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 A B S T R A C T

Model-based reconstruction provides state-of-the-art image quality for multispectral optoacoustic tomography. 
However, optimal regularization of in vivo data necessitates scan-specific adjustments of the regularization 
strength to compensate for fluctuations of the signal magnitudes between different sinograms. Magnitude 
fluctuations within in vivo data also pose a challenge for supervised deep learning of a model-based 
reconstruction operator, as training data must cover the complete range of expected signal magnitudes. In 
this work, we derive a scale-equivariant model-based reconstruction operator that i) automatically adjusts the 
regularization strength based on the 𝐿2 norm of the input sinogram, and ii) facilitates supervised deep learning 
of the operator using input singorams with a fixed norm. Scale-equivariant model-based reconstruction applies 
appropriate regularization to sinograms of arbitrary magnitude, achieves slightly better accuracy in quantifying 
blood oxygen saturation, and enables more accurate supervised deep learning of the operator.
. Introduction

Model-based reconstruction affords state-of-the-art image quality 
or multispectral optoacoustic tomography (MSOT): scanner impulse re-
ponse modeling improves image contrast and resolution, non-
egativity constraints on the reconstructed image ensure a meaning-
ul interpretation as initial pressure, and a regularization functional 
itigates the ill-posedness of the inversion [1–5]. Model-based re-
onstruction is computationally demanding but real-time imaging is 
chievable through supervised learning of the reconstruction operator 
ith a deep neural network [6,7].
A remaining practical obstacle to using model-based reconstruction 

s the choice of the optimal regularization strength to prevent over- 
r under-regularization. This choice depends on the magnitudes of the 
nput signals, and therefore repeated adjustments are required for in 
ivo data with inherent signal fluctuations due to different acquisi-
ion wavelengths, heterogeneities in the scanned anatomies, or altered 
maging hardware. Because such repeated adjustments are impractical 
hen reconstructing large datasets, clinical studies typically recon-
truct all input sinograms with a constant predetermined regularization 
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strength at the expense of a possible quality degradation for some im-
ages [8–12]. In addition, the dependence of model-based reconstruction 
on the magnitudes of the input signals also complicates supervised 
learning of the reconstruction operator because samples with all pos-
sibly expected signal magnitudes must be represented in the training 
dataset. Compensating for signal magnitude fluctuations during model-
based optoacoustic image reconstruction could make MSOT imaging 
more accurate, reliable, and robust. Fig.  1 summarizes the principal 
shortcomings of standard model-based reconstruction and introduces 
the added value of scale-equivariant model-based reconstruction.

In this work we investigate the behavior of optoacoustic image 
reconstruction under scaling. We define the notion of scale-equivariant 
image reconstruction and, based on this property, define a scale-
equivariant model-based reconstruction operator that automatically 
adapts the regularization strength to the norm of the input sino-
gram. Furthermore, we leverage scale-equivariance to simplify super-
vised learning of the reconstruction operator: Input data is passed 
to the trainable network layers with a fixed norm to bypass the 
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Fig. 1. Schematic representation of the shortcomings associated with standard model-
based (MB) reconstruction and the benefits and working principle of scale-equivariant 
MB reconstruction.

need for manually tuned hyperparameters to select the range of sig-
nal magnitudes covered by the training samples. We experimentally 
demonstrate the benefits of scale-equivariant model-based reconstruc-
tion using optoacoustic scans of a phantom as well as in vivo data. 
Scale-equivariant model-based reconstruction applies appropriate reg-
ularization to signals with arbitrary magnitudes, slightly improves 
blood oxygenation quantification accuracy with multispectral optoa-
coustic imaging, and enables more accurate supervised learning of the 
reconstruction operator.

2. Theory

2.1. Equivariance of optoacoustic reconstruction

We begin with the formal definition of scale-equivariance for op-
toacoustic image reconstruction. The acoustic part of optoacoustic to-
mography can be assumed to be linear due to the low magnitudes 
of the acoustic waves generated by the optoacoustic effect [13]. Let 
 ∶ 𝐿2(R3) → 𝐿2(𝐷 × [0,∞)), 𝑝0 ↦ 𝑠, be the linear operator that 
maps an initial pressure distribution 𝑝0 to a sinogram 𝑠. 𝐷 is the set 
of detectors, and the second dimension of 𝑠 is time.

