that
simulates the characteristics of clinical vessel datasets. The orig-
inal dataset provides ground truth labels for vessel segmentation,
centerlines, and bifurcation points. The ground truth graphs are
obtained with the method described by Drees et al. [14]. We cut
the volumes and their graphs in overlapping patches of 64 x 64 x 64
voxels. We use the same dataset with all 80,000 patches for our
self-supervised pretraining.



Table 11. Model details for each experiment. The hyperparameters are the same for each model of the respective experiment. The latent
space resolution is controlled via the CNN backbone’s stride. It determines the feature size between the backbone and the transformer.

‘ Backbone Latent Space Transformer FFN

Target Set . . . . . #O0bj | #RLN . .
Type Hid. Dim. Resolution Hid. Dim. | # Lay. Token | Token Hid. Dim.

Agadez ResNet101 512 Multi-Level 512 3 80 2 1024
Munich ResNet101 512 Multi-Level 512 3 80 2 1024
Synthetic OCTA ResNet101 512 Multi-Level 512 3 80 5 1024
OCTA-500 ResNet101 512 Multi-Level 512 3 80 2 1024
Synthetic MRI SeresNet 256 2X2x2 552 4 120 2 1280
Whole Brain Vessels SeresNet 256 2X2x%x2 552 4 120 2 1280

Table 12. Training details and hyperparameters for each trained model.

Learning Rate ‘

Loss Coeff.

Experiment \ Batch Size \ Epochs | Backbone | Transformer | Agrov | Acts | Areg | ARestn | Areg
A 32 100 0.00002 0.0002 2 3 5 5 1.0
B 32 100 0.00002 0.0002 2 3 5 5 1.0
C 32 100 0.00002 0.0002 2 3 5 5 1.0
D 32 100 0.00007 0.00007 3 4 2 6 0.8
E 32 100 0.00007 0.00007 3 4 2 6 0.8

8.6. Whole Brain Vessels

The Whole Brain Vessel dataset [37] is a publicly available open
graph benchmark dataset for link prediction (ogbl-vessel*). It con-
sists of a graph representing the entirety of the mouse brain’s vas-
cular structure down to the capillary level. Todorov et al. [47]
obtained the raw vessel scans using tissue-clearing methods and
fluorescent microscopy and then segmented the brain vasculature
using CNNs. The dataset has an image, segmentation, and graph
representation. We create overlapping patches with a spatial size
of 50 x 50 x 50 voxels and remove artifactual patches (e.g., patches
containing only noise). We extract 43,500 image patches from
an unlabeled whole-brain mouse scan obtained with the vDISCO
pipeline [16] for training our self-supervised model.

9. Evaluation metrics

We choose to evaluate our models’ performance using three
different evaluation metric types: 1) topological metrics, 2) graph
distance metrics, and 3) object detection metrics.

Topological metrics The TOPO-score [6] samples multiple
sub-graphs starting from different seed locations from the ground
truth and measures its similarity to the inferred graph from the
predicted graph with the same seed location. The similarity is
measured by matching a fixed amount of points between the two
graphs. Two points from two graphs are matched if the distance
between their spatial coordinates is below a threshold. The result

“https://ogb.stanford.edu/docs/linkprop/#ogbl-
vessel

of this matching across all sampled subgraphs is used for calculat-
ing precision and recall. This method accurately quantifies a pre-
diction’s geometrical (i.e., the roads’ geographical position) and
topological (i.e., the roads’ interconnections) quality. We use the
implementation and parameters from Biagioni et al. [6]. These
metrics are not implemented in 3D.

Graph distance metrics The street mover distance (SMD)
approximates the Wasserstein distance between a fixed number of
uniformly sampled points along the ground truth graph and the
predicted graph. Intuitively, it represents the minimal distance by
which the predicted graph must be moved to match the ground
truth [4].

