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Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via CNS
ghrelin receptors.
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Abstract

Ghrelin receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and
adiposity induced by acyl ghrelin (AG). Evidence suggests that des-acyl ghrelin (dAG) has
biological activity through GHSR independent mechanisms. We combined in vitro and in vivo
approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100nM) and
dAG (100nM) significantly increased IP; formation in HEK-293 cells transfected with human
GHSR. As expected, intracerebroventricular (icv) infusion of AG in mice increased fat mass
(FM), in comparison with the saline-infused controls. Icv-dAG also increased FM at the highest
dose tested (5 nmol/day). Chronic icv infusion of AG or dAG increased glucose-stimulated
insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison to
saline-infused control mice, whereas dAG failed to regulate these parameters even with doses
that were efficacious when delivered icv. Furthermore, icv-dAG failed to regulate FM and
induce hyperinsulinemia in GHSR deficient (Ghsr-/-) mice. In addition, a hyperinsulinemic-
euglycemic clamp suggests that icv-dAG impairs glucose clearance without affecting
endogenous glucose production. Taken together, these data demonstrate that dAG is an agonist
of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS

GHSR-dependent mechanism.
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Introduction

Ghrelin, a hormone predominately secreted from the stomach (1), regulates multiple aspects of
energy metabolism, including feeding and adiposity (2; 3), and is therefore a potential target for
therapeutic strategies to prevent or cure obesity. Ghrelin acts directly on pancreatic islets to
modulate glucose-stimulated insulin secretion (GSIS) which has made it a popular target for type
2 diabetes therapies (reviewed in (4)). Ghrelin circulates as an acylated (AG) and des-acylated
(dAG) form (1). Although the exact ratio of circulating AG to dAG varies depending on
metabolic status (5; 6), the majority of ghrelin circulates in the dAG form. There is currently
only one known ghrelin receptor, the growth hormone secretagogue receptor 1a (GHSR). This
receptor is expressed in multiple areas of the central nervous system (CNS) where it mediates
AG-induced feeding and adiposity. The presence of an acyl side-chain (mainly n-octanoic acid)
attached to the ghrelin peptide is required for full agonism of GHSR (1). Some in vitro evidence
suggests that dAG interacts with GHSR, although this occurs at significantly lower levels as
compared to AG (1; 7). Therefore, dAG was initially considered an inactive by-product of
ghrelin secretion and degradation. Despite this, multiple reports have suggested that dAG acts in
peripheral tissues and in the brain to regulate biological actions including the control of feeding
(8; 9), body temperature (10), muscle atrophy (11), GSIS (12; 13), and lipid metabolism (14; 15).

All of these actions are attributed to GHSR-independent mechanisms.

Many peripherally secreted hormones such as leptin, glucagon or glucagon-like peptide-1 act in
the CNS to regulate energy metabolism, and interestingly, a growing body of literature has
highlighted that these hormones act in the CNS to regulate glucose homeostasis (16-19).

Peripherally derived AG acts centrally to promote a positive energy balance (3) and acts directly
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on pancreatic islet cells to regulate insulin secretion (20; 21). However, it is not well established
whether AG regulates glucose metabolism through central mechanisms. Rats given chronic
central administration of AG have elevated fasting insulin levels (22), which is independent of
hyperphagia induced by ghrelin (23) and suggests that AG acts in the CNS to regulate circulating

insulin levels.

In addition to the gut, ghrelin is expressed in the brain where both AG and dAG can be detected
(24-26), and therefore, understanding the central actions of these peptides is of interest. In
contrast to AG, the central action of dAG in regulating energy and glucose metabolism remains
poorly characterized. Some reports suggest that dAG action in the brain plays a role in the
control of feeding (8; 9). A role for dAG acting in peripheral tissues to regulate insulin secretion
has been described (12; 27; 28), although the CNS-control of glucose metabolism by dAG has
not been explored. Previous reports demonstrate a lack of dAG-induced activation of GHSR (1),
which has led researchers to assume that dAG-mediated effects are solely GHSR independent.
However, a potential role for GHSR-mediated dAG action has yet to be directly tested in vivo.
The aim of this study was to compare CNS-mediated action of AG and dAG on feeding,
adiposity, and GSIS in mice. Furthermore, we aimed to determine whether GHSR mediates the

biological actions of dAG using a combination of both in vitro and in vivo techniques.
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Materials and Methods

Peptide synthesis

Rat AG and dAG were synthesized using in situ neutralization for Boc chemistry, purified by
preparative chromatography, and characterized by HPLC and mass spectral analysis, as

described previously (3).

