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Abstract

Obesity‐prone (OP) and obesity‐resistant (OR) individuals demonstrate sig-

nificant metabolic differences, potentially influenced by variations in the gut

microbiome. However, the influence of host–microbiota interactions on

obesity susceptibility remains unknown. We performed an integrative multi‐
omics approach to explore microbial, metabolic, and genetic differences in

high‐fat diet (HFD)‐fed OP and OR mice, with additional analyses of gut

microbiota variations in humans. In OP mice, the dynamic gut microbiota

was characterized by a stable presence of Longibaculum, while Kineothrix

predominated in OR mice. We termed both as keystone bacteria. Beyond

these, eight dominant bacterial genera were significantly associated with bile

acid metabolites and amino acids. Three of these genera were also identified

in OR humans and showed positive correlations with genes that may support

intestinal barrier function. We identified 22 specific amino acid profiles as

potential biomarkers for obesity susceptibility, along with significantly

increased levels of ten non‐12‐OH bile acids in fecal of OR mice. In vivo,

mouse experiments demonstrated that ursodeoxycholic and hyodeoxy-

cholic acids could reduce HFD‐induced obesity. Additionally, the colon of

OP mice displayed a higher presence of inflammatory cells. These findings

suggest that host–microbiota interactions may contribute to phenotypic

differences between OP and OR. Our study offers insights into crucial

intestinal markers associated with obesity, providing a valuable resource

for advancing the understanding of obesity‐prone and obesity‐resistant
phenotypes.
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Highlights

• Gut microbiota dynamics were described in obesity‐prone (OP) and obesity‐
resistant (OR) mice, with Longibaculum and Kineothrix identified as key-

stone bacteria.

• Kineothrix, Intestinimonas, and Fournierella, which observed in OR mice,

were also detected in OR humans.

• Ten non‐12‐OH bile acids, including ursodeoxycholic and hyodeoxycholic acids,

were elevated in OR mice and reduced weight gain induced by a high‐fat diet.
• Twenty‐two specific amino acid profiles were identified as potential bio-

markers for obesity susceptibility.

1 | INTRODUCTION

Obesity is a widespread global health issue and serves as
a significant risk factor for type 2 diabetes, cardiovascular
diseases, and certain types of cancer. Beyond genetic
regulation, environmental factors, particularly the over-
consumption of high‐calorie food diets, contribute subs-
tantially to the progression of obesity [1]. Chang et al.
discovered that despite being fed an identical high‐fat
diet (HFD), rats exhibit varying degrees of body weight
phenotypes [2]. Some rats are more prone to significant
weight gain (obesity‐prone [OP]), whereas others are
resistant to obesity (OR). This phenomenon was also
found in mice [3]. To date, the heterogeneity between OP
and OR remains largely unknown and is important in
obesity research, which has been greatly advanced by the
development of ‐omics approaches. In OP/OR mice, the
gut microbiota profile in OP mice is distinct from that in
OR mice, such as Oscillibacter and Clostridium [4], and
the transfer of OP microbiota to germ‐free mice can
replicate the characteristics of the OP phenotype in
normal rats. This emphasizes the importance of further
exploration of the microbiota genera that play key roles
in the formation of OP and OR phenotypes.

Furthermore, OP‐ and OR‐related mechanisms have
been explored by integrating multi‐omics data. A dysre-
gulated gut microbiota‐bile acid axis reportedly con-
tributes to obesity [5]. Alterations in metabolic pathways
in OP rats may regulate lipid metabolism [6], and the
“microbiota–gut–brain” axis may contribute to obesity
resistance [4].

The microbiota may mediate the physiological
adaptability of the host to influence its phenotype [7–9].
Specifically, gut microorganisms can broadly affect the
body's metabolic system through metabolites they pro-
duce, including bile acids, short‐chain fatty acids,
ammonia, and other bioactive compounds [10]. Notably,
these metabolites can be absorbed into the enterohepatic

circulation, thereby entering the circulation [11], and can
induce cell signaling and proliferation, leading to al-
terations in physiological functions [12–14]. These pro-
cesses can lead to alterations in the mucosal structure,
barrier integrity, and immune activity, ultimately shap-
ing the host phenotype.

This study aimed to investigate the relationship
between microbiota–host interactions and OP and OR
mice phenotypic differences to understand the dynamic
changes in the gut microbiota and the related mecha-
nisms of obesity susceptibility or resistance using an
integrative approach combining microbiome, metabo-
lomics, and transcriptomics.

2 | RESULTS

2.1 | Phenotypic differences in OP and
OR mice

Body weight changes of the mice at different stages are
presented in Figure 1A. Following 3 weeks of high‐fat
feeding, OP mice exhibited a significantly greater weight
gain compared to OR mice (8 weeks of age; all p< 0.05).
This difference became more pronounced as feeding time
increased.

Hematoxylin and eosin (H&E)‐stained pathological
sections of mouse liver and adipose tissue at 16 weeks
(21 weeks of age) revealed changes in tissue structure
and cell morphology (Figure 1B). Hepatocytes from OP
mice showed noticeable edema, with most cells exhibit-
ing moderate‐to‐severe extensive hepatic steatosis,
mainly manifesting as macrovesicular and small vesicu-
lar steatosis. Additionally, only a small amount of lym-
phocyte infiltration was observed. Hepatocyte cytoplasm
from OR mice exhibited a granular appearance, with
small vacuoles appearing in some cells. Vacuole number
was significantly less than in mice OP mice (p< 0.001)
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FIGURE 1 (See caption on next page).
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and more than in the normal liver (Figure S1, Table S1).
Similarly, the lipid droplets in the white adipose tissue of
OR mice were significantly smaller compared to those in
OP mice (p< 0.001), yet larger than those observed in the
Con group (Figure S1, Table S1).

2.2 | Gut microbiota dynamic changes
in OP and OR mice

Gut microbiota α‐ and β‐diversity of OP and OR mice was
not significantly different at 0, 2, and 5 weeks of a HFD but
was significantly different at 14 and 16 weeks of a HFD
(p<0.05) (Figure 1C,D). Key biomarkers in OP and OR
mice were identified using linear discriminant analysis
effect size (LEfSe) (Figure 1E). At 0 and 2 weeks of a HFD,
no between‐group differences in bacterial genera were
observed. After 5 weeks of a HFD, two significantly different
genera, Longibaculum and Kineothrix (p<0.05), appeared in
OP and OR mice, respectively; we considered these as
keystone bacteria. These were the first distinct genera to
appear in OP and OR mice. Additionally, we validated these
findings through qPCR, which confirmed the significant
differences observed (Figure S2, Table S2). At 14 and
16 weeks of a HFD, Longibaculum, Agathobacter, Rosei-
marinus, Harryflintia, and Adlercreutzia were the dominant
bacterial genera repeatedly and stably present in OP mice,
whereas Kineothrix, Butyricicoccus, Intestinimonas, Rumini-
clostridium, and Faecalicatena were the dominant bac-
terial genera repeatedly and stably present in OR mice
(Figure 1E). The time points of 14 and 16 weeks of HFD
feeding were chosen to represent the stage at which the
phenotypes of the OP and OR groups had reached stability
following long‐term dietary intervention.