Object detection metrics Further, we resort to widely-used
object detection metrics: mean average precision (mAP) and mean
average recall (mAR) [36]. To calculate each detection’s intersec-
tion over union (IoU), we create a hypothetical bounding box of
fixed size around each node. Similarly, we create bounding boxes
around the edges with a minimum spatial size m in all dimen-
sions. This minimum holds for edges that connect two nodes a
and b where the difference between the coordinates in one dimen-
sion is lower than m (e.g. if |az — by|< m). We calculate the
mean AP and AR between the values of different IoU thresholds
(i.e., 0.5 and 0.95).

10. Additional quantitative results

In Table 14, we present our main results from Table 1 in addi-
tion to the results’ standard deviation across five mutually exclu-
sive folds of the test set.


https://ogb.stanford.edu/docs/linkprop/#ogbl-vessel
https://ogb.stanford.edu/docs/linkprop/#ogbl-vessel

Table 13. Overview of the used datasets, selected characteristics, and respective training, validation, and test set sizes.

Dataset Road Description Vessel Description Split
Street Type \ Vegetation \ Layout \ Continent Dimension \ Spatial Size Train \ Val \ Test

20 U.S. Cities [22 | Sealed | Rich | Grid-plan | N. America 2D | 128x128 | 99.2k | 24.8k | 25k
Global Diverse Cities

Agadez Unsealed Arid Grid-plan Africa 2D 128x128 480 120 290

Munich Sealed Rich Historical Europe 2D 128x128 440 110 220
Synth. OCTA [35] - - - - 2D 128 %128 480 120 2k
OCTA-500 [26] - - - - 2D 128128 1.6k 400 2.2k
Synth. MRI [40] - - - - 3D 64x 64 x64 4k 1k Sk
Microscopy [47] - - - - 3D 50x 50 x50 4k 1k 1.2k
Unlabeled datasets

20 U.S. Cities - - - - 2D 128x 128 124k - -

Synth. OCTA [35] - - - - 2D 128 %128 96.4k - -

Real OCTA [26,32 - - - - 2D 128 %128 40k - -

Synthetic MRI [40] - - - - 3D 64x 64 x64 80k - -

Microscopy [16] - - - - 3D 50x 50 x50 | 43.5k - -

11. Additional qualitative results

We are providing additional qualitative results in the form of mul-

tiple figures; please see Figure 7 - 11.



Table 14. Main results with standard deviations. Quantitative Results for our cross-dimensional image-to-graph transfer learning frame-
work. All models are pretrained on the U.S cities road dataset. We outperform the baselines across all datasets. We present the standard
deviations in addition to the main results.