Cell culture and transfection

Human embryonic kidney cells (HEK-293) cells were grown in Dulbecco’s modified Eagle’s
medium. DMEM was supplemented with 10 % FBS (PAA Laboratories GmbH), 100 U/ml
penicillin, 100 pg/ml streptomycin (Biochrom AG) and 2 mM L-glutamine (Invitrogen). For
seeding of HEK-293 cells, 48-well plates were coated with Poly-L-Lysine (Biochrome). 83.3 ng

plasmid-DNA/well were transfected using 0.9 pul Metafectene’/well (Biontex).

Measurement of intracellular IP; formation

Intracellular inositol triphosphate (IP3) levels were determined using a luciferase reporter assay
(Promega). HEK-293 cells were seeded into 48-well plates (5x10* cells/well). Equal amounts of
receptor-DNA (pcDps) and a reporter construct containing a response element and the firefly
luciferase gene under control of the nuclear factor of activated T-cells (NFAT) were co-
transfected. Cells were stimulated 2 days after transfection for 6 hours at 37 °C and 5 % CO,
with AG (10 nM and 100 nM) or with dAG (10 nM and 100 nM) and lysed with 100 pl 1x
Passive Lysis Buffer (Promega). IP; formation was determined by luciferase activity according

to the manufacturer’s instructions.
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Animals

Male C57BL/6 mice (12 weeks old; Jackson Labs, Bar Harbor, ME) were maintained on a
standard chow diet (Teklad, Harlan). After receiving surgery, animals were singly housed and
maintained on a 12:12-h light-dark cycle at 22 °C with free access to food and water unless noted
otherwise. Ghsr-/- mice and wild-type (WT) control mice both on a C57BL/6 background were
received from Regeneron Pharmaceuticals and bred in our facilities as described previously (29).
The average body weight (BW) of the mice used in these studies was 26.8 grams. All studies
were approved by and performed according to the guidelines of the Institutional Animal Care

and Use Committee of the University of Cincinnati.

Subcutaneous and intracerebroventricular (icv) infusions in mice

For all surgical procedures, mice were anesthetized using 5 % isoflurane in oxygen in an
induction chamber and then maintained on 2.5 % isoflurane delivered by a nose cone.
Subcutaneous infusions of AG and dAG were delivered by subcutaneously implanted osmotic-
mini pumps (1007D Alzet, Cupertino, CA). For icv infusions, mice were stereotaxically
implanted (David Kopf Instruments, Tujunga, CA) with a cannula (brain infusion kit #3, Alzet,
Cupertino, CA) placed in the lateral cerebral ventricle as previously described (30). A
polyethylene catheter attached the cannula to an osmotic mini-pump (1007D Alzet, Cupertino,

CA) that was subcutaneously implanted.
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Indirect calorimetry
For measurements of locomotor activity (LA), energy expenditure (EE) and respiratory exchange
ratio (RER) animals were implanted with icv mini-pumps as described above and then placed in

an indirect calorimetry system for 7 days (TSE Systems, Gmbh, Bad Homburg, Germany).

Intraperitoneal glucose tolerance test (ipGTT)

Intraperitoneal (ip) glucose tolerance tests were performed by injection of glucose (2 g/kg, 20 %
w/v d-glucose, Sigma, in 0.9 % w/v saline) after a 16h fast. Tail vein blood samples for blood
glucose (BG) measurements were collected at 0, 10, 30, 60 and 120 min after the injection, and
were measured using a handheld glucometer (Freestyle Lite). Tail vein blood samples (60ul per
time point) for insulin measurements were collected at 0, 10 and 60 min. Plasma insulin was
determined using either a radioimmunoassay (Sensitive Rat Insulin RIA; Millipore) or ELISA

(Ultra Sensitive Mouse Insulin ELISA Kit; Crystal Chem) as indicated in the figure legend.