2.3 | Gut microbiota in human study

A notable variation in gut microbiota β‐diversity was
identified between the OP and OR human groups
(p < 0.05; Figure 1F). An exhaustive delineation of
the baseline characteristics between the two groups
is presented in Table S3. Three enriched genera,
Kineothrix, Intestinimonas, and Fournierella, observed
in OR mice, were also detected in OR humans
(Figure 1G).

2.4 | Differences in serum metabolome
in OP and OR mice

In OP and OR mice, a total of 1567 serum metabolites
were identified, and orthogonal partial least squares‐
discriminant analysis (OPLS‐DA) modeling successfully
distinguished the metabolic profiles of the two groups
(Figure 2A). Integrating the results of variable projec-
tion importance (VIP), fold change, and q‐value in
univariate analysis, 79 differential metabolites were
identified between OP and OR mice, with 42 showing
increased levels in OP mice and 37 exhibiting elevated
levels in OR mice (Figure 2B, Table S4). Compared with
OR mice, increased metabolites in OP mice included
amino acids and related metabolites, organic acids, and
pyridine and its derivatives; decreased metabolites
included bile acids, alcohols and their derivatives, and
flavonoids (Table S5). Figure 2C shows the cluster
analysis results regarding the expression of differential
metabolites. Significant between‐group differences in
the expression of differentially expressed metabolites
were visually observed using a cluster heat map.

FIGURE 1 Gut microbiota changes in obesity‐prone (OP) and obesity‐resistant (OR) mice and humans. (A) Body weight change at
different time points. Data are expressed as the mean ± standard error of the mean (SEM). Data were analyzed using repeated measures of a
two‐way analysis of variance (ANOVA), with group and time as factors. Significant differences between groups are indicated (*p< 0.05,
**p< 0.01, ***p< 0.001, OP group vs OR group, n= 10 in OP and OR group, n= 5 in Con group). (B) Representative images of hematoxylin
and eosin staining of epididymal white adipose tissue (eWAT), and liver sections from the three groups. Arrows indicate the presence of
adipose vesicles or inflammatory cells. Scale bars, 100 μm. eWAT: epididymal white adipose tissue. (C) The Shannon and Simpson index of
fecal microbiota from different time points of the OP and OR mice (n= 10 samples/group), 0, 2, 5, 14, and 16 weeks of high‐fat feeding.
Median (line), 1st and 3rd quartile (box margins), maximum and minimum value (whiskers). *p< 0.05 (Mann–Whitney U, n= 10 samples/
group). (D) Principal coordinate analysis (PCoA) of fecal microbiota composition from different time points of OP and OR mice (n= 10
samples/group), 0, 2, 5, 14, and 16 weeks of high‐fat feeding. (E) Differences in microbial abundance between OP and OR mice fed a high‐fat
diet (HFD) for 5, 14, and 16 weeks analyzed using linear discriminant analysis effect size (LEfSe). Linear discriminant analysis (LDA) effect
size showing the most differentially significant abundant genus taxa enriched in microbiota from the OP and OR groups (n= 10 samples/
group). LDA score > 2. (F) Principal coordinates analysis (PCoA) of Bray‒Curtis distances of the OP and OR humans(p= 0.001). Permanova
analysis was used to adjust for confounders, including sex, age, smoking status, alcohol consumption, educational level, and body fat
percentage. The scatter plots show principal coordinate 1 (PC1) versus PC 2, with percentages of variation explained by the components
indicated. (G) LEfSe identified the microbes whose abundance was significantly different between the OP and OR humans. The genera are
shown in the plot (FDR< 0.1, LDA score > 2).
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Analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database revealed that the differential
metabolic pathways were primarily associated with
amino acid and other amino acid metabolism, cofactor
and vitamin metabolism, nervous system, energy

metabolism, digestive system, and carbohydrate metab-
olism (Figure 2D, Table S6). Compared to OR mice, the
overall expression levels of 17 metabolic pathways were
increased in OP mice, and overall expression levels of
three metabolic pathways were decreased (Figure 2E).

FIGURE 2 Serum metabolome changes in obesity‐prone (OP) and obesity‐resistant (OR) mice. (A) Orthogonal‐partial least square‐
discriminant analysis (OPLS‐DA) of serum metabolite composition in OP and OR mice (n= 10 samples/group). (B) Volcano plot of serum
metabolites in the two groups. Blue is down‐regulated significant differential metabolites, red is up‐regulated significant differential
metabolites, and insignificant metabolites are gray (n= 10 samples/group). (C) Expression heatmap in the two groups. Cluster analysis of
the expression levels of the differential metabolites from OP and OR mice. (D) Bubble plot of metabolic pathway Kyoto Encyclopedia of
Genes and Genomes enrichment analysis of changed blood metabolites in OP and OR groups. The bubble size represents the number of
differential metabolites annotated to the Pathway. (E) Differential abundance score (DA) of 20 KEGG metabolic pathways. OP versus OR.
Red indicates that the expression trend of all annotated differential metabolites in this pathway is up‐regulated in OP, and blue indicates
that the expression trend of all annotated differential metabolites in this pathway is down‐regulated in OP. The size of the dot at the
endpoint of the line indicates the number of metabolites in the pathway, and the larger the dot, the more the number of metabolites.
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Amino acid metabolism had the highest proportion,
including β‐alanine metabolism, D‐glutamine, and
D‐glutamate metabolism, arginine biosynthesis, and ala-
nine, aspartate, and glutamate metabolism (p< 0.01).

2.5 | Differences in fecal metabolome in
OP and OR mice

Metabolomic analysis of fecal samples was conducted,
encompassing amino acids, organic acids, fatty acids, and
sugars. Furthermore, over 400 small molecule metabolites,
including bile acids, carnitine, phenyl and benzyl deriva-
tives, as well as indole, were quantitatively analyzed. The
OPLS‐DA model distinguished OP and OR mice based on
fecal samples (Figure 3A). Overall, 62 significantly distinct
metabolites were identified between OP and OR mice
(Figure 3B). Of these, 22 were amino acids, including
L‐tryptophan and N‐acetylserine (Figure 3C, Figure S3).
Notably, levels of all these amino acids were significantly
elevated in OP mice. These metabolites demonstrated
robust performance (area under the curve [AUC]> 0.75)
in predicting the OP metabolic phenotype in mice
(Figure S3). Conversely, of the 62 metabolites, 10 were bile
acids, such as β‐ursodeoxycholic acid (β‐UDCA) and
β‐hyodeoxycholic acid (β‐HDCA) (Figure 3D). All bile
acids were significantly elevated in OR mice. Moreover,
compared to the weight changes of mice fed a HFD only,
those with HDCA or UDCA for 8 weeks demonstrated a
significant reduction in weight gain, accompanied by a
notable upregulation in the expression of colonic mRNAs,
specifically Col6a3 and Cyp7b1 (Figure 3E,F). Addition-
ally, Col6a3 and Cyp7b1 were highly expressed in the
colon transcriptomes of OR mice (Table S7, Figure S4).