Due to the nature of the optoacoustic effect, the initial pressure 
distribution can be assumed non-negative, such that  is in partic-
ular positively homogeneous as an operator on the convex cone of 
non-negative 𝐿2-functions 𝐿2

≥0(R
3) ∶= {𝑓 ∈ 𝐿2(R3) ∣ 𝑓 ≥ 0}, i.e., 

(𝑎𝑝0) = 𝑎(𝑝0) for all 𝑝0 ∈ 𝐿2
≥0(R

3), 𝑎 > 0. (1)

Consequently, a reconstruction operator  ∶ (𝐿2
≥0(R

3)) → 𝐿2
≥0(R

3),

𝑠 ↦ 𝑝r𝑒𝑐 , that reconstructs a non-negative initial pressure distribution 
𝑝r𝑒𝑐 from a given sinogram 𝑠 ∈ (𝐿2

≥0(R
3)) ⊂ 𝐿2(𝐷 × [0,∞)) needs to 

satisfy 

(𝑎𝑠) = 𝑎(𝑠) for all 𝑠 ∈ (𝐿2
≥0(R

3)), 𝑎 > 0. (2)

More generally, given an operator  ∶ 𝑉 → 𝑊  and a group (𝐺, ◦)
that acts on the two spaces 𝑉  and 𝑊  with actions 𝜌 and 𝜎, respectively, 
2 
the operator is called 𝐺-equivariant (more precisely (𝜌, 𝜎)-equivariant), 
if 
 (𝜌𝑔(𝑣)) = 𝜎𝑔( (𝑣)) for all 𝑣 ∈ 𝑉 , 𝑔 ∈ 𝐺. (3)

If we consider the scaling group 𝑆 ∶= ([0,∞), ⋅) that acts on (𝐿2
≥0(R

3))
by scaling 
𝜌𝑎(𝑠) ∶= 𝑎𝑠 for all 𝑠 ∈ (𝐿2

≥0(R
3)), 𝑎 ∈ 𝑆, (4)

and on 𝐿2
≥0(R

3) by scaling 

𝜎𝑎(𝑝0) ∶= 𝑎𝑝0 for all 𝑝0 ∈ 𝐿2
≥0(R

3), 𝑎 ∈ 𝑆, (5)

then we can say that a reconstruction operator is supposed to be 
𝑆-equivariant, or scale-equivariant.

2.2. Equivariance of model-based reconstruction

Having defined the notion of scale-equivariance, we next derive a 
model-based reconstruction operator that preserves this property. Let 
𝛺 ∶ 𝐿2(R3) → [0,∞) be a regularization functional, then 𝑝r𝑒𝑐 is obtained 
by solving the optimization problem 
𝑝r𝑒𝑐 = (𝑠) ∶= argmin

𝑝0∈𝐿2(R3),
𝑝0≥0

‖(𝑝0) − 𝑠‖22 + 𝜆𝛺(𝑝0), (6)

where 𝜆 > 0 is the regularization parameter.
𝐺-equivariance of  implies a condition on the regularizing term:

(𝑎𝑠) = argmin
𝑝0∈𝐿2(R3),

𝑝0≥0

‖(𝑝0) − 𝑎𝑠‖22 + 𝜆𝛺(𝑝0) (7)

= argmin
𝑝0∈𝐿2(R3),

𝑝0≥0

𝑎2‖(𝑝0∕𝑎) − 𝑠‖22 + 𝜆𝛺(𝑝0) (8)

= argmin
𝑝0∈𝐿2(R3),

𝑝0≥0

‖(𝑝0∕𝑎) − 𝑠‖22 + 𝑎−2𝜆𝛺(𝑝0) (9)

= argmin
𝑎𝑝0∈𝐿2(R3),

𝑎𝑝0≥0

‖(𝑝0) − 𝑠‖22 + 𝑎−2𝜆𝛺(𝑎𝑝0) (10)

= 𝑎 argmin
𝑝0∈𝐿2(R3),

𝑝0≥0

‖(𝑝0) − 𝑠‖22 + 𝑎−2𝜆𝛺(𝑎𝑝0). (11)

As a consequence, the model-based reconstruction operator  with 
fixed regularization parameter 𝜆 > 0 is scale-equivariant if and only 
if 𝛺(𝑎𝑝0) = 𝑎2𝛺(𝑝0) for all 𝑝0 ∈ 𝐿2

≥0(R
3) and all 𝑎 ∈ 𝑆.

If the regularization functional transforms differently under scaling, 
the regularization parameter needs to be adjusted accordingly. If 𝛺
satisfies 𝛺(𝑎𝑝0) = 𝑎𝑞𝛺(𝑝0) for 𝑞 ∈ N, the regularization parameter 
𝜆 needs to be rescaled to 𝑎2−𝑞𝜆. This is for example the case for 
regularizers of the form 𝛺(𝑝0) = ‖(𝑝0)‖

𝑞
𝑞 , where  is a linear operator, 

e.g., shearlet 𝐿1-regularization with 𝑞 = 1 and  the shearlet transform.
To implement a scale-equivariant model-based reconstruction oper-

ator in this situation, we need to fix a reference scale for the sinogram. 
Since we work in 𝐿2-spaces, it is natural to define 𝑠0 ∶= ‖𝑠‖−12 s. To 
simplify the notation, we write 𝑎𝑠 ∶= ‖𝑠‖2, such that 𝑠 = 𝑎𝑠𝑠0. With 
the above considerations, we obtain a scale-equivariant reconstruction 
operator 𝑆 by
𝑝r𝑒𝑐 = 𝑆 (𝑠) ∶= argmin