Body composition measurements

Whole-body composition (fat and lean mass) was measured using NMR technology
(31)(EchoMRI-100; Echomedical Systems, Houston, TX). Initial body composition for all
experiments was taken the day prior to surgery (d (-1)). For dose response icv infusion studies
(Figure 2) and indirect calorimetry studies (Figure 3) final body composition was analyzed on d7
following surgery. For studies involving analysis of glucose tolerance (Figure 4, 5 and 6), final

body composition was analyzed on d6 immediately after the ipGTT (~20h fasted).
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Catheterization for hyperinsulinemic euglycemic clamps

The left common carotid artery and right jugular vein of the mice were catheterized for clamp
studies as previously described (32). Immediately upon completion of catheterization, animals
were implanted with an icv cannula attached to a subcutaneously placed osmotic mini-pump as
described above. Following surgery, animals were given subcutaneous injections of
buprenorphin (0.28 mg/kg Buprenex; Reckitt Benckiser Healthcare, Richmond, VA), meloxicam

(0.25 mg/100 g body weight Metacam; St. Joseph,MO), and 1 mL warm saline.

Hyperinsulinemic euglycemic clamps (HEC)

On day 5 after surgery, HEC were performed as previously described (32). Mice were conscious
during the entire experimental procedure. Following a 5h fast, catheter lines were exteriorized
and connected to infusion pumps. A 5-uCi bolus of [3-°H]glucose (Perkin Elmer Life Sciences,
Boston, MA) was given, followed by a 0.05 pCi/min infusion for 120 min before insulin
infusion. At 100 min a blood sample (50 ul) was taken to determine basal glucose and insulin
levels as well as basal glucose turnover. The insulin clamp started at 120 min with a continuous
infusion of insulin at a rate of 4 mU/kg/min. During the clamp, the [3->H]glucose infusion rate
was increase to (0.1 pCi/min) to maintain constant specific activity. Dextrose (50 g/100 mL) was
infused as necessary to maintain euglycemia (~130 mg/dl) on the basis of feedback from frequent
arterial glucose measurements by handheld glucometers (Accu-check Aviva glucometer). Saline-
washed erythrocytes previously collected from donor mice were infused throughout the
experimental period to prevent a fall of hematocrit. A 12-pCi bolus of 2[*C]deoxyglucose
(2["*CIDG) was given at 198 min. Blood samples (20 ul) were taken every 10 min from ¢ = 200—

240 min and processed to determine plasma [3-'H] glucose and 2["*C]IDG. At the end of the
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clamp period, mice were euthanized with an injection of sodium pentobarbital. Tissues were

collected and stored at -80 °C for further analysis.

Tracer calculations

Rates of glucose appearance (Ra), endogenous glucose production (EGP), and glucose utilization
were calculated using steady state equations as previously described (33). Briefly, EGP was
calculated by determining the total Ra (this comprises both glucose production and any
exogenous glucose infused to maintain the desired glycemic levels) and subtracting the amount
of exogenous glucose infused. Tissue specific glucose uptake was calculated from tissue 2-DG

content as previously described (33).

Statistical analysis

Statistical analysis was performed using GraphPad Prism version 5.0 (GraphPad Software, San
Diego, California, USA). Statistical significance was determined either by unpaired student’s t-
test, one-way ANOVA followed by Tukey’s multiple comparison post hoc test or two-way
ANOVA followed by Bonferroni's multiple comparison post hoc test. For non-linear regression
analysis, data sets were fitted using the least square method following the equation (Y=Bottom +
(Top-Bottom)/(1+10"(LogEC50-X))) and compared using the extra sum of squares F-test. All
results are given as means + SEM. Results were considered statistically significant when

p <0.05.
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Results

AG and dAG activate GHSR in HEK-293 cells

To determine whether dAG activates GHSR in vitro, we incubated GHSR transfected HEK-293
cells with dAG. We found that 100 nM dAG challenge resulted in a significant increase 1P;
turnover above the basal constitutive activity of the receptor (Figure 1), which is similar to what
other groups have found at this concentration of dAG in stable transfected Chinese hamster
ovary cells (34). The IP; accumulation induced by AG was approximately 2-fold greater than

that induced by dAG (Figure 1).