Figure S5 shows the corrections for significantly dif-
ferent metabolites between OP and OR mice. All amino
acids (marked in red) and bile acids (marked in blue)
were negatively correlated. KEGG metabolic pathway
enrichment analysis revealed that the differential meta-
bolic pathways were mainly associated with amino acid
metabolism, carbohydrate metabolism, digestive system,
energy metabolism, and nervous system (Figure 3G,
Table S8). In the overall change analysis of KEGG
metabolic pathways, 20 metabolic pathways significantly
increased in OP mice compared to OR mice (Figure 3H).

2.6 | Differences in colon transcriptome
in OP and OR mice

To investigate the potential mechanisms underlying
colonic core bacterial interference or protection in the
host, RNA sequencing (RNA‐seq) analysis was conducted

to quantify colonic gene expression profiles in OP and
OR mice. A total of 17,778 genes were detected
(Figure 4A), and Gene Ontology (GO) enrichment
analysis was conducted on the differentially expressed
genes, defined by a fold change≥1.2 or ≤0.83 and a
q‐value < 0.2. Among the total differentially expressed
genes, 10 and 101 differentially expressed mRNAs
(DEmRNAs) were upregulated and downregulated in OP
mice, respectively, compared with OR mice (Figure 4B).
GO analysis revealed enrichment of terms related to
biological processes associated with immunity and
intestinal structure in OP mice: negative regulation of the
establishment of the endothelial barrier, negative regu-
lation of the adherens junction organization, negative
regulation of cell–cell adhesion mediated by cadherin,
and negative regulation of cell–cell adhesion (Figure 4C).
In contrast, cell adhesion, regulation of establishment or
maintenance of cell polarity, mesangial cell–matrix
adhesion, cell–matrix adhesion, cell–cell adhesion, and
positive regulation of cell–substrate adhesion were en-
riched in OR mice (Figure 4D).

Through further differential gene screening, based on
criteria of fold change≥1.2 or ≤0.83 and q‐value< 0.05), 36
differentially expressed mRNAs were screened in OP and
OR mice (Figure 4E). Ten key driver genes were identified
based on 36 DEmRNAs genes using key driver analysis
(KDA), which are crucial regulators within the gene net-
works of OP and OR mice (Figure 4F, Table S7). The most
significant key driver genes, including Fbln2, Col6a3, Col3a1,
Col1a1, and Bgn, exhibited significantly higher expression
levels in OR mice compared to OP mice, with p values of
8e‐8, 4.17e‐5, 1.50e‐4, 2.18e‐4, and 9.20e‐4, respectively.

Inflammatory changes in colon tissue were evaluated
by tissue expression of Interleukin‐6 (IL‐6) identified by
immunohistochemical (Figure 5A). The immuno-
reactivity of IL‐6 in OP and OR mice examined was
quantified by the H‐score system, with the findings pre-
sented in Figure 5B. The IL‐6 immunoreactivity H‐score
was significantly elevated in the OP group compared to
the OR group (p< 0.05). The data indicated that the OP
mice exhibited a more pronounced inflammatory
response than the OR mice. Quantitative real time‐
polymerase chain reaction (qRT‐PCR) was employed to
validate the expression of 10 key driver genes, revealing
that 8 of these genes were significantly upregulated in
OR mice compared to OP mice (Figure 5C).

2.7 | Correlations among microbiome,
metabolome, and transcriptome

Correlation analysis between potential metabolites and
dominant gut microbiota at the genus level identified
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FIGURE 3 (See caption on next page).
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associations between 20 gut bacterial genera and 32
metabolites. Kineothrix, Butyricicoccus, Intestinimonas,
Rumiclostridium, and Faecalicatena exhibited negatively
correlated with amino acid metabolites while showing
positive correlations with bile acid metabolites. In con-
trast, Longibaculum, Butyricicoccus, Intestinimonas, Ru-
miclostridium, and Faecalicatena demonstrated positive
correlations with amino acid metabolites and negative
correlations with bile acid metabolites (Figure 6A).

Correlation coefficients between fecal metabolites
and driver genes involved in cell adhesion, migration,
and extracellular matrix structure are shown in
Figure 6B. Bile acid metabolites were positively correlated
with intestinal driver genes (Col6a3, Fbln1, Bgn, and
Mfap2), whereas amino acid metabolites were negatively
correlated with intestinal mucosal barrier driver genes
(Col6a3, Fbln2, Col1a1, Col3a1, Fbln1, Bgn, and Mfap2).

Figure 6C shows correlation coefficients between
genus‐level gut microbiota and driver genes involved
in cell adhesion, migration, and the structure of the
extracellular matrix. Longibaculum was significantly
negatively correlated with Col6a3, whereas Traorella,
Fournierella, and Rumiclostridium were significantly
positively correlated with Fbn1, Lum, Bgn, Mfap2,
Col6a3, Fbln2, Col1a1, and Col3a1.

An integrated analysis of the serum and fecal meta-
bolomes was performed, and 42 and 21 KEGG pathways
were altered in fecal and serum metabolomes, respec-
tively (Figure 6D). Among these, six pathways related to
amino acid metabolism exhibited greater enrichment in
OP mice compard to OR mice. Moreover, the two path-
ways associated with the digestive system were less en-
riched in OR mice compared to OP mice. Notably, 16
KEGG pathways overlapped between the fecal and serum
metabolomes (Table S9).

3 | DISCUSSION

We investigated the relationships between OP and OR
phenotypic differences and host–microbiota interactions
using microbiota sequencing, metabolomics, and tran-
scriptomic analyses, as summarized in the graphical
abstract. Our study demonstrated that Longibaculum and
Kineotrix might served as keystone bacteria for dynamic
changes in gut microbiota in OP and OR mice, respec-
tively, potentially instigating community effects in gut
microbiota of the two groups. Augmentation of beneficial
microbiota, an increase in non‐12‐OH bile acid metabo-
lites, and fortification of the intestinal barrier were
robustly correlated with an anti‐obesity phenotype. The
Longibaculum‐UDCA‐Col6a3 pathway has been im-
plicated as a potential underlying mechanism. Impair-
ment of the intestinal mucosal barrier and bacterial
translocation could intensify weight gain, whereas dis-
parities or elevations in the amino acid profile could act
as predictive indicators of metabolic phenotypes that are
predisposed to obesity.