Fine Tuning (Pre-)Training Node- Node- Edge- Edge- SMD | Topo- Topo-
Training Set Strategy mAP?T mART mAP?T mAR?T Prec.t Rec.T
A) TL from roads (2D) to roads (2D)
No Pretr. [ 18] 0.06740006 | 0.12240007 | 0.02140005s | 0.04340006 | 0.0624-0.028 0.3694-0.0s1 0.26140047
Agadez [20] Self-superv. [9] | 0.083+0010 | 0.156=F0011 | 0.0304000s | 0.071=20007 | 0.030%000s | 0.471=000s2 | 0.45970.039
g - Supervised 0.161%0021 | 0.237%0.023 | 0.11540016 | 0.177=30.017 | 0.023%0009 | 0.783F0018 | 0.71130.039
Ours 0.16340.017 | 0.244740.015 | 0.11630.019 | 0.17240021 | 0.0224-0.003 0.81640.032 0.61440.036
No Pretr. [18] 0.08340012 | 0.120%0011 | 0.034%0.013 | 0.054=40016 | 0.235d0049 | 0.260=400s7 | 0.247=0.070
Munich [20] Self-superv. [9] | 0.088%f0021 | 0.14540033 | 0.06040015 | 0.09740023 | 0.155+0.032 0.3394-0.035 0.3844-0.075
- Supervised 0.27740022 | 0.336%0025 | 0.20740027 | 0.272740031 | 0.09140038 | 0.68240037 | 0.660=0.041
Ours 0.28540.015 | 0.34440.011 | 0.2244-0.030 | 0.27740031 | 0.09074-0.043 0.726+0.078 0.65540.070
B) TL from roads (2D) to synthetic retinal vessels (2D)
No Pretr. [18] 0.27340003 | 0.375740003 | 0.140=40002 | 0.33940003 | 0.005%0002 | 0.181F0004 | 0.94870.004
Synthetic Self-superv. [9] | 0.1363-0002 | 0.260%0003 | 0.069%+0002 | 0.2234-0004 | 0.031d-0006 | 0.0934-000s | 0.927=0.010
OCTA [35] Supervised 0.29140003 | 0.384=40003 | 0.170=40002 | 0.338=0005 | 0.004=0.001 0.21130.005 0.957 %-0.007
Ours 0.41540.005 | 0.49340.003 | 0.2504-0.004 | 0.41540.004 | 0.00274-0.001 0.401=0.003 0.8904-0.007
C) TL from roads (2D) to real retinal vessels (2D)
No Pretr. [ 18] 0.18940005 | 0.28240007 | 0.10840004 | 0.16940006 | 0.017=0.002 0.73720.007 0.6344-0.010
OCTA-500 [26] Self-superv. [9] | 0.21474-0004 | 0.305%0004 | 0.135%40001 | 0.2134-0002 | 0.0167-0.002 0.763=0.012 0.7064-0.005
- Supervised 0.366%0004 | 0.447=40004 | 0.276%0006 | 0.35430007 | 0.014=40001 | 0.86240010 | 0.775%001
Ours 0.49140.006 | 0.57140.005s | 0.36640.009 | 0.48940.007 | 0.0124-0.002 0.87710.004 0.81740.011
D) TL from roads (2D) to brain vessels (3D)
No Pretr. [ 18] 0.16240003 | 0.250=40003 | 0.12540004 | 0.20140004 | 0.0137-0.000 - -
Synthetic Self-superv. [9] | 0.1624+0003 | 0.25240003 | 0.120d-0004 | 0.19340004 | 0.014=0.000 - -
MRI [40] Supervised * * * * * * *
Ours 0.35640.003 | 0.45040.002 | 0.22140.003 | 0.3224-0.003 | 0.013=4-0.000 - -
E) TL from roads (2D) to real whole-brain vessel data (3D)
No Pretr. [ 18] 0.23140016 | 0.308=+0021 | 0.24940017 | 0.32940023 | 0.017=-0.000 - -
Microscopic Self-superv. [9] | 0.344+0.026 | 0.404=40020 | 0.3633002 | 0.42540030 | 0.017=0.000 - -
images [47] Supervised * * * * * * *
Ours 0.48340.037 | 0.53540039 | 0.52340.041 | 0.566740.043 | 0.017=0.000 - -
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Figure 7. Qualitative results for the Agadez dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our method.
Our method consistently outperforms the baselines, which overpredict the edges and nodes for road data.
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Figure 8. Qualitative results for the Munich dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our method.
Our method consistently outperforms the baselines, which overpredict the edges and nodes for road data.
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Figure 9. Qualitative results for the OCTA-500 dataset. Two columns, from left to right: Image, ground truth graph, baseline, and our
method. Our method consistently outperforms the baselines, which underpredict the edges and nodes for the vessel data. It is important to
note that the OCTA-500 dataset labels are on the large vessels. The graph annotations are not provided for all capillaries and are therefore
not learned by the models either.
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Figure 10. Qualitative results for the 3D whole brain vessel dataset. Two columns, from left to right: Image, ground truth graph, baseline,
and our method. Our method consistently outperforms the baselines, which overpredict the edges for the 3D vessel data. Furthermore, the
baseline often predicts implausible triangles between three nodes.
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Figure 11. Qualitative results for the synthetic 3D vessel MRI dataset. Two columns, from left to right: Image, ground truth graph, baseline,
and our method. Our method consistently outperforms the baselines, which overpredict the nodes for the 3D vessel data and underpredict
edges.
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