Food intake and body composition following chronic icv infusion of dAG and AG

Our in vitro data suggested that dAG is a weaker agonist of GHSR as compared to AG, and
therefore, we hypothesized that infusion of dAG directly into the brain will have similar, but less
potent effects as AG on feeding, body weight (BW), and fat mass (FM). To test this, we
performed a 7-day chronic central infusion of either AG or dAG at increasing equimolar doses in
mice (0, 0.04, 0.2, 1.0 and 5.0 nmol/day). A two-way ANOVA detected a significant effect of the
treatment on cumulative 7d food intake (P<0.01 AG vs. dAG) and an extra-sum of squares F-test
comparing the curve fits for both treatments (P<0.05, calculated ECs5y=0.096 vs. 0.253nmol/ day,
for AG and dAG, respectively, Figure 2a). Both treatments increased BW in a dose dependent
manner (P<0.01 for dose as main effect as calculated by two-way ANOVA), with a similar
potency (Figure 2b). Relative to vehicle-infused controls, AG and dAG increased FM to a similar
extent with the highest dose tested (5.0 nmol/day). The difference between the dose response

curves of AG and dAG was statistically significant (P<0.05 by extra-sum of squares F test for the
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calculated curve fittings, calculated ECs5;=0.073 vs. dAG EC5¢,=0.902nmol/ day for AG and
dAG, respectively) (Figure 2c). Lean mass (LM) did not differ among the groups (data not

shown).

Locomotor activity (LA), energy expenditure (EE) and respiratory exchange ratio (RER) during
chronic icv infusion of dAG and AG

Increased FM induced by AG can occur in the absence of hyperphagia which has been
demonstrated (3). This occurs, in part, through suppression of LA (35) and decreased fat
utilization as a fuel source (3). We did not detect hyperphagia in dAG treated animals, and
therefore, we investigated whether dAG increases adiposity through similar alterations in LA and
metabolic fuel preference. We gave mice chronic icv infusions of AG or dAG (5 nmol/day) and
placed them into an indirect calorimetry system. We did not detect differences in cumulative
food intake in either the AG or dAG treated animals (Figure 3a). Both compounds increased
BW and FM following 7d of icv infusion (Figure 3b,c). Figure 3d depicts the RER of the mice
during the 7d infusion period. When compared to vehicle-treated animals, dAG has a strong
tendency to increase RER in the final 4 days of infusion (p=0.054 saline vs. dAG with treatment
as the main effect; two-way ANOVA). However, when comparing all groups only AG causes a
statistically significant increase in RER (Figure 3e). We did not detect changes in EE in either
dAG or AG treated animals over the course of the infusion (Figure 3f) or during the last 4 days
of treatment (Figure 3g), which is consistent with other reports that have demonstrated a lack of
effect of AG on EE (3). Figure 3h, shows the LA of the animals during the 7d infusion period.
AG suppresses LA during the final 4 days of infusion, whereas dAG has no effect on LA during

the final 4 days of infusion (Figure 31).
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Effects on glucose metabolism following chronic icv infusion of AG and dAG

To investigate the central effects on glucose metabolism, mice received chronic icv infusion of
AG or dAG (5 nmol/day). Animals were then exposed to an ipGTT following an overnight
(16h) fast. All groups showed similar blood glucose excursions during the ipGTT (Figure 4d).
Both AG and dAG significantly increased insulin levels in comparison with vehicle-treated
controls, suggesting a higher GSIS (Figure 4e). Animals in all groups experienced a decrease in
BW and FM over the course of infusion, which was likely due to the combination of an
overnight fast and surgical intervention. However, animals receiving either dAG or AG lost less
BW (Figure 4b) and FM (Figure 4c¢) relative to vehicle-infused controls. Decreases in LM were
similar among all groups (data not shown). During the infusion period, AG significantly

increased food cumulative 6d food intake, whereas dAG did not alter food intake (Figure 4a).