We first analyzed dynamic changes in gut microbiota
during the development of OP and OR mice and obtained
the core dominant bacterial genera. Notably, phenotypic
differences in obesity are a manifestation of poly-
microbial involvement, where various gut microbial
factors and metabolic disorders coalesce to cause
abnormal host–microbe interactions [15, 16]. However,
no reports exist on the changes in the microbiome during
the formation of OP and OR in mice. Our study revealed
that Longibaculum and Kineothrix were keystone bacte-
rial genera in OP and OR mice, respectively. Notably, the
Kineothrix genus was significantly elevated not only in
OR mice but also in OR humans. Kineothrix alysoides, a
species belonging to the genus Kineothrix [17],

FIGURE 3 Fecal metabolome changes in obesity‐prone (OP) and obesity‐resistant (OR) mice. (A) OPLS‐DA of fecal metabolite
composition in OP and OR mice (n= 10 samples/group). (B) Volcano plot of fecal metabolites in the two groups. Blue is down‐regulated
significant differential metabolites, red is up‐regulated significant differential metabolites, and insignificant metabolites are gray (n= 10
samples/group). Boxplots of differential (C) amino acids and (D) bile acids in the two groups of mice. The upper whisker represents the
maximum value, followed by the upper quartile (Q3), the median, the lower quartile (Q1), and the lower whisker represents the minimum
value. *p< 0.05 (Welch's t‐test, n= 10 samples/group). (E) Body weight changes of mice fed a high‐fat diet supplemented with
Ursodeoxycholic acid (UDCA) or Hyodeoxycholic acid (HDCA). Values represent the mean ± SEM. Data were analyzed using repeated
measures of two‐way ANOVA, with group factor and time as factors. +p< 0.05; ++p< 0.01; +++p< 0.001; ++++p< 0.0001 (n= 10, HFD
group vs. ND group), #p< 0.05 (n= 10, HFD+HDCA group vs HFD group), *p< 0.05; **p< 0.01 (n= 10, HFD+UDCA group vs. HFD
group). (F) In vivo, the expression of colonic mRNAs (Col6a3, Cy7b1) was verified using quantitative real time‐polymerase chain reaction
(qRT‐PCR). Values represent the mean ± SEM. *p< 0.05 (unpaired Student's t‐test, n= 3). (G) Bubble plot of metabolic pathway KEGG
enrichment analysis of changed fecal metabolites in OP and OR groups. The bubble size represents the number of differential metabolites
annotated to the Pathway. (H) DA of 20 KEGG metabolic pathways. OP vs. OR. Red indicates that the expression trend of all annotated
differential metabolites in this pathway is up‐regulated in OP. The size of the dot at the endpoint of the line indicates the number of
metabolites in the pathway, and the larger the dot, the more the number of metabolites. OPLS‐DA, orthogonal partial least squares‐
discriminant analysis.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4 RNA‐seq analysis of the colon in obesity‐prone (OP) and obesity‐resistant (OR) mice. (A) Venn diagram of the numbers of
genes in the OP and OR groups. The two groups have 16,850 shared genes, with 461 and 467 unique genes in the OP and OR groups,
respectively. (B) Volcano plot of differentially expressed genes (DEGs) between OP and OR mice. Fold change≥ 1.2 or fold change≤ 0.83 &
q‐value < 0.2. (C, D) Gene Ontology (GO) functional enrichment analysis of differentially expressed genes. (E) Hierarchical clustering shows
36 differentially expressed genes between OP and OR mice. Fold change≥ 1.2 or fold change≤ 0.83 & q‐value < 0.05. (F) Graphical view of
10 key driver genes. The size of the nodes represents the number of connections a gene has with other genes in the network.

significantly increased by 57‐fold and improved intestinal
barrier function following treatment in an animal model
of fatty liver [18]. Our transcriptome results revealed that,
compared to OP mice, OR mice showed significant en-
richment of intestinal cell adhesion functional pathways,

including positive regulation of cell adhesion and cell–
matrix adhesion.

Moreover, after 14 and 16 weeks of high‐fat feeding,
other bacterial genera that stably exist in OR mice, with
Kineothrix as the primary driver of OR phenotype
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formation, included Butyricicoccus [19, 20], In-
testinimonas [21], Rumiclostridium [22], and Faecalica-
tena [23], aligning with prior studies on microbial
alterations associated with weight loss in mice or hu-
mans. The functions of these four beneficial bacteria
(Butyricicoccus [24], Intestinimonas [25], Rumiclostridium
[26, 27], and Faecalicatena [28]) are similar to those of
Kineothrix, contributing significantly to the production of
short‐chain fatty acids (SCFAs). The butyrate‐producing
bacterium Butyricicoccus interacts synergistically with
other beneficial bacteria to decrease the Firmicutes to
Bacteroidetes (F/B) ratio. Notably, our study revealed that
the F/B ratio in OR mice was significantly reduced
compared to OP mice, indicating superior intestinal
homeostasis in OR mice (Figure S6). A substantial
increase in the F/B ratio in OP mice is considered dys-
biosis [29], which promotes lipid production, abnormal
weight gain, and the development of chronic metabolic

diseases [30, 31]. Butyricicoccus, a bacterium that protects
the intestinal barrier, plays a crucial role in intestinal
homeostasis [32] by ensuring mucus production [33] and
maintaining tight junction integrity [34]. Oral adminis-
tration of Butyricicoccus can reduce intestinal inflam-
mation in rats with colitis [35]. A high abundance of
Butyricicoccus in patients with obesity contributes to
body mass index (BMI) reduction during weight loss
treatments [35], suggesting its potential role in promot-
ing an anti‐obesity metabolic phenotype. Intestinimonas,
which was also highly expressed in our OR metabolic
phenotype, converts amino acids into butyrate in the
intestine [21]. We found that 22 amino acids were sig-
nificantly reduced in OR mice compared to OP mice.
Notably, several amino acids exhibited a significant
negative correlation with Intestinimonas, indicating its
critical role in regulating protein balance [36] and
maintaining intestinal homeostasis in OR mice.

FIGURE 5 Validation of intestinal barrier responses based on transcriptomic data. (A) The expression of Interleukin‐6 (IL‐6) in colon
tissues was detected by immunohistochemical analysis Scale bars, 50 μm. (B) H‐score of IL‐6 immunoreactivity in obesity‐prone (OP) and
obesity‐resistant (OR) groups. *OP versus OR group; Values represent the mean ± SEM. *p< 0.05 (unpaired, two‐tailed t‐test, n= 3. (C)
Quantitative real time‐polymerase chain reaction validates 10 key colon barrier driver genes in OP and OR mice. Values represent the
mean ± SEM. *p< 0.05; **p< 0.01; ***p< 0.001 (unpaired, two‐tailed t test, n= 3).
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FIGURE 6 (See caption on next page).
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Intestinal microbiota disorder and decrease in In-
testinimonas abundance in OP mice were alleviated by
supplements, thereby mitigating the metabolic state of
OP mice [37]. Ruminiclostridium showed a strong nega-
tive correlation with most metabolic parameters [38],
such as intestinal permeability, blood lipids [39], glucose,
and insulin. The key driver genes analyzed to maintain
intestinal immunity and mechanical barriers were sig-
nificantly positively correlated with Ruminiclostridium
upregulation in OR mice. Additionally, Ruminiclos-
tridium is involved in regulating lipid metabolism [40]
and the promotion of beige adipocyte development
within white adipose tissue [41], implying that Rumini-
clostridium may reduce body weight by affecting energy
metabolism metabolites. All of these stable existing
communities associated with the OR phenotype essen-
tially produce SCFAs, which are beneficial for main-
taining the function and structure of intestinal epithelial
cells while regulating the balance of the intestinal mi-
crobiota. These results suggested that the shaping of the
obesity‐resistant phenotype of OR mice by the intestinal
microbiome may be a result of community effects.
Therefore, the OR phenotype of mice was closely related
to beneficial intestinal commensals, i.e., Butyricicoccus,
Intestinimonas, Rumiclostridium, and Faecalicatena,
headed by Kineothrix. In contrast, the stable keystone
bacterium Longibaculum in OP mice showed a signifi-
cant negative correlation with Col6a3, a driver gene that
maintains the intestinal mechanical barrier, and with the
intestinal mucosal integrity index [42]. Longibaculum
muris, a species of this genus, showed an increased
abundance in mice consuming a high‐protein diet [43],
and its fecal levels were positively associated with oral
glucose intolerance in rats [44]. However, the potential
pathways by which Longibaculum affects its functions
remain unclear. We observed that other bacterial genera
that stably coexisted with Longibaculum in OP mice after
14 and 16 weeks of high‐fat feeding contributed to the
formation of the OP phenotype, including Harryflintia
[45], Adlercreutzia [46], Agathobacter [47, 48], and Ro-
seimarinus. These bacterial changes were consistent with
previous reports on microbial alterations in overweight