𝑝0∈𝐿2(R3),
𝑝0≥0

‖(𝑝0) − 𝑎𝑠𝑠0‖
2
2

+𝑎2−𝑞𝑠 𝜆𝛺(𝑝0). (12)

Instead of varying the regularization parameter, 𝑆 is easier im-
plemented by scaling as a preprocessing step and rescaling as a post-
processing step. First 𝐿2-normalize 𝑠 to obtain 𝑠0, then reconstruct an 
initial pressure with input sinogram 𝑠0 and fixed regularization param-
eter 𝜆. Then rescale the output initial pressure with 𝑎  to obtain the 
𝑠
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scale-equivariant reconstruction. In other words, the scale-equivariant 
reconstruction operator can be written in the form: 
(𝑠) = 𝑎𝑠 argmin

𝑝0∈𝐿2(R3),
𝑝0≥0

‖(𝑝0) − 𝑠0‖
2
2 + 𝜆𝛺(𝑝0). (13)

2.3. Data normalization for supervised learning of a scale-equivariant op-
erator

Equivariance of an operator simplifies supervised learning of the 
operator. Instead of the need to reconstruct inputs on different scales, 
the model can be trained with normalized data. The correct scale of the 
output is set by rescaling.

More precisely, if an operator  ∶ 𝑉 → 𝑊  is 𝐺-equivariant, consider 
the orbit spaces 𝑉 ∕𝜌 ∶= {𝜌𝐺(𝑣) ∣ 𝑣 ∈ 𝑉 } and 𝑉 ∕𝜎 ∶= {𝜎𝐺(𝑤) ∣ 𝑤 ∈ 𝑊 }, 
where 𝜌𝐺(𝑣) ∶= {𝜌𝑔(𝑣) ∣ 𝑔 ∈ 𝐺} is the orbit of 𝑣 ∈ 𝑉 . We also 
consider fundamental domains of the actions 𝐹𝜌 and 𝐹𝜎 , i.e., collections 
of elements of the vector spaces, such that one element of each orbit is 
contained. In the case of the action of 𝑆 on 𝐿2(𝐷×[0,∞)), a fundamental 
domain 𝐹𝑆 is the set of all sinograms 𝑠 with ‖𝑠‖2 = 1, i.e., exactly the 
set of references that we chose.

Now, the 𝐺-equivariant operator   is uniquely determined by its 
behavior on a fundamental domain of 𝑉 . The behavior on any other 
element is obtained by letting 𝐺 act with the according element 𝑔 on the 
output via the action 𝜎. The set of outputs  (𝐹𝜌) define a fundamental 
domain of the action 𝜎 on the image space, i.e., only input–output pairs 
in 𝐹𝜌× (𝐹𝜌) are needed for training. Details on all these considerations 
are formulated as a theorem in a more general setting in Appendix  A.

3. Methods

3.1. Data acquisition

Validation experiments were conducted using data from a modern 
handheld MSOT scanner (MSOT Acuity Echo, iThera Medical GmbH), 
equipped with a multiwavelength laser and a concave array of 256 
sensors.

The in vivo dataset comprises scans of six healthy volunteers at 
various anatomical locations (biceps, thyroid, carotid, calf, elbow, neck, 
colon, and breast) with wavelengths from the range 700–980 nm in 
steps of 10 nm, resulting in a total of 4814 sinograms. For each 
scan, the speed of sound value was manually tuned to obtain the 
most well-focused reconstructed image. All relevant ethical regulations 
were observed following the guidelines provided by Helmholtz Center 
Munich. All participants gave written informed consent upon recruit-
ment. More detailed descriptions of the MSOT scanner used and the 
data acquisition and preprocessing procedure for the in vivo data are 
available in a previous study [7].

The oxygenation phantom dataset comprises scans of 33 different 
sO2 levels from the range 50%−100% at the wavelengths 700 nm, 
730 nm, 760 nm, 800 nm, and 850 nm. The measurements were 
performed using two phantoms composed of a copolymer in oil ma-
terial with two embedded PTFE tubes, each located at a depth of 
8 mm and having an internal diameter of 1.07 mm. This type of 
material has previously been investigated as a soft tissue-mimicking 
material [14]. The material acoustic characterization was carried out 
following the IEC TS 63081 standard [15] on three sets of samples 
with thicknesses of 1, 2, and 4 cm. The measurement results indicated 
a mean phase velocity of 1473 ± 1 m∕s and an absorption coefficient of 
0.58±0.11 dB cm−1 MHz−𝑦, where the frequency exponent 𝑦 was 1.55±
0.07. The optical characterization was performed on 12 samples using a 
Dual Integrating Spheres system [16] and the Inverse Adding Doubling 
algorithm [17]. This resulted in an average absorption coefficient of 
0.0144 ± 0.0009 mm−1 and an average reduced scattering coefficient of 
0.90 ± 0.02 mm−1. Both the optical and acoustic values are consistent 
with the expected values for human soft tissues [18,19]. The blood used 
3 
in the experiment was fresh heparinized porcine blood, from which the 
red blood cells were separated by centrifugation and diluted in PBS 
to reach the physiological hemoglobin concentration found in humans. 
A blood flow circuit connected to the phantom tubes maintained the 
hemoglobin solution at 37 ◦C and lowered or increased the oxygen 
saturation by exposing the solution to varying concentrations of ni-
trogen or oxygen, respectively. After each optoacoustic acquisition, 
a sample of blood was analyzed using a blood gas analyzer (Combi 
Line, Eschweiler GmbH & Co. KG), which measured the hemoglobin 
concentration and oxygen saturation of the sample in the phantom. 
Fifty iterations through all wavelengths were acquired for each sO2
level, resulting in a total of 8250 sinograms.