Effects on energy and glucose metabolism following chronic subcutaneous infusion of AG and
dAG

To clarify whether the increases in plasma insulin were due to a centrally mediated action or
leakage into peripheral tissues, we chronically infused an equimolar amount of AG and dAG
(120 nmol/day) to mice. Animals were exposed to an ipGTT following an overnight (16h) fast.
Blood glucose excursions were similar in all groups (Figure 5d). Plasma insulin levels during the
ipGTT were elevated in the AG treated group 60 min following glucose injection (Figure Se).
Unlike central administration, subcutaneous infusion of dAG had no effect on GSIS (Figure Se).
Following the infusion period, animals receiving peripheral treatment of AG lost less BW

(Figure 5b) and FM (Figure 5c¢) relative to vehicle-treated controls. Decreases in LM following
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the infusion period were also significantly less in animals receiving chronic subcutaneously
delivered AG relative to vehicle-treated animals (Saline -7.182 £ 0.5196 g, dAG -

5.816 £ 0.3766 g, AG -5.205 £ 0.2920 g; **p< 0.01 Saline vs AG, one-way ANOVA with
Tukey’s post-hoc). In contrast to icv infusion shown in Figure 4, chronic subcutaneous
administration of a larger dose (24 times the amount given centrally) of dAG did not affect BW
or FM (Figure 5b,c). Food intake was similar among all groups during the infusion period

(Figure 5a).

Energy and glucose metabolism in Ghsr-/- mice administered with chronic icv-dAG

To determine whether the regulation of FM and GSIS by central administration of dAG depends
on GHSR activation, we performed chronic central infusion of dAG in WT and age-matched
Ghsr-/- mice. Administration of an ip glucose bolus following an overnight (16h) fast did not
elicit differences in BG excursions regardless of the genotype or the treatment (Figure 6d).
Consistent with Figure 4e, dAG increased plasma insulin levels in WT, but not in Ghsr-/- mice
during the ipGTT (Figure 6¢). Cumulative 6d food intake was not altered due to icv-dAG
treatment in WT or Ghsr-/- animals (Figure 6a). Following the infusion period, dAG-treated WT
mice lost less BW and FM relative to vehicle-treated mice; however, dAG did not affect BW or
FM in Ghsr-/- mice as compared to vehicle-treated Ghsr-/- mice (Figure 6b,c). Changes in LM

were similar among all groups (data not shown).

HEC clamp in mice treated with chronic icv-dAG
The glucose-stimulated hyperinsulinemia induced by icv-AG or dAG treatment could be a result

of the development of insulin resistance in these mice. To detect changes in hepatic and/or
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peripheral insulin sensitivity, we performed a HEC in mice that received chronic icv treatment of
dAG (5 nmol/day). We used dAG in order to limit the confounding factor of hyperphagia that we
commonly see with AG and also because we confirmed that the effects of dAG are mediated
through AG’s target, GHSR. BG was clamped at similar levels between saline and dAG groups
(Figure 7a). The exogenous glucose infusion rate necessary to maintain these steady glucose
levels was also similar between groups indicating similar rates of whole-body insulin sensitivity
(Figure 7b). Saline and dAG treated animals had a similar basal EGP and insulin similarly
suppressed EGP during the clamp period indicating that central dAG treatment did not alter
hepatic insulin sensitivity (Figure 7c). However, while glucose clearance was significantly
increased during the clamp in saline treated animals (Figure 7d), mice treated with icv-dAG had
a minor, but significant impairment in their ability to increase peripheral glucose clearance
during the clamp (Figure 7d). Tissue-specific glucose uptake into soleus, inguinal white adipose
tissue (IWAT), epididymal white adipose tissue (eWAT), and brown adipose tissue (BAT) was

similar between groups (Table 1).