mice and humans. These detrimental bacteria (Harry-
flintia [49, 50], Adlercreutzia [46, 51], and Agathobacter
[47]) were positively correlated with metabolic markers,
such as body weight, inflammation, fat mass, and glucose
levels, which are implicated in obesity and related
metabolic disorders. Moreover, Harryflintia demon-
strated a negative association with certain markers related
to intestinal barrier integrity and mucus function [50]. The
positive correlation between Adlercreutzia and body
weight was prospective [52], indicating a bi‐directional
causal relationship between Adlercreutzia and obesity. The
proportion of Agathobacter was positively correlated with
the rapid development of overweight and obesity in chil-
dren aged 1‒2.5 years [53]. Although the relationship
between Roseimarinus and obesity has rarely been studied,
it may serve as a novel marker of obesity. The elevated
abundance of these bacterial genera is a common feature
of obesity‐related dysbiosis, suggesting that they act as
potentially harmful microbiota and contribute to the
development of the OP phenotype. We inferred that the
OP phenotype was closely related to harmful intestinal
symbionts, i.e., Agathobacter, Roseimarinus, Harryflintia,
and Adlercreutzia) led by Longibaculum. Therefore, we
hypothesized that an increase in beneficial bacteria in the
intestine could counteract obesity after an HFD, whereas
the disturbance of the intestinal microbiota, metabolic
abnormalities, and weakened intestinal mucosal barrier
exacerbate weight gain.

Gut microbiota produces various metabolites through
the anaerobic fermentation of undigested dietary com-
ponents that reach the colon and endogenous substances
derived from microorganisms and the host [54]. These
microbial metabolites can penetrate host cells, interact-
ing directly to impact epithelial cells and mucosal bar-
riers, or enter the portal blood and influence systemic
metabolic health [55]. Our study revealed strong corre-
lations between colonic microbiota and metabolites by
integrating metabolomics with microbiota‐sequencing
analysis, demonstrating that changes in levels of bile
acids, amino acids, SCFA, indole derivatives, and other
metabolites may underlie the phenotypic distinctions
between OP and OR.

FIGURE 6 Correlation analysis amongst microbiome, metabolome, and transcriptome. (A) Spearman's correlation between gut
microbiota and differential metabolites in fecal at the genus level. X and Y axes are differential metabolites and genera, respectively. The
value of p< 0.05 is marked with “*,” and p< 0.01 is marked with “**.” (B) Combined metabolome and transcriptome analysis. X and Y axes
are differential metabolites in fecal and driver genes, respectively. The value of p< 0.05 is marked with “*,” and p< 0.01 is marked with “**.”
(C) Spearman's correlation of genus‐level gut microbiota with 10 key driver genes. X and Y axes are driver genes and differential genera,
respectively. The value of p< 0.05 is marked with “*,” and p< 0.01 is marked with “**.” (D) Venn diagram of the numbers of Go terms in the
OP and OR groups. The color of the pathway name is consistent with the group represented by the color of the group in the Venn diagram,
that is, the yellow pathway represents the fecal group, the blue pathway represents the serum group, and the green pathway represents the
overlap of the two groups. OP, obesity‐prone; OR, obesity‐resistan.
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Our study found a significant elevation of non‐12‐OH
bile acids (muricholic acid [MCA], UDCA, HDCA, li-
thocholic acid [LCA], chenodeoxycholic Acid [CDCA],
and derivatives of other alternative pathways, in OR mice
compared to OP mice. Furthermore, 16S rDNA gene
sequencing analysis using PICRUSt revealed a significant
enrichment of bile acid metabolism pathways in OR mice
(Figure S7). CYP7B1, a critical enzyme in the bile acid
alternative pathway [56], was significantly upregulated in
OR mice, indicating activation of the bile acid alternative
pathway, which was also related to bacterial suppression
with a high abundance of bile salt hydrolase (BSH) genes.
In the present study, the BSH‐rich bacteria [57] (Bacter-
oides, Lactobacillus, Bifidobacterium, and Clostridium) in
OR mice were inhibited, leading to conjugated bile acid
accumulation in the distal colon [58], comprising non‐
12‐OH bile acids. Longibaculum was also a genus with
the BSH gene (https://www.ncbi.nlm.nih.gov/nuccore/
2428088975). These findings indicate that gut microbiota
dysbiosis contributes significantly to the weight‐gain‐
resistant metabolic phenotype by regulating the alterna-
tive bile acid pathway. Moreover, our intervention study
showed that HFD with UDCA or HDCA (non‐12‐OH)
supplementation inhibited weight gain in mice, further
confirming the role of alternative bile acid synthesis
pathways. It has been reported UDCA or HDCA sup-
plementation can reduce metabolic dysfunction by
restoring intestinal barrier integrity [59]. In addition, our
analysis revealed that UDCA and Col6a3 (a key driver
gene of intestinal barrier integrity) were significantly
positively correlated, whereas UDCA and Longibaculum
were significantly negatively correlated, suggesting that
the inhibition of bacteria with BSH genes (Long-
ibaculum) activates secondary bile acids (such as UDCA)
to maintain intestinal barrier stability by upregulating
genes involved in cell adhesion and migration (such as
Col6a3) and helps ameliorate weight gain.