3.2. Image reconstruction

All sinograms were reconstructed using scale-equivariant and stan-
dard model-based reconstruction (see Eqs.  (13) and (6), respectively) 
using shearlet 𝐿1-regularization to tackle the ill-posedness of the in-
verse problem (i.e., 𝛺(𝑝0) = ‖(𝑝0)‖1, where  is the shearlet trans-
form). The minimization problem was solved via bound-constrained 
sparse reconstruction by separable approximation [20–22]. All images 
were reconstructed with a size of 416 × 416 pixels and a field of view 
of 4.16 × 4.16 cm2. Regularization values 𝜆 were tuned via L-curves, an 
established method to select the optimal regularization parameter using 
the trade-off between the data residual and the regularization term, 
and set to 10−5 and 10−2 for scale-equivariant and standard model-
based reconstruction, respectively. The selection process is illustrated 
in Supplementary Figure 2 for the scale-equivariant case. Model-based 
image reconstruction was implemented in MATLAB and run on a 
desktop computer (Intel i9-14900K processor, NVIDIA RTX 4900 GPU, 
128 GB RAM). The source code is publicly available on GitHub [23].

3.3. Supervised learning

The DeepMB framework [7] was used to analyze the benefits of 
scale-equivariance on the supervised learning of a model-based recon-
struction operator. Briefly, DeepMB is a previously validated frame-
work for expressing a model-based reconstruction operator with a deep 
neural network through training on optoacoustic data synthesized from 
real-world images. Accurate generalization from synthesized training 
data to experimental test data is achieved because model-based recon-
struction is a well-posed inverse problem, and the network can thus 
learn a data transformation that is independent of specific features of 
the ground truth images.

Two DeepMB models were trained: the first model was trained to 
learn the scale-equivariant model-based operator and the second model 
was trained to learn the standard model-based operator. Importantly, 
in the scale-equivariant case, the DeepMB model was trained on nor-
malized data by scaling input sinograms to a fixed norm and rescaling 
output image to the original range of values (see Section 2.3). For 
both the scale-equivariant and standard cases, training was otherwise 
performed according to the originally proposed methodology [7], with 
the following exception: The smooth 𝐿1 loss was used during network 
training instead of the mean squared error loss. Training was performed 
on the same desktop computer as for model-based image reconstruction 
(see Section 3.2).

The accuracy of both the scale-equivariant and standard DeepMB 
models was evaluated by reconstructing all 4814 sinograms from the in 
vivo dataset and comparing them against the corresponding reference 
images obtained with scale-equivariant and standard model-based re-
construction, respectively. Reconstruction accuracy was quantified by 
calculating the (relative) mean absolute errors (MAE and MAErel), (rel-
ative) mean squared errors (MSE and MSErel), and structural similarity 
indices (SSIM) between the output images and the respective reference 
images from the model-based reconstruction, defined as 
MAE ∶= ‖𝑖 − 𝑖 ‖ , (14)
DeepMB MB 1
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MAErel ∶=
‖𝑖DeepMB − 𝑖MB‖1

‖𝑖MB‖1
, (15)

MSE ∶= ‖𝑖DeepMB − 𝑖MB‖
2
2, (16)

MSErel ∶=
‖𝑖DeepMB − 𝑖MB‖22

‖𝑖MB‖22
, (17)

SSIM ∶=
(2𝜇DeepMB𝜇MB + 𝑐1)(2𝜎DeepMB,MB + 𝑐2)

(𝜇2
DeepMB + 𝜇2

MB + 𝑐1)(𝜎2DeepMB + 𝜎2MB + 𝑐2)
, (18)

where 𝑖DeepMB and 𝑖MB are vectorizations of reconstructed DeepMB 
and model-based images, respectively. The SSIM was calculated as the 
average over sliding windows of size 21 × 21 pixels, where 𝜇DeepMB
and 𝜇MB are the averages of 𝑖DeepMB and 𝑖MB; 𝜎DeepMB and 𝜎MB are the 
variances of 𝑖DeepMB and 𝑖MB; 𝜎DeepMB,MB is the covariance of 𝑖DeepMB
and 𝑖MB; and 𝑐1 =

(

0.01 ⋅max(𝑖MB)
)2 and 𝑐2 =

(

0.03 ⋅max(𝑖MB)
)2 are two 

empirical variables to stabilize the division with weak denominators.
The reconstruction fidelity of both DeepMB models was assessed 

using the data residual norm (R), defined as 

R ∶=
‖(𝑝rec) − 𝑠‖22

‖𝑠‖22
, (19)

where 𝑝rec is the reconstructed image,  is the acoustic forward imag-
ing operator, and s is the input sinogram.