Discussion

Cell-based assays have demonstrated that ghrelin requires esterification with an acyl-side-chain
on its Ser3 residue to activate GHSR at concentrations within the low nanomolar range (1). This
evidence led to the assumption that the biological effects of dAG are independent of GHSR
activation. Here, we combined in vitro and in vivo approaches to demonstrate that dAG can
activate GHSR, and activation at the level of the CNS leads to changes in the control of energy

balance and glucose metabolism.
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Several reports indicate that dAG interacts with GHSR at concentrations within the high
nanomolar or micromolar range. While some data indicates that dAG is a weak GHSR agonist
(1; 7), other data suggests that dAG is actually a full agonist of GHSR and induces similar
maximal receptor stimulation as AG (34). Altogether, our in vitro results are consistent with the

literature and demonstrate that dAG possess GHSR agonism in vitro.

Our experiments consistently show that central infusion of dAG in the brain mimics the effect of
AG on adiposity and hyperinsulinemia. Interestingly, the effect of dAG on adiposity is
manifested at a higher potency than could be predicted based on functional assays in vitro. It
should be noted that although central infusion of AG and dAG always led to relative increase in
FM in comparison with the control group, we sometimes observe an absolute reduction in FM at
the end of the experiment. We attribute that decrease to the impact of our experimental approach,
which combines a major surgical procedure and ipGTT following overnight fasting in a
relatively short period of time. This should be considered when comparing our results with

others obtained in different conditions.

In contrast to the effect on adiposity and insulin secretion, we could not detect any significant
effect of dAG on other parameters that are known to be regulated by central AG action including
food intake (2), RER (3) or LA (35). It is noteworthy that the effect of AG on adiposity is more
consistent across experiments than the effect on food intake. This difference emphasizes that
although AG commonly increases food intake, this increase is not necessary for increase in FM

induced by AG (3; 30; 35-37).
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The reasons underlying the selectivity of dAG towards the control of adiposity over other AG
mediated effects as well as the relatively higher than expected potency in vivo will require
further investigation. The reduced GHSR activation by dAG may explain part of the different
outcomes observed between dAG and AG. Alternatively, intrinsic in vivo conditions may
contribute to a relative increase in GHSR-mediated dAG biological activity, which may
determine the selectivity over the control of different physiological effects. A growing area of
interest is the ability of GHSR to heterodimerize with other G-protein coupled receptors
(GPCRs) (38-41). Formation of these heteromers modifies GHSR basal activity as well as AG
action (40). Furthermore, the amount of ghrelin present influences GHSR heterodimer formation
as well as coupling to downstream intracellular signaling systems (39). Investigating whether
dAG modulates GHSR heterodimerization with other GPCRs could help elucidate the function

and molecular mechanisms of endogenous dAG.

In addition to recapitulating central AG action on plasma insulin levels (23), we further expand
on the role of both AG and dAG in the central regulation of glucose metabolism. We find that
icv infusion of either ghrelin isoform causes hyperinsulinemia in response to a glucose bolus.
The glucose-stimulated hyperinsulinemia induced by AG is blunted when AG is infused
subcutaneously, whereas the glucose-stimulated hyperinsulinemia induced by dAG is completely
ablated when dAG is delivered subcutaneously. Considering the increased efficacy of dAG when
administered centrally in comparison to peripherally as well as the absence of effect when
administered centrally in Ghsr-/- mice, our results demonstrates that CNS-GHSR plays a critical
role in mediating the effect of dAG in the control of FM and insulin secretion. Intriguingly,

ghrelin is produced in the brain in areas involved in the control of energy balance (24; 26; 42;
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43). Whether neurally-derived dAG plays a physiological role in the control of GHSR activity
requires additional investigation. The loss of effectiveness of dAG regulating FM in Ghsr-/- mice
strongly suggests that dAG shares the mechanisms of action whereby AG controls adiposity,

including the regulation of the sympathetic nervous system activity (37).

Our results also highlight the role of CNS-GHSR as a positive regulator of insulin secretion. This
role is in contrast with the inhibitory action of GHSR in the periphery on GSIS (21; 44). We find
a stronger effect on GSIS following icv infusion of AG or dAG as compared to their peripheral
administration. The lack of a peripheral action of dAG is consistent with other groups reporting
no effect of chronic peripheral dAG treatment on body composition, glucose tolerance or GSIS
in chow-fed mice (27). The inhibitory action of peripheral GHSR signaling on insulin release
could contribute, at least in part, to counteract the CNS-GHSR mediated hyperinsulinemic action
of AG and dAG. Thus, GHSR may play distinct roles in the control of insulin secretion
depending on the site of action of AG or dAG. The underpinnings of the control of insulin
release by CNS-GHSR activity have not been completely investigated. The HEC suggests that
central dAG impairs peripheral glucose clearance, which may contribute to the development of
hyperinsulinemia. However, it is likely that other mechanisms, including a direct action in the
pancreas, play a role in the hyperinsulinemia induced by the action of both AG and dAG in the

brain.

Collectively, our data demonstrate that dAG regulates adiposity and plasma insulin levels
through the interaction with GHSR in the CNS and suggest that dAG may be functional

endogenous agonist of GHSR. Furthermore, these data emphasize that adiposity and
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hyperinsulinemia induced by dAG are independent of changes in food intake. Our data highlight
the plurality of the ghrelin system and implicate that further studies are necessary to fully

understand each component.
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Figure Legend

Figure 1: Effect of AG and dAG on IP; formation in HEK-293 cells transfected with
human GHSR. Functional in vitro assays were performed in transiently transfected HEK-293
cells to investigate Gy/1; mediated IP; formation after stimulation with dAG (10 nM and 100 nM)
or AG (10 nM and 100 nM) for 6h. Stimulation with 100 nM dAG or 10 and 100 nM AG
significantly increased IP; formation (*p<0.05; ***p<0.001). IP; formation was determined via a
reporter construct containing a response element and the firefly luciferase gene under control of

the nuclear factor of activated T-cells (NFAT). All data indicate a fold increase of the empty
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vector (pcDps) transfected cells (MOCK) basal activity 3961 + 528 rlu (relative light units) for
IP3, which was set as 1. Data are means = SEM out of two experiments performed in triplicates
for Gg/11 activation. Statistical significance was determined by Student’s unpaired two-tailed t-

test.

Figure 2: Effect of chronic icv dAG or AG infusion on food intake, body weight and fat
mass. C57/BL6 mice were given icv infusion of saline, dAG or AG for 7 days. AG and dAG
were infused using increasing doses (0.04, 0.2, 1.0 and 5.0 nmol/day). There was a significant
effect of the treatment on 7d cumulative food intake (P<0.05 AG vs dAG; two-way ANOVA).
Consistently, a non-linear regression analysis followed by an extra-sum of squares F-test
detected a significant difference between the curves fitting AG and dAG effect (a; P=0.0185). A
two-way ANOVA detected a significant effect of the dose of both AG and dAG on body weight
(b; P<0.05) and fat mass (c; P<0.001). A non-linear regression analysis followed by an extra-sum
of squares F-test detected a significant difference (P=0.0318) between the potency of AG and

dAG on fat mass (c). n= 6-10 animals per group

Figure 3: Effect of chronic icv dAG or AG infusion on respiratory exchange ratio, energy
expenditure and locomotor activity. C57/BL6 mice were given icv infusion of saline, dAG or
AG (5 nmol/day) for 7d while being housed in an indirect calorimetry system. AG and dAG had
no effect on 7d cumulative food intake (a). Both AG and dAG increased body weight (b;
*p<0.05 vs. saline, one-way ANOV A with Tukey’s post hoc test) and fat mass (c; *p<0.01,

*#%p<0.001 vs. saline, one-way ANOV A with Tukey’s post hoc test). (d) Effect of AG and
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dAG on RER. AG significantly increased RER in the final 4 days of infusion (e; *p<0.05, AG
vs. saline; two-way ANOVA with Bonferroni post hoc test). Neither AG nor dAG altered EE
throughout the 7d infusion period (f,g). (h) Effect of AG and dAG on locomotor activity. Only
AG maintained suppression of locomotor activity in the final 4d of infusion (i; *p<0.01, AG vs.