Amino acid profiles are potential biomarkers of obe-
sity susceptibility and have been suggested as useful
markers for early intervention in childhood obesity [60].
However, further animal studies are unavailable. The
current study identified 22 gut amino acid metabolites
and six amino acid metabolism pathways that were sig-
nificantly overexpressed in OP mice; elevated amino acid
levels are associated with intestinal microbiota dysbiosis
[61]. Bacteroides vulgaris was identified as the primary
species mediating the link between specific amino acid
biosynthesis and insulin resistance in HFD‐fed mice
[62–66]. The serum metabolome of individuals with
insulin resistance exhibited increased concentrations of
specific amino acids [66]. Improvements in insulin
resistance and glucose metabolism following a high‐fiber
diet have also been associated with an increased

Prevotella‐to‐Bacteroides ratio [67, 68]. Gut microbiota
rich in Prevotella aids weight loss [62–65] and cholesterol
reduction [69]. Our study corroborates this hypothesis.
The overexpression of Prevotellaceae, Prevotellamassilia,
Prevotella/Bacteroides ratio, intestinal amino acid profile,
and suppression of the expression of six amino acid
pathways reflect the metabolic phenotype of OR mice
(Figure S6). Excess colonic amino acids can also influ-
ence intestinal microbiota [70], promoting the growth of
harmful bacteria such as Bacteroides, Clostridium, and
Helicobacter pylori. This indicates that the interaction
between amino acid imbalance and intestinal bacteria
significantly contributes to obesity‐prone metabolic
states. Additionally, in a 12‐year follow‐up study, Wang
et al. [71] underscored the potential importance of amino
acid metabolism in early diabetes onset and suggested
that amino acid profiles contribute to diabetes risk
assessment and may serve as predictors of future diabetes
in individuals without diabetes. Other studies have
demonstrated significant positive correlations between
plasma levels of specific amino acids and both BMI [72]
and glucose resistance [73]. Our findings highlight the
potential utility of amino acid profiles as markers of
obesity susceptibility, evidenced by the overexpression of
amino acid metabolic pathways in both the blood and
feces of OP mice [74]. Therefore, our study indicates that
an imbalance or increase in obesity‐related amino acids
may exacerbate the OP phenotype, whereas the mainte-
nance of obesity‐related bile acid metabolism supports
OR, with the intestinal microbiota serving as a critical
regulatory factor.

The gut barrier function encompasses three primary
barriers: mechanical, ecological, and immunological [75].
Disorganization of the ecological barrier, characterized by
microbial dysbiosis, frequently results in dysfunction of
the mechanical and immunological barrier [76] and causes
inflammation [77]. To investigate the potential association
between gut microbiota and host immune and intestinal
barrier responses in OP and OR mice, RNA‐seq analysis
was conducted on colonic samples. The colon harbors the
most densely populated and metabolically active microbial
community in the gut, consisting of over 1013 individual
microbial cells [78]. GO analysis in our study suggested
that intestinal cell adhesion was disrupted in OPmice. The
compromised integrity of the intestinal barrier allows
commensal microbiota to access intestinal epithelial cells
[79]. In the presence of intestinal barrier damage, the OP
phenotype may be associated with an increase in poten-
tially pathogenic microorganisms and/or bacterial com-
munity components, such as Bacteroidetes, Clostridium,
and Helicobacter pylori, triggering a chronic inflammatory
response [80]. This was confirmed by the immuno-
histochemical, which showed increased inflammatory
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cells in OP mice compared to OR mice. Based on GO
enrichment results, key driver genes (Col6a3, Bgn, Fbln2,
Mfap2, Col3a1, Fbln1, Fbn1, and Lum) involved in cell
adhesion, migration, and extracellular matrix structure
were significantly upregulated in OR mice, which was
validated using real‐time PCR. Most previous studies have
reported reduced expression of these genes in adipose
tissue of obese mice or humans [81], and our study con-
firms reduced colonic expression of these genes in OP
mice. Summarily, impaired intestinal mucosal barrier and
bacterial translocation may aggravate weight gain,
whereas intestinal homeostasis and barrier integrity are
maintained in OR mice.

Our study focuses on the regulatory role of host gene
expression in the colon, which hosts the most diverse
and abundant microbiota. The colon is central to com-
plex fermentation processes, producing metabolites
such as bile acid derivatives, amino acid metabolites,
and SCFAs. These aspects are central to our metabo-
lomic and microbiome analyses and provide valuable
resources for further investigations, such as fecal mi-
crobiota transplantation experiments and cell‐based
studies. However, significant differences in microbial
composition and metabolite profiles across different gut
regions highlight the need for future exploration of
metabolomics and microbiomes throughout the gastro-
intestinal tract.

4 | CONCLUSION

Our results showed that keystone bacteria can potentially
drive community effects on microbiota dynamics.
Impairment of the intestinal mucosal barrier, bacterial
translocation, and elevated levels of obesity‐associated
amino acids could potentially exacerbate weight gain.
Conversely, gut microbiota of OR mice preserved
homeostasis, elevated non‐12‐OH bile acids, and main-
tained intestinal barrier integrity. The importance of the
Longibaculum‐UDCA‐Col6a3 pathway was also empha-
sized. These findings could aid in identifying crucial
obesity‐associated intestinal microbial markers and
potential anti‐obesity targets, providing a valuable
resource for advancing the understanding of obesity‐
prone and obesity‐resistant phenotypes.

5 | METHODS

5.1 | Animal study design

A total of 87 male C57BL/6J mice (4 weeks old, 17‒
19 g, specific pathogen‐free grade) were purchased

from Shanghai Slack Laboratory Animal Co., Ltd. and
acclimated for 1 week at the Zhejiang University
Animal Experimental Center. Of these, 47 mice
(n = 47) were randomly assigned to two dietary groups:
the (1) normal diet (13% fat, n = 5, Jiangsu Xietong
Pharmaceutical Bio‐engineering Co., Ltd) and (2) HFD
(60% fat, D12492, n = 42, Trophic Animal Feed High‐
Tech Co., Ltd) groups [82], and fed for 16 weeks. Fresh
fecal samples were obtained from mice at 0, 2, 5, 14,
and 16 weeks of feeding (corresponding to 5, 7, 10, 19,
and 21 weeks of age, respectively) for subsequent
intestinal microbiome genomic analysis. Metabolomics
analysis was based on fresh fecal samples collected
from mice at 16 weeks of feeding. Mice were anes-
thetized (intraperitoneally injected with 1% pento-
barbital sodium) at 16 weeks of feeding or 21 weeks of
age, and approximately 0.5–1 mL of blood was
obtained. The serum was separated by centrifuging the
blood at 3000 rpm for 10 min. Sections of the liver,
colon, and white adipose tissues were harvested after
euthanasia. Tissue samples were stored at −80°C until
analysis, and another portion of tissue samples was
fixed in tissue fixative and embedded in paraffin blocks
for preservation.

To examine the effect of HDCA and UDCA sup-
plementation on weight, another 40 mice were ran-
domly allocated to four dietary groups: the normal diet
(n= 10) (13% fat), HFD (n = 10) (60% fat), HFD + 0.5%
UDCA (n = 10) (60% fat), and HFD +HDCA (n = 10)
(60% fat) groups. Body weight was monitored on a
weekly basis throughout the duration of the experi-
ment. The mice were anesthetized at 8 weeks of feed-
ing or 12 weeks of age, and colonic sections were
collected.

All mice were maintained under specific pathogen‐
free conditions with ad libitum access to food and
water in a controlled environment (temperature 20°C‒
22°C, humidity 45 ± 5%, 12 h light/dark cycle). This
study was approved by the Zhejiang University Ethics
Committee and followed the guidelines of the Zhejiang
University Experimental Animal Center (approval
number: ZJU20220424).