3.4. Blood oxygen quantification

The blood phantom scans were used to compare the ability to 
quantify sO2 with scale-equivariant and standard model-based recon-
struction as well as the corresponding DeepMB models. Reconstructed 
images were grouped into multispectral stacks. The regions corre-
sponding to the two inclusions were manually segmented, and the 
average absorption spectra per blood oxygenation level across all scans 
were extracted. The concentration coefficients for oxygenated and de-
oxygenated hemoglobin were calculated using linear unmixing. The 
predicted blood oxygen concentration was computed as 

msO2
∶=

cHbO2

cHb + cHbO2

, (20)

where cHbO2
 and cHb are the concentration coefficients for oxygenated 

and deoxygenated hemoglobin from linear unmixing, respectively. To 
compare the different reconstruction methods considered, the root 
mean squared error for predicting blood oxygen saturation (RMSEsO2

) 
was computed as 

RMSEsO2
∶=

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

(

m(𝑛)
sO2

− gt(𝑛)sO2

)2
, (21)

where 𝑁 is the number of different blood oxygen concentrations 
scanned, gt(𝑛)sO2

 are the ground truth blood oxygen concentrations from 
the blood gas analyzer, and m(𝑛)

sO2
 are the predicted blood oxygen 

concentrations from either scale-equivariant or standard model-based 
reconstruction or any of the corresponding DeepMB models.

4. Results

4.1. Improved regularization

Scale-equivariant model-based reconstruction enables appropriate 
regularization of sinograms with arbitrary signal strength without the 
need to retune the regularization strength. Fig.  2 compares images 
reconstructed from representative sinograms from the in vivo dataset 
with high, low, and median 𝐿2 norms. Images obtained via scale-
equivariant model-based reconstruction are adequately regularized in 
all three cases (see Fig.  2a,c,e). Conversely, images obtained via stan-
dard model-based reconstruction are too weakly regularized for the 
4 
Table 1
Comparison of the accuracy for determining blood oxygen saturation (sO2) with scale-
equivariant versus standard model-based (MB) reconstruction. The reported values are 
the average root mean square errors (RMSE) between the MSOT predictions and the 
ground truth values from a blood gas analyzer.
 RMSE for predicting sO2

 Direct application Supervised learning 
 Scale-eq. MB 4.97 5.20  
 Standard MB 5.00 5.61  

sinogram with a high 𝐿2 norm sinogram (see ripple and limited-view 
artifacts in Fig.  2b), and slightly too strongly regularized for the sino-
gram with a low 𝐿2 norm (see suppressed image contrast in Fig.  2d). 
Both the scale-equivariant and standard model-based reconstructions 
obtain similar images for the sinogram with a median 𝐿2 norm (see Fig. 
2e,f). Further examples of scale-equivariant and standard model-based 
reconstructions for in vivo sinograms with high, low, and median 𝐿2

norms are provided in Supplementary Figure 1.
Subsequently, the ability of scale-equivariant reconstruction to

adapt the degree of regularization applied during reconstruction was 
validated using the full in vivo dataset. The change in regularization 
between scale-equivariant and standard model-based images was quan-
tified by the differences between their respective regularization terms 
(a comparatively larger regularization term indicates that images are 
less regularized, and vice versa). Fig.  3a visualizes the changes in 
regularization relative to the sinogram norm. The results confirm that 
the regularization behavior is meaningful across the full dataset: Recon-
structions from sinograms with low norms (i.e., 𝐿2 norm smaller than 
1100) are more weakly regularized in the scale-equivariant case than in 
the standard model-based case, hence the differences in regularization 
terms are positive. Conversely, images from sinograms with high norms 
(i.e., 𝐿2 norm larger than 1100) are more strongly regularized in the 
scale-equivariant case than in the standard model-based case, hence the 
differences in regularization terms are negative. Reconstructions from 
sinograms with median norms (i.e., 𝐿2 norm around 1100; also see the 
color-encoding in Fig.  3a, and the histogram in Fig.  3b) are similarly 
regularized in both cases, hence the difference in regularization terms 
is close to zero.

At last, the effects of regularization improvements through scale-
equivariant model-based reconstruction on MSOT imaging were inves-
tigated using the example of blood oxygen saturation (sO2) measure-
ment. Scale-equivariant model-based reconstruction achieves a slightly 
lower RMSE for predicting sO2 than standard model-based reconstruc-
tion (4.97 vs. 5.00, see first column ‘‘Direct application’’ of Table 
1).

4.2. Improved supervised learning

Scale-equivariant model-based reconstruction also enables more ac-
curate supervised learning of the operator.

Table  2 compares the reconstruction accuracy of DeepMB when 
learning a scale-equivariant model-based reconstruction operator ver-
sus learning a standard model-based reconstruction operator using the 
in vivo dataset. The average MAE and MSE between DeepMB and 
model-based images improve by 21% and 44%, respectively. Similar 
improvements were also observed when assessing ability to quantify 
sO2 with the two DeepMB models. The DeepMB model trained on 
scale-equivariant model-based images achieves a 7% lower RMSE in 
predicting sO2 than the DeepMB model trained on standard model-
based images (5.20 vs. 5.61, see second column ‘‘Supervised learning’’ 
of Table  1).



C. Dehner et al. Photoacoustics 44 (2025) 100727 
Fig. 2. Optoacoustic images obtained using scale-equivariant and standard model-based (MB) reconstruction for in vivo sinograms with high (a, b), low (c, d), and median (e, f) 
𝐿2 norms (‖𝑠‖2).
Table 2
Comparison of the reconstruction accuracy of DeepMB when learning a scale-
equivariant versus a standard model-based (MB) reconstruction operator across 4814 
in vivo sinograms. The accuracy of the scale-equivariant and standard DeepMB models 
is quantified against ground-truth images reconstructed using the reference scale-
equivariant and standard MB algorithms, respectively. The table shows the mean values 
and in square brackets the 25th and 75th percentiles. The arrow symbols (↑, ↓) indicate 
for each metric whether a higher or lower value is better. MAE, MAErel: (relative) mean 
absolute error, MSE, MSErel: (relative) mean squared error, SSIM: structural similarity, 
R: data residual norm. The average data residual norm of both model-based datasets 
is 0.141.
 DeepMB for scale-equivariant MB DeepMB for standard MB 
 MAE (↓) 0.59 [0.41, 0.60] 0.75 [0.47, 0.77]  
 MAErel (%) (↓) 13.24 [11.69, 14.61] 15.65 [14.07, 17.22]  
 MSE (↓) 3.32 [0.44, 1.59] 5.98 [0.58, 2.19]  
 MSErel (%) (↓) 0.85 [0.52, 1.05] 1.14 [0.74, 1.31]  
 SSIM (↑) 0.98 [0.98, 0.99] 0.98 [0.97, 0.99]  
 R (↓) 0.146 [0.083, 0.181] 0.149 [0.082, 0.185]  

5. Discussion

In this work we propose a method for adequate regularization 
of model-based optoacoustic image reconstruction. Scale-equivariant 
model-based reconstruction is able to adapt the regularization strength 
5 
based on the norm of the input sinogram and can thus account for mag-
nitude variations within in vivo data that are generally caused by the 
anatomical region, acquisition wavelength, or hardware characteristics.

Scale-equivariant model-based reconstruction achieves a slightly 
higher image quality and quantification accuracy than standard model-
based reconstruction when evaluated on a large and diverse in vivo 
dataset as well as on scans of an oximetry phantom. The extent of the 
improvement observed depends on the distribution of sinogram norms 
in the dataset under consideration. Scale-equivariant and standard 
model-based reconstructions lead to similar results if the norm of the 
sinograms within a dataset follow a narrow distribution. However, the 
broader the distribution of sinogram norms, the more superior scale-
equivariant is compared standard model-based reconstruction. Scale-
equivariance also enables more accurate supervised learning of the 
reconstruction operator using a deep neural network: During training, 
the data manifold is more densely sampled because input sinograms 
have a fixed norm, resulting in improved prediction accuracy.

Overall, improvements in image quality through scale-equivariance 
are incremental: A scale-equivariant reconstruction moderately alters 
the image appearance and enables a gradual enhancement in quan-
tification accuracy of multispectral optoacoustic tomography. Thereby, 
the method can contribute to obtaining more comprehensive and pre-
cise diagnoses using multispectral optoacoustic tomography in clinical 
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Fig. 3. (a) Differences between the regularization terms of scale-equivariant and 
standard model-based images from the in vivo dataset, 𝛺(𝑝scale-eq. MB0 ) −𝛺(𝑝standard MB0 ), 
relative to the sinogram 𝐿2 norm, for all 4814 samples of the in vivo dataset. The colors 
in the scatter plot encode point density. (b) Histogram of the sinogram 𝐿2 norm.

practice. By improving image reconstruction for sinograms with high 
or low sinogram values, scale-equivariant reconstruction can also help 
to account for anatomical heterogeneities within a study cohort, for 
example, with regard to body type or skin color. Beyond direct effects 
on clinical imaging, precise reconstructions of initial pressure achieved 
through scale equivariant reconstruction can also benefit scientific 
research and serve as a building block for the development of more 
advanced image processing algorithms for quantitative optoacoustic 
imaging [24–27].

Another crucial advantage of scale-equivariant reconstruction is 
improved practicality: Scale-equivariant reconstruction enables the use 
of the same regularization value for multiple datasets (acquired with 
the same scanner type) because input sinograms are 𝐿2-normalized 
before the reconstruction, and rescaled after. Scale-equivariance there-
fore eliminates the need to adapt the regularization strength to signal 
intensity variations caused, for example, by the scanned anatomy or the 
laser wavelength. In addition, for the supervised learning of the model-
based reconstruction operator, scale-equivariance eliminates the need 
to manually determine a hyperparameter to scale the value range of 
training data to the range of experimental test data. These practical 
improvements can significantly advance the clinical implementation 
of multispectral optoacoustic tomography by reducing maintenance 
efforts, simplifying data analysis, and facilitating standardization.

While scale equivariance enables more accurate optoacoustic imag-
ing, it still leaves important areas for improvement open. Clinical op-
toacoustic imaging commonly uses limited-angle acquisition schemes, 
6 
resulting in the loss of image features perpendicular to the acquisi-
tion probe orientation. Model-based reconstruction can mitigate the 
resulting ill-posedness of the inversion problem using regularization; 
however, only rigid regularization functionals are used at the current 
state (e.g., in this work a L1-based regularization functional was used 
to promote sparse encoding with a Shearlet basis). The development 
of more complex tissue priors could allow for a more comprehensive 
compensation for the information lost through limited-angle acquisition 
and thus further increase the accuracy of optoacoustic images. Another 
open challenge in optoacoustic imaging is the optical inversion. Recent 
work focuses on optical inversion using deep learning models trained 
on synthesized data [26,27]. Scale equivariance might be a sub-step 
in such an approach, helping to bridge the domain gap between such 
synthesized data and in vivo test data, but the development and com-
prehensive validation of such approaches is still the subject of ongoing 
research.

In summary, scale-equivariant model-based reconstruction is strictly 
advantageous over standard model-based reconstruction. Scale-
equivariance does not increase computational complexity, requires only 
minor implementation adjustments, and can be used in any application 
area of optoacoustic tomography.
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Appendix A

We provide a theorem on equivariant regularization that is applica-
ble in a very general setting.

Theorem 1 (Equivariant Regularization). Let 𝑇 ,𝑊  be sets,  ∶ 𝑇 → 𝑊 , 
and 𝑆 ∶= (𝑇 ) ⊆ 𝑊 . Let (𝐺, ◦) be a group that acts on 𝑇  and 𝑆 via 
actions 𝜌 and 𝜎, respectively. Let 𝑑 ∶ 𝑆 × 𝑆 → [0,∞). Define the function 
 ∶ 𝑆 → 𝑇 , defined by 
(𝑠) ∶= argmin 𝑑((𝑝0), 𝑠) + 𝜆(𝑠)𝛺(𝑝0), 𝑠 ∈ 𝑆, (22)
𝑝0∈𝑇



C. Dehner et al. Photoacoustics 44 (2025) 100727 
where we assume the existence of a regularization functional 𝛺 ∶ 𝑇 →

[0,∞) and a regularization parameter function 𝜆 ∶ 𝑆 → [0,∞), such that 
 is well-defined.

Let 𝑑 and 𝛺 be 𝐺-equivariant, i.e., there are group homomorphisms 
𝑓𝑑 ∶ 𝐺 → [0,∞) and 𝑓𝛺 ∶ 𝐺 → [0,∞), such that

𝑑(𝜎𝑔𝑠1, 𝜎𝑔𝑠2) = 𝑓𝑑 (𝑔)𝑑(𝑠1, 𝑠2), 𝑔 ∈ 𝐺, 𝑠1, 𝑠2 ∈ 𝑆, (23)

𝛺(𝜌𝑔𝑡) = 𝑓𝛺(𝑔)𝛺(𝑡), 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 . (24)

Let 𝐹𝑆 be a fundamental domain of the action 𝜎 on 𝑆. For 𝑠 ∈ 𝑆, denote 
by 𝑠0 ∈ 𝐹𝑆 the element in the orbit of 𝑠, and by 𝑔(𝑠) ∈ 𝐺 the group element 
that satisfies 𝑠 = 𝜎𝑔(𝑠)𝑠0.

If  is (𝜌, 𝜎)-equivariant, then
(i) If there is a 𝜆f𝑖𝑥 > 0, such that  is well-defined for 𝜆 ≡ 𝜆f𝑖𝑥, then

 is (𝜎, 𝜌)-equivariant 
⇔ 𝑓𝛺(𝑔) = 𝑓𝑑 (𝑔) ∀𝑔 ∈ 𝐺. (25)

(ii) If  is well-defined on 𝐹𝑆 for 𝜆||
|𝐹𝑆

≡ 𝜆0 > 0, and 

𝜆(𝑠) ∶=
𝑓𝑑 (𝑔(𝑠))
𝑓𝛺(𝑔(𝑠))

𝜆0, 𝑠 ∈ 𝑆, (26)

then  is (𝜎, 𝜌)-equivariant.
(iii) The equivariant operator  defined in (ii) satisfies

(𝑠) = 𝜌𝑔(𝑠)
(

argmin
𝑝0∈𝑇

𝑑((𝑝0), 𝑠0)

+𝜆0𝛺(𝑝0)
)

. (27)

Proof.  Consider the following calculation for 𝑔 ∈ 𝐺 and 𝑠 ∈ 𝑆:

(𝜎𝑔𝑠) = argmin
𝑝0∈𝑇

𝑑
(

(𝑝0), 𝜎𝑔𝑠
)

+ 𝜆(𝜎𝑔𝑠)𝛺(𝑝0) (28)

= argmin
𝑝0∈𝑇

𝑑
(

𝜎𝑔(𝜌𝑔−1𝑝0), 𝜎𝑔𝑠
)

+ 𝜆(𝜎𝑔𝑠)𝛺(𝑝0) (29)

= argmin
𝑝0∈𝑇

𝑓𝑑 (𝑔)𝑑
(

(𝜌𝑔−1𝑝0), 𝑠
)

+ 𝜆(𝜎𝑔𝑠)𝛺(𝑝0) (30)

= 𝜌𝑔
(

argmin
𝑝0∈𝑇

𝑓𝑑 (𝑔)𝑑((𝑝0), 𝑠)

+ 𝜆(𝜎𝑔𝑠)𝛺(𝜌𝑔𝑝0)
)

(31)

= 𝜌𝑔
(

argmin
𝑝0∈𝑇

𝑓𝑑 (𝑔)𝑑((𝑝0), 𝑠)

+ 𝜆(𝜎𝑔𝑠)𝑓𝛺(𝑔)𝛺(𝑝0)
)

(32)

= 𝜌𝑔
(

argmin
𝑝0∈𝑇

𝑑((𝑝0), 𝑠)

+ 𝜆(𝜎𝑔𝑠)𝑓𝑑 (𝑔)−1𝑓𝛺(𝑔)𝛺(𝑝0)
)

, (33)

where we used the definition of  in the first equality, equivariance 
of  is the second equality, equivariance of 𝑑 in the third equality, 
transformed the argument via 𝜌𝑔 in the fourth equality, used equivari-
ance of 𝛺 in the fifth equality, and divided the minimized functional 
by 𝑓𝑑 (𝑔) in the sixth equality. The last step does not change the result, 
because we multiply by a non-negative constant.

Now, (i) ‘‘⇐’’ follows from this calculation, because if 𝑓𝛺(𝑔) = 𝑓𝑑 (𝑔), 
then 
𝜆(𝜎𝑔𝑠)𝑓𝑑 (𝑔)−1𝑓𝛺(𝑔) = 𝜆(𝜎𝑔𝑠) ≡ 𝜆f𝑖𝑥. (34)

The argument of 𝜌𝑔 thus simplifies to (𝑠), showing equivariance of .
The other way round ((i) ‘‘⇒’’), if  is equivariant, the argument of 

𝜌𝑔 needs to be equal to (𝑠). The factor in front of 𝛺(𝑝0) needs to be 
equal to 𝜆 , which implies 𝑓 (𝑔) = 𝑓 (𝑔) for all 𝑔 ∈ 𝐺.
f𝑖𝑥 𝛺 𝑑

7 
(iii) follows, when choosing 𝑠 = 𝑠0 and 𝑔 = 𝑔(𝑠). Then, using the 
definition of 𝜆(𝑠) in (ii), 
𝜆(𝑠)𝑓𝑑 (𝑔(𝑠))−1𝑓𝛺(𝑔(𝑠)) = 𝜆0, (35)

showing (iii).
To show (ii), note that for ℎ ∈ 𝐺,

𝜎𝑔(𝜎ℎ𝑠)𝑠0 = 𝜎ℎ𝑠 (36)

⇒ 𝜎ℎ−1◦𝑔(𝜎ℎ𝑠)𝑠0 = 𝑠 (37)

⇒ ℎ−1◦𝑔(𝜎ℎ𝑠) = 𝑔(𝑠) (38)

⇒ 𝑔(𝜎ℎ𝑠) = ℎ◦𝑔(𝑠). (39)

Now, replacing the argument of  in (iii) by 𝜎ℎ𝑠, and using this 
identity, we get

(𝜎ℎ𝑠) = 𝜌ℎ

(

𝜌𝑔(𝑠)
(

argmin
𝑝0∈𝑇

𝑑((𝑝0), 𝑠0)

+𝜆0𝛺(𝑝0)
)

)

. (40)

Thus, it remains to show that the argument of 𝜌ℎ on the right hand side 
equals (𝑠). But that is exactly statement (iii), showing (ii). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.pacs.2025.100727.

Data availability

In vivo data from two of the six scanned volunteers are provided 
online [28]. All other data cannot be shared due to privacy, consent, 
or confidentiality restrictions.
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