saline; two-way ANOVA with Bonferroni post hoc test). n=7-8 animals per group

Figure 4: Effect of chronic icv dAG or AG infusion on energy and glucose metabolism.
C57/BL6 mice were given icv infusion of saline, dAG or AG for 6 days (5 nmol/ day). AG
significantly increased 6d cumulative food intake (a; *p<0.05 vs. saline, one-way ANOVA with
Tukey’s post hoc test). Following the infusion period, mice that received icv AG or dAG lost less
body weight (b; **p<0.01, ***p<0.001 vs. saline, one-way ANOVA with Tukey’s post hoc test)
and fat mass relative to saline-treated control animals (c; **p<0.01, ***p<0.001 vs. saline, one-
way ANOVA with Tukey’s post hoc test). Neither AG nor dAG icv infusion altered ip glucose
tolerance (d). Plasma insulin levels were measured by RIA and were elevated in mice treated
with AG or dAG (e; *p<0.05 dAG vs. saline, ##p<0.01 AG vs. saline; two-way ANOVA with

Bonferroni’s post hoc test). n= 8-9 animals per group.

Figure 5: Effect of chronic subcutaneous dAG or AG infusion on energy and glucose
metabolism. C57/BL6 mice were subcutaneously implanted with mini-pumps that infused AG
or dAG for 6 days (120 nmol/ day). Neither ghrelin compound had a significant effect on 6d
cumulative food intake (a). Following the infusion period, mice treated with AG lost less body
weight (b) and fat mass relative to saline-treated controls (c), whereas dAG had no effect.

Neither AG nor dAG infusion altered ip glucose tolerance (d). Plasma insulin levels were
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measured by RIA and were elevated in sc-AG treated mice at 60 minutes following glucose
injection (e). (*p<0.05, ***p<0.001 AG vs. saline, one-way ANOVA) (##p<0.01 AG vs. saline;

two-way ANOVA with Bonferroni’s post-hoc test). n= 8-9 animals per group.

Figure 6: Effect of chronic icv dAG infusion on energy and glucose metabolism in Ghsr -/-
mice. Ghsr-/- and age-matched WT mice were given icv infusion of saline or dAG ghrelin for

6 days (5 nmol/ day). Icv-dAG infusion did not alter feeding in WT or Ghsr-/- animals (a).
Following the infusion period, WT mice treated with icv-dAG lost less body weight (b) and fat
mass (c) relative to WT saline-treated controls. Icv-dAG infusion had no effect on body weight
(b) or fat mass (c¢) in Ghsr-/- mice. Icv-dAG did not alter ip glucose tolerance in either WT or
Ghsr-/- animals (d). Plasma insulin levels were measured by ELISA and were elevated in WT
mice treated with icv-dAG (e) compared to WT mice treated with icv-saline. Icv-dAG treatment
did not alter glucose-stimulated plasma insulin levels in Ghsr-/- mice compared to icv saline
treated Ghsr-/- mice (e). (**p<0.01, ***p<0.001, WT saline vs. WT dAG; two-way ANOVA

with Bonferroni’s post-hoc test). n= 7-8 animals per group.

Figure 7: Effect of chronic icv-dAG infusion on peripheral glucose homeostasis during a
hyperinsulinemic euglycemic clamp. Mice received chronic icv infusion of dAG (5 nmol/ day)
for 5 days prior to a hyperinsulinemic euglycemic clamp. Blood glucose levels were clamped at
similar levels in saline and dAG treated mice (a). Exogenous glucose infusion rate was similar in
saline and dAG treated mice (b). Basal EGP and suppression of EGP during the

hyperinsulinemic euglycemic clamp were similar in saline and dAG treated mice (¢). Animals
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treated with dAG had impaired insulin-mediated glucose disposal (d; *p<0.05 saline vs. dAG; t-

test). n= 9-10 animals per group

Table 1: Effect of chronic icv dAG infusion on tissue specific glucose uptake during a
hyperinsulinemic euglycemic clamp.

Saline dAG

Glucose Uptake (mg/kg/min) Glucose Uptake (mg/kg/min)

BAT 111.70 £ 19.76 112.00 + 16.88
iWAT 18.13 +7.88 15.34+5.18
eWAT 549+ 1.52 3.19+0.72
soleus 11.18+ 1.11 8.63 +£3.46

No difference in glucose uptake in BAT, iWAT, eWAT or soleus was detected in icv dAG

(5 nmol/ day) treated mice compared to saline treated controls. N =4-7 animals per group
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