5.2 | Definition of OP and OR mice

At 16 weeks of feeding or 21 weeks of age, 42 mice in the
HFD feeding group were classified into two subgroups
based on their weight gain during HFD feeding: the top
10 obese mice were defined as OP (the upper quartile),
and the bottom 10 mice were defined as OR (the lower
quartile) [82]. The remaining 22 mice were excluded
from the analysis.
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5.3 | Human study design

Study participants were recruited from the Lanxi
Cohort, a community‐based cohort study conducted
between June and August 2019 in urban areas of Lanxi
City, Zhejiang Province, China [83]. Detailed informa-
tion regarding the participants' inclusion and exclusion
criteria is provided in Supplementary Information,
Method S1 [84]. Overall, 586 participants with high
energy intake were included. Participants with
BMI ≥ 24 kg/m2 were defined as the OP group (n= 248),
whereas those with BMI < 24 kg/m2 were defined as the
OR group (n= 338). Baseline information, including
sex, age, smoking and drinking status, educational level,
body fat percentage, physical activity level, and bio-
chemical data, was obtained through a face‐to‐face
questionnaire survey and physical examinations. Fecal
samples were also collected on the cohort survey day for
each participant and stored at −80°C until analysis.
Continuous variables are expressed as the mean and
standard deviation (SD) or standard error of the mean.
Categorical variables are expressed as percentages (%).
This study was approved by the Ethics Committee of the
School of Public Health at Zhejiang University
(ZGL201905‐1).

5.4 | Microbiome sequencing and data
analysis in fecal samples

5.4.1 | DNA extraction

Total genomic DNA was extracted from fecal samples
using the DNeasy® PowerSoil® Kit (Qiagen), following
the manufacturer's instructions. Subsequently, the DNA
concentration and integrity of the extracted genomic
DNA were determined using Qubit and 1% agarose gel
electrophoresis, respectively.

5.4.2 | PCR amplification and microbiota
sequencing

The V3‒V4 region of the bacterial 16S rDNA gene was
amplified using the primers 341F (5ʹ‐CCTACGGGNGG
CWGCAG‐3ʹ) and 805R (5ʹ‐GACTACHVGGGTATCT
AATCC‐3ʹ) combined with barcode sequences. Ampli-
con pools were prepared for sequencing, and the size and
quantity of the amplicon library were assessed using an
Agilent 2100 Bioanalyzer (Agilent) and Library Quanti-
fication Kit for Illumina (Kapa Biosciences), respectively.
Libraries were sequenced on a NovaSeq PE250 platform.

5.4.3 | Data analysis

Liu et al. proposed a reproducible “analysis pipeline”
using the R language, which refers to a particular script
that combines dozens of software programs organically
for complex analysis tasks [85]. We used the analysis
pipeline to convert raw reads (fastq format) into ampli-
con sequence variants (ASVs) table. ASVs were
sequences with 100% similarity.

ASV abundance matrix and annotation results
served as the foundation for subsequent biological
information analysis, which included diversity anal-
ysis (α, β), species composition, and LEfSe, conducted
on OP and OR mice and OP and OR humans. The
Mann–Whitney U test, a rank‐sum test, was used to
examine disparities in the alpha diversity index
(Shannon and Simpson indices) between groups. To
analyze beta diversity across distinct groups, the
Bray‒Curtis distance was employed as a metric to
encapsulate the variance between communities,
where principal coordinate analysis was performed.
To analyze differences between the two groups, LEfSe
analysis was performed using the website (http://
huttenhower.sph.harvard.edu/galaxy/), with p < 0.05
and a linear discriminant analysis (LDA) score > 2.0.
Correlations between bacteria, metabolites, and genes
were calculated using Spearman's rank correl-
ation coefficients. Furthermore, additional analyses
using multivariable linear regression and Permanova
were conducted for the OP and OR human groups to
adjust for factors such as sex, age, smoking status,
alcohol consumption, education level, and body fat
percentage.

5.5 | Metabolome measurements and
data analysis in serum and fecal samples

5.5.1 | Serum sample preparation

Serum samples were thawed on ice, and serum
metabolites were extracted with an extraction agent
containing internal standard 1 (methanol:acetoni-
trile:water = 4:2:1, v/v) and 50% methanol buffer. All
samples were analyzed via liquid chromatography‐
mass spectrometry (LC‐MS) using a Waters 2777C
Ultra Performance Liquid Chromatography (UPLC)
system (Waters) coupled with a Q Exactive HF high‐
resolution mass spectrometer (Thermo Fisher Scien-
tific), according to the manufacturer's instructions.
Metabolites were separated and detected using
UPLC‐MS.

IMETAOMICS | 15 of 22

 29969514, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

o2.59 by H
elm

holtz Z
entrum

 M
uenchen D

eutsches Forschungszentrum
, W

iley O
nline L

ibrary on [23/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://huttenhower.sph.harvard.edu/galaxy/
http://huttenhower.sph.harvard.edu/galaxy/


5.5.2 | Fecal sample preparation

Gut metabolites were extracted from fecal samples
thawed on ice in a 50% methanol buffer. The samples,
quality control, and standard music were derivatized
and analyzed using LC‐MS and a sample diluent ac-
cording to the manufacturer's instructions. A Waters
ACQUITY UPLC I‐Class Plus (Waters) coupled with a
QTRAP6500 Plus high‐sensitivity mass spectrometer
(SCIEX) was used for metabolite separation and quan-
tification. Each multiple reaction monitoring transition
(ion transition) was identified and integrated using
HMQuant software. Metabolite peaks were extracted
and identified from the original mass spectrometry data,
and information, including molecular weight, retention
time, peak area, and identification results of the
metabolites, was obtained.

5.5.3 | Data analysis

Data acquired by the instrument were preprocessed
using MetaX software and then analyzed, identified,
and annotated using the Human Metabolome Database
and KEGG to explore the classification characteristics
and functional attributes of the KEGG metabolic path-
ways of different metabolites. To screen for group dif-
ferences, data were first log2 transformed, and PLS‐DA
models were established between the experimental
groups. The Pareto method was used for scaling. An
orthogonal signal correction was applied to perform
OPLS‐DA between the experimental groups. This
reduced the model's complexity and enhanced the
model's explanatory ability while ensuring its predic-
tion ability. Additionally, the VIP was calculated to
evaluate the influence and explanatory ability of each
metabolite expression pattern on sample classification
discrimination. Metabolites with VIP > 1 were con-
sidered helpful in distinguishing sample categories. The
difference analysis also included conventional uni-
variate analysis methods, such as fold‐change analysis
and t‐tests. Using the Welch's t‐test, the significance of
the expression level of each metabolite in each com-
parison group was tested to obtain a p‐value. The
p‐value was corrected using the Benjamini‒Hochberg
algorithm to obtain the q‐value. The q‐value was used to
assess the significance of the differences between the
two groups of samples. The fold change reflected
whether the mean value of a metabolite in the two
groups of samples changed, and the q‐value reflected
whether this change was statistically significant.
Metabolites with a fold change of ≥1.2 or ≤0.83 and
p‐value < 0.05 were considered significantly different.

Receiver operating characteristic (ROC) curve analysis
was performed on the differential metabolites. In ROC
analysis, an AUC > 0.75 indicated the metabolite's
ability to serve as a biomarker.

5.6 | Transcriptome RNA sequencing
and data analysis in colon samples

Total RNA was extracted and purified using TRIzol
reagent (Invitrogen) according to the manufacturer's
instructions. mRNA was enriched from the total RNA,
and a strand‐specific transcriptome library was con-
structed and sequenced using the DNBSEQ high‐
throughput platform. Raw sequencing data were filtered
using SOAPnuke (v1.5.6) [86] to obtain clean data. Dr
Tom's multi‐omics data‐mining system (https://biosys.
bgi.com) was used for data mining and mapping. Dif-
ferential gene analysis was performed using Bowtie2
(v2.3.4.3) [87] to align the clean data with the reference
gene set (GCF_000001635.27_GRCm39). RSEM [88]
(v1.3.1) software was used to quantify gene expression,
and pheatmap (v1.0.8) [89] was used to generate clus-
tering heatmaps of gene expression levels in different
samples. DESeq. 2 (v1.4.5) [89] was used to detect dif-
ferentially expressed genes between OP and OR mice,
with fold‐change criteria of ≥1.2 or ≤0.83 and a
q‐value < 0.2. To further explore gene functions
related to phenotypic changes, GO (http://www.
geneontology.org) and KEGG (https://www.kegg.jp/)
enrichment analyses were performed on differentially
expressed genes based on hypergeometric testing using
Phyper (https://en.wikipedia.org/wiki/Hypergeometric_
distribution), with a q‐value≤ 0.05 as the threshold for
significant enrichment in candidate genes. To identify
the key driver genes among the selected genes, we per-
formed key‐driver‐gene analysis (KDA) based on the
scores of the STRING11 database, with a cutoff point of
>500 (BGI's Dr.Tom system).

5.7 | H&E staining

For histological analysis, the white adipose tissue, and
liver tissue were fixed in 4% paraformaldehyde, em-
bedded in paraffin, sectioned, and stained with H&E. The
size of the lipid droplets, degree and extent of inflam-
mation, and severity and extent of mucosal and crypt
damage were assessed using a microscope (Olympus) at
100× magnification. Images of each section were cap-
tured. The vacuolation area of eWAT cells and liver cells
was quantified using ImageJ 1.54g software (National
Institutes of Health).
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5.8 | Immunohistochemistry staining
and scoring

The colon tissue sections were initially embedded in
xylene‐dewaxed paraffin and subsequently rehydrated
with a graded ethanol series. Following the exhaustion of
endogenous peroxidase and the blocking of antigens,
sections were incubated with primary antibodies against
IL‐6 (1:200, Servicebio) overnight at 4°C. Subsequently,
the sections were incubated with secondary antibodies
(AiFang Biological) for 30 min at room temperature.
Subsequently, the staining was developed using Diami-
nobenzidine, and the tissues were counterstained with
hematoxylin.

For immunohistochemical analysis, the slides were
imaged using a light microscope (Nikon E100 with DS‐
U3 camera system). The micrographs were analyzed
using Image‐Pro Plus 6.0 software. The immunoreactivity
of IL‐6 in colon tissue was quantified using the H‐score,
which is calculated according to the following formula:
The H‐score is calculated by the following formula:
H‐score =∑(pi × i), where pi is the percentage of positive
cells and i is the intensity of the specific staining. The
relative intensity of specific staining was defined as fol-
lows: negative (value = 0), low positive (value = 1), posi-
tive (value = 2), and high positive (value = 3).

5.9 | qRT‑PCR analysis

16S rRNA quantitative PCR was performed with a
LightCycler 480 instrument (Roche). All reactions were
performed in duplicate in one run and in duplicate PCR
runs. Samples were analyzed in a 10‐μL reaction mix
consisting of 6.5 μL 1× SYBR green master mix buffer
(q311‐02, Vazyme), a 0.2 μM concentration of each
primer, and 1 μL of genomic DNA extracted from feces.
Standard curves of the full 16S rRNA PCR product of
Kineothrix_alysoides and Longibaculum_muris were
created using a serial 10‐fold dilution of the purified PCR
product.

Quantitative PCR of colonic mRNA. Total RNA was
extracted from the colon using TRIzol reagent
(Invitrogen) according to the manufacturer's instruc-
tions. The following PCR conditions were used: one cycle
at 95°C for 30 s, 40 cycles at 95°C for 5 s, and 60°C for
34 s. qPCR was performed using a Bio‐Rad CFX96 Touch
Real‐Time PCR Detection System (Bio‐Rad Laboratories).
Statistical analyses and graphing were performed using
GraphPad Prism version 9. Statistical significance was set
at p< 0.05 (two tails), unless otherwise indicated. The
primer sequences are listed in Table S2.
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Figure S2: Keystone bacteria identified by quantitative
polymerase chain reaction (qPCR) in feces of mice.
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colon by RNA sequencing (RNA‐seq).

Figure S5: Correlation heat map of fecal differential
metabolites.

Figure S6: Distribution of microbiota in OP and OR mice
at each level.

Figure S7: PICRUSt analysis results of predicted func-
tional pathways in OP and OR mice.

Table S1: Comparison of liver and epididymal white
adipose tissue (eWAT) vacuolation areas across different
dietary mice groups.

Table S2: The sequences of primers.

Table S3: Characteristics of study participants in the
high‐energy intake group.

Table S4: Differential expression of serum metabolites in
OP and OR mice.

Table S5: Serum differential metabolites in OP and OR
mouse.

Table S6: Enriched metabolic pathways of serum
metabolites in OP and OR mice.

Table S7: Expression of 10 key driver genes.

Table S8: Enriched metabolic pathways of fecal metab-
olites in OP and OR mice.

Table S9: 16 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways overlapped between the fecal and
serum metabolomes.

22 of 22 | WANG ET AL.

 29969514, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

o2.59 by H
elm

holtz Z
entrum

 M
uenchen D

eutsches Forschungszentrum
, W

iley O
nline L

ibrary on [23/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1093/bioinformatics/btn025
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1186/s13059-014-0550-8

	Multi-omics reveals different signatures of obesity-prone and obesity-resistant mice
	1 INTRODUCTION
	2 RESULTS
	2.1 Phenotypic differences in OP and OR mice
	2.2 Gut microbiota dynamic changes in OP and OR mice
	2.3 Gut microbiota in human study
	2.4 Differences in serum metabolome in OP and OR mice
	2.5 Differences in fecal metabolome in OP and OR mice
	2.6 Differences in colon transcriptome in OP and OR mice
	2.7 Correlations among microbiome, metabolome, and transcriptome

	3 DISCUSSION
	4 CONCLUSION
	5 METHODS
	5.1 Animal study design
	5.2 Definition of OP and OR mice
	5.3 Human study design
	5.4 Microbiome sequencing and data analysis in fecal samples
	5.4.1 DNA extraction
	5.4.2 PCR amplification and microbiota sequencing
	5.4.3 Data analysis

	5.5 Metabolome measurements and data analysis in serum and fecal samples
	5.5.1 Serum sample preparation
	5.5.2 Fecal sample preparation
	5.5.3 Data analysis

	5.6 Transcriptome RNA sequencing and data analysis in colon samples
	5.7 H&E staining
	5.8 Immunohistochemistry staining and scoring
	5.9 qRT‑PCR analysis

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT
	ETHICS STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION




