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Generating dermatopathology reports from
gigapixel whole slide images with HistoGPT
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Histopathology is the reference standard for diagnosing the presence and
nature of many diseases, including cancer. However, analyzing tissue samples
under a microscope and summarizing the findings in a comprehensive
pathology report is time-consuming, labor-intensive, and non-standardized.
To address this problem, we present HistoGPT, a vision language model that
generates pathology reports from a patient’smultiple full-resolution histology
images. It is trained on 15,129 whole slide images from 6705 dermatology
patients with corresponding pathology reports. The generated reports match
the quality of human-written reports for common and homogeneous malig-
nancies, as confirmed by natural language processing metrics and domain
expert analysis. We evaluate HistoGPT in an international, multi-center clinical
study and show that it can accurately predict tumor subtypes, tumor thick-
ness, and tumor margins in a zero-shot fashion. Our model demonstrates the
potential of artificial intelligence to assist pathologists in evaluating, reporting,
and understanding routine dermatopathology cases.

Histopathology stands as the clinical gold standard for diagnosing a
wide range of conditions, including malignant cancers and inflam-
matory diseases1. It involves the examination of tissue samples under
a microscope by pathologists who follow strict guidelines to ensure
accurate and consistent results2. Their observations are summarized
in pathology reports, which are essential for treatment decisions and
communication among clinicians. However, generating these reports
is time-consuming, labor-intensive, and non-standardized3—resulting
in delays and inefficiencies4. In some cases, such as basal cell carci-
noma, an experienced pathologist can make a diagnosis in seconds,
but it takes longer to dictate or type the findings (Fig. 1a). Auto-
mating report writing with artificial intelligence (AI) can improve

efficiency, reduce errors, and help meet the growing demand for
diagnostic support, allowing pathologists to focus on more com-
plex cases.

Advancedmachine learning algorithms likedeepneural networks5

are typically applied to digitized microscope slides, also known as
whole slide images (WSIs). They excel at image processing tasks such
as cancer classification6, tissue segmentation7, survival prediction8,
and biomarker detection9. In this context, AI is used as a tool and
complement to other medical tests, rather than as a replacement for
pathologists10. There are currently two main approaches to computa-
tional pathology. Patch-level approaches use a small portion of a WSI,
ranging from 224 × 224 pixels to 1024 × 1024 pixels (called an image
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patch), to generate an output11. By design, these patch-level approa-
ches ignore up to 99% of the total tissue, miss potentially diag-
nostically relevant areas, and cannot be applied to tasks that require
the full context of the entire tissue sample (e.g., tumor thickness
prediction). Slide-level approaches, on the other hand, aggregate
information from all patches into a slide-level representation that can
be used in downstream tasks, most notably biomarker prediction9.

A recent direction of research is to extend the capabilities of such
methods by incorporating medical text. Contrastive vision language
models in pathology, such as PLIP12 and CONCH13, align text and ima-
ges at the patch-level. They are zero-shot learners, i.e., they can solve
downstream tasks for which they have not been trained (e.g., cancer
subtyping). However, due to their limitations, they cannot generate a
textual description of the input image. Generative vision language
models such as Med-PaLMM14, LLaVA-Med15, or PathChat16 can output
text, but only at the patch level for small image regions up to
1024 × 1024 pixels. Thus, none of the existing medical foundation
models can generate reports from an entire pathology image at full

resolution, let alone frommultiple images simultaneously, e.g., from a
serial section.

To fill this gap, wepresent HistoGPT, a vision languagemodel that
can generate histopathology reports from multiple gigapixel-sized
WSIs. Givenmultiple tissue sections from the samepatient at up to 20×
magnification, HistoGPT uses a vision foundation model to extract
meaningful features from the images and combines them with a large
language model (LLM) via cross-attention mechanisms to generate a
pathology report. Each generated report describes the tissue compo-
sition, cellular subtypes, and potential diagnosis. In addition, users can
interact with the model through various prompts to extract additional
information such as tumor subtypes, tumor thickness, and tumor
margins (Fig. 1b). The output text (Fig. 1c) is fully interpretable with
saliencymaps that highlight the corresponding image regions for each
word or phrase in the generated text. This is achieved by training
HistoGPT on a large skin histology dataset from the Department of
Dermatology at the Technical University of Munich, which includes
15,129 paired WSIs and pathology reports from 6705 patients written
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Fig. 1 | HistoGPT, a foundation vision language model for dermatopathology.
a Traditionally, pathologists analyze tissue samples from patients under a micro-
scope and summarize their findings in a comprehensive pathology report. This
manual process is time-consuming, labor-intensive, and non-standardized.
b HistoGPT generates human-level written reports, provides disease classification,
discriminates between tumor subtypes, predicts tumor depth, detects tumors at
surgical margins, and returns text-to-image gradient-attention maps that provide

model explainability. All of this serves as a second opinion for the pathologist, who
can use the output of HistoGPT as a general overview and first draft for the final
report. The generated reports can also be used to fill in standardized templates, as
used by some institutions, by extracting the relevant keywords. c An example
output for a basal cell carcinoma case from our external Münster cohort. More
examples can be viewed interactively at this hyperlink. Source data are provided as
a Source Data file.
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by board-certified dermatopathologists. Dermatopathology covers a
wide range of diseases,making it ideal for proof-of-concept studies. To
validate HistoGPT, we measure the quality of the reports generated
and the model’s zero-shot performance in one internal and seven
external cohorts across different scanner types, staining protocols,
and medical procedures, such as shave biopsies, punch biopsies, or
excisional biopsies. We also conduct a real-world, multi-center clinical
evaluation involving six board-certified (dermato-)pathologists from
three different countries. Overall, we show that HistoGPT produces
clinically accurate pathology reports for the most common and
routine cases.

Results
HistoGPT integrates vision and language to generate pathology
reports
HistoGPT is a family of models with three configurations (small,
medium, and large), each consisting of two components (Fig. 2a): a

vision module and a language module. The vision module is based on
the patch encoder CTransPath17 for the small andmediummodels, and
UNI18 for the large model. The former is a lightweight (30 million
parameters) Swin Transformer15 trained at a resolution of 1.0 micron
per pixel (mpp) on over 32,000 WSIs from TCGA16 and PAIP19 using a
semantically guided contrastive learning algorithm20. The latter is a
much larger (300 million parameters) Vision Transformer21 trained at
0.5 mpp resolution on over 100,000 WSIs from 22 major tissue types
using self-distillation and masked modeling22. Our language module
uses BioGPT23, an autoregressive generative model based on the
Transformer24 decoder architecture of GPT-325, trained on 15 million
biomedical articles from PubMed with a vocabulary size of 42,384.

HistoGPT samples image features (at 10× magnification for
CTransPath, 20× for UNI) from the visionmodule using a slide-encoder
based on the Perceiver Resampler26, pre-trainedwithmultiple instance
learning (PerceiverMIL, Fig. 2b), and integrates its outputs into the LLM
via interleaved tanh-gated cross-attention blocks (XATTN)27. Only
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Fig. 2 | HistoGPT simultaneously learns from vision and language to generate
histology reports fromwhole slide images. a HistoGPT is available in three sizes
(Small, Medium, and Large). It consists of a patch encoder (CTransPath for His-
toGPT-S/HistoGPT-M and UNI for HistoGPT-L), a position encoder (used only in
HistoGPT-L), a slide encoder (the Perceiver Resampler), a languagemodel (BioGPT
base for HistoGPT-S, BioGPT large for HistoGPT-M/HistoGPT-L), and tanh-gated
cross-attention blocks (XATTN). Specifically, HistoGPT takes a series of whole slide
images (WSIs) at 10×–20× as input and outputs a written report. Optionally, users
can query the model for additional details using prompts such as “The tumor
thickness is”, and the model will complete the sentence, e.g., “The tumor thickness
is 1.2mm”. bWe train HistoGPT in two phases. In the first phase, the visionmodule

of HistoGPT is pre-trained using multiple instance learning (MIL). In the second
phase, we freeze the pre-trained layers and fine-tune the language module on the
image-text pairs. To prevent themodel from overfitting on the same sentences, we
apply text augmentation with GPT-4 to paraphrase the original reports. c During
deployment, we use an inference method called Ensemble Refinement (ER). Here,
the model stochastically generates multiple possible reports using a combination
of temperature, top-p, and top-k sampling to capture different aspects of the input
image. An aggregation module (GPT-4) then combines the results to provide a
more complete description of the underlying case. Source data are provided as a
Source Data file.
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these XATTN blocks are trained from scratch. In this way, we endow
HistoGPT with existing visual and linguistic domain knowledge, which
is critical for generating histopathology reports from entire and serial
WSIs. Following Flamingo27, we freeze the parameters of all pre-trained
modules during optimization to reduce computational cost and avoid
catastrophic forgetting of previously acquired knowledge (Supple-
mentary Fig. 1). In addition, our large model uses a three-dimensional
factorized position embedding function28 to encode the x- and
y-coordinates of each patch, as well as the z-coordinate indicating
which slide it belongs to.

A language model predicts a probability distribution over a
vocabulary: The next word in a text is selected probabilistically based
on a combination of temperature, top-p, and top-k sampling. For
HistoGPT, this means that once the first few words have been chosen,
the outline of the report is roughly predetermined. To avoid being
locked into a fixed text structure, we use an inference method called

Ensemble Refinement (ER), introduced in Med-PaLM 229, to randomly
samplemultiple reports—each focusing on slightly different aspects of
the WSIs (Fig. 2c). This sampling allows us to thoroughly search the
model distribution and generate a wide variety of medical reports,
maximizing the likelihood of including all important observations. The
general-purpose LLMGPT-430 is then used to aggregate all the sampled
reports.

HistoGPT generates human-level pathology reports for com-
mon diseases
Our Munich dataset is a real-world cohort consisting of 15,129 WSIs
from 6705 dermatology patients with corresponding pathology
reports (Fig. 3a). It contains 167 skin diseases of varying frequency and
has a total size of 10 terabytes. We divided the dataset into a training
set and a test set using a 75/25 split. At inference time, we prompted
the model with either no diagnosis or the correct diagnosis (“Expert
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Fig. 3 | HistoGPT generates human-level pathology reports of skin diseases.
a Our internal Munich dataset is a real-world medical cohort of 15,129 whole slide
images from 6705 patients with 167 skin diseases from the Department of Der-
matology at the Technical University ofMunich. It includesmalignant cases such as
basal cell carcinoma (BCC, n = 870) and squamous cell carcinoma (SCC, n = 297);
precursor lesions such as actinic keratosis (AK, n = 396); as well as benign cases
such as benign melanocytic nevus (BMN, n = 770) and seborrheic keratosis (SK,
n = 412).Wedivided thedataset into a training set and a test set using a stratified 75/
25 split at the patient level. b Through years of experience, pathologists are often
able to make a diagnosis at first glance. Instead of writing a pathology report
themselves, they can use HistoGPT in “Expert Guidance”mode by giving themodel
the correct diagnosis to complete the report. c We evaluated the performance of
the model using four semantic-based machine learning metrics: (i) we matched

criticalmedical terms extracted from the original textwith the generated text using
a dermatology dictionary; (ii) we used the same technique but with ScispaCy, a
scientific name entity recognition tool, as the keyword extractor; (iii) we compared
the semantic meaning of the original and generated reports by measuring the
cosine similarity of their text embeddings generated by the biomedical language
modelBioBERT; (iv) weused the same techniquebutwith the general purpose large
language model GPT-3-ADA for text embedding. d HistoGPT models (blue) sur-
passed BioGPT-1B (yellow) and GPT-4V (red) on the two text accuracy metrics,
Dictionary and ScispaCy, as well as on the two text similarity metrics, BioBERT and
GPT-3-ADA (see Methods for details). e Two independent external board-certified
dermatopathologists (P1 and P2) evaluated 100 original vs. expert-guided gener-
ated reports along with the corresponding whole slide image in a randomized,
blinded study. Source data are provided as a Source Data file.
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Guidance”), simulating an interactive setting where a pathologist is
confident in the tissue assessment but wants to leave the work of
writing a draft to an AI assistant (Fig. 3b). Performance was evaluated
using four semantic-based machine learning metrics and two double-
blind domain expert evaluations (Fig. 3c).

HistoGPT-S, HistoGPT-M, and HistoGPT-L captured on average
~64% of all dermatopathology keywords31 from the original pathology
reports (Fig. 3d). In contrast, BioGPT-1B (a pure text model fine-tuned
on our dataset using language modeling) achieved only ~44%. The
state-of-the-art vision language model GPT-4V(ision)30 improved the
Jaccard index of BioGPT-1B by ~10%but still lagged behind all HistoGPT
models. With Ensemble Refinement, HistoGPT-M-ER captured ~3%
more terms, increasing the total coverage to ~67%. A similar trend was
observed when ScispaCy32 was used as a keyword extractor (Fig. 3d).
All HistoGPT models consistently produced text with high cosine
similarity to the ground truth, according to the sentence embeddings
provided by BioBERT33 and GPT-3-ADA25 (Fig. 3d). Overall, “Expert
Guidance” is the recommended modus operandi for HistoGPT, as it
allows a pathologist to work interactively with the model while
improving the quality of the report compared to the unguided mode
(see Supplementary Table 22). We also evaluated all models using
traditional syntax-based measures (BLEU-4, ROUGE-L, METEOR, and
BERTscore). The relatively low syntax-based scores (see Supplemen-
tary Table 23) combined with the high semantic-based scores (Fig. 3d)
support that HistoGPT does not overfit the training set by simply
repeating common medical terms, like the purely text-based model
BioGPT-1B, but is deeply grounded in the input image.

Text similarity analysis is only partially useful for pathology
reports. Under no circumstances can it provide information as to
whether the generated report is correct or not. To evaluate the gen-
erated reports from a clinical perspective, we conducted a blinded
study in which we randomly selected 100 cases from our Munich test
split, generated a report for each patient in “Expert Guidance” mode,
and paired it with the original human-written report. The two reports
were then randomly shuffled and anonymized. Two independent
board-certified dermatopathologists, who were not involved in the
construction or annotation of the Munich cohort, were given the ori-
ginal WSIs and asked to identify the report that best described each
case, with the option of selecting “no difference” if both were deemed
equally accurate. For the five largest diagnostic classes (basal cell
carcinoma (BCC), benign melanocytic nevus (BMN), seborrheic kera-
tosis (SK), actinic keratosis (AK), squamous cell carcinoma (SCC), see
Fig. 3a), we found slight agreement between the two pathologists
(Cohens’ kappa =0.09). Analyzing the results for each class separately,
we found that Pathologist 1 preferred the AI-generated report or found
the AI and human report similarly good in approximately 70% of the
BCC cases. Pathologist 2, on the other hand, did not prefer the human
report in ~80% of BMN cases. The human report for SK was not pre-
ferred by either pathologist in ~90% of cases. Across all 100 report
pairs, both dermatopathologists found no difference between the AI-
generated and human reports in ~45% of cases and preferred the AI-
generated reports in ~15% of cases (Fig. 3d and Supplementary Fig. 2).

HistoGPT accurately predicts diseases in geographically diverse
cohorts
Weextracted thepredicteddisease class fromthe generated reports to
investigate whether HistoGPT predicts the diagnosis as accurately as
state-of-the-art classification models based on multiple instance
learning (MIL). For this purpose, we ran HistoGPT without “Expert
Guidance”, i.e., we simply prompted the model with the phrase “Final
diagnosis:” instead of “Final diagnosis: [expert label]” and let it make a
diagnostic decision on its own (Fig. 4a). Because the training set is
highly unbalanced, ranging from a handful of samples in the minority
classes to several hundred samples in the majority classes (Fig. 3a),
established MIL methods such as AttentionMIL34, TransMIL35, and

TransfomerMIL9 achieved relatively low weighted F1 scores between
0.34 and 0.48 on theMunich test set (Fig. 4b). In contrast to these MIL
approaches, HistoGPT is not specialized for diagnostic prediction.
Nevertheless, HistoGPT-S andHistoGPT-M attainedweighted F1 scores
of 0.44 and 0.45, while HistoGPT-L reached 0.48.

A challenging clinical question with a high therapeutic impact in
dermatopathology is the differentiation of cancer from non-cancer,
e.g., BCC from other diseases; SCC from precancerous AK; and mela-
noma from BMN. Unlike the previous classification task with over 150
classes, we now face a classification problem with only two alter-
natives. HistoGPT can be conditioned on the relevant subset of diag-
noses obtained from prior knowledge or preselection. It then
automatically calls a lightweight binary classifier to solve the task at
hand (called “Classifier Guidance”, seeMethods), overcoming the class
imbalance problem from above. With HistoGPT-M, we obtained
weighted F1 scores of 98%, 87%, and 89% for the three tasks, respec-
tively (Fig. 4c).

HistoGPT in “Classifier Guidance” mode also generalizes to pre-
viously unseendatasets.Wedemonstrated this by evaluatingHistoGPT
on five external, publicly available cohorts from different countries,
scanner types, staining protocols, and medical procedures such as
shave biopsies, punchbiopsies, and excisional biopsies (Fig. 4d).While
two of the cohorts (Linköping36 and Queensland37) include a variety of
dermatologic diseases, the other three cohorts (Münster-3H, CPTAC,
TCGA) include only BCC or melanoma cases, but can still be used to
assess the performance of HistoGPT. We report the classification
accuracy for single-class datasets and the weighted F1 score for multi-
class datasets.We retrained all models on the entireMunich dataset. In
Münster-3H, HistoGPT-M with classifier guidance correctly identified
BCC in 88% of cases (Fig. 4e), comparable to the established MIL
approaches. The models also reliably discriminated melanoma from
other types, with accuracies of 66% and 72% in TCGA and CPTAC,
respectively, outperforming state-of-the-artMIL (Fig. 4e). Inmulti-class
settings (Queensland with 3 classes and Linköping with 14 classes), we
achieved weighted F1 scores of 83% and 65%, respectively (Fig. 4e).
Thus, classifier guidance improves the effectiveness and general-
izability of the model across different external cohorts. We also see a
trend that HistoGPT andMIL-basedmethods perform well on datasets
consisting mostly of the five most common diseases (Münster-3H,
Queensland, and Linköping), highlighting the limitations of current
deep learning techniques on samples (e.g., melanoma in TCGA and
CPTAC) that were rarely seen during training.

Münster-1K contains 1000 random dermatopathology cases
from the daily clinical routine of the University Hospital Münster.
It is the only one of the five external cohorts to include
(unstructured) pathology reports. In contrast to the Munich
reports, these reports contain only the critical findings and the
final diagnosis (e.g., “Lichen planus-like keratosis (regressive solar
lentigo/flat seborrheic keratosis), no evidence of basal cell car-
cinoma in the present biopsy”) and thus lack the detailed
microscopic description of the Munich training set. Nevertheless,
we were able to calculate how much diagnostic information His-
toGPT encoded by comparing the extracted medical terms and
measuring the cosine similarity as before (Fig. 4f). HistoGPT-L
captured up to 61% of all biomedically relevant words, using our
dermatology dictionary and the ScispaCy model (comparable to
the Munich results of up to 63%), even though the ground truth
was written in a completely different style and structure.
HistoGPT-L also achieved high cosine similarity under BioBERT
and GPT-3-ADA. Compared to a random report generated by
BioGPT-1B, and a grounded report given by GPT-4V, the text
quality of these models was consistently lower compared to all
HistoGPT models (Fig. 4f). Looking at the results from all cohorts
(Fig. 4b, e, f), we see that increasing the size of the language
module (from BioGPT-S to BioGPT-M) has only a small effect on
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Fig. 4 | HistoGPT accurately predicts diseases in-domain and out-of-domain
without human guidance. a In the absence of a human-in-the-loop, HistoGPT
predicts the patient’s diagnosis on its own and generates the corresponding
pathology report. bOn the Munich test set, HistoGPT was on par with state-of-the-
art classification models in predicting over 100 dermatological diseases, even
though the model’s output is pure text. c HistoGPT discriminated malignant from
benign conditions with high accuracy on the Munich dataset: basal cell carcinoma
(BCC, n = 107) vs. other conditions (n = 621) with an accuracy of 0.98 and a
weighted F1 score of 0.98; actinic keratosis (AK, n = 47) vs. squamous cell carci-
noma (SCC,n = 33)with anaccuracyof 0.88 and aweightedF1 score of 0.87; benign
melanocytic nevus (BMN, n = 86) vs. melanoma (n = 21) with an accuracy of 0.89

and a weighted F1 score of 0.89. d We evaluated HistoGPT in 5 independent
external cohorts (Münster-3H, TCGA-SKCM, CPTAC-CM, Queensland, Linköping)
covering different countries, scanner types, staining techniques, and biopsy
methods. e HistoGPT performed equal to or better than state-of-the-art MIL on
external datasets, especiallywhen using self-prompting (“Classifier Guidance”). The
boxplots show the quantiles as a black line and themeanas an inner circle obtained
from 1000 bootstraps. The minimum and maximum values are shown as white
circles at the top and bottom. f HistoGPT was able to produce highly accurate
pathology reports, as indicated by the high keyword and cosine-based similarity
scores for Münster-1K. As in Fig. 3C, the lower baseline compares two randomly
selected reports. Source data are provided as a Source Data file.
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downstream performance while increasing the size of the vision
module and the input resolution (BioGPT-L) improves the accu-
racy of the reports (Supplementary Fig. 3).

HistoGPT predicts tumor thickness, subtypes, and margins
zero-shot
In the diagnosis of skin tumors, tumor thickness and subtype classifi-
cation are important elements of the final report and directly influence
treatment decisions. In basal cell carcinoma, tumor thickness is mea-
sured from the stratum granulosum of the epidermis to the deepest
point of the tumor in millimeters, similar to the determination of the
Breslow index in melanoma. It is considered an important parameter
for the therapeutic approach chosen (surgical vs. non-surgical)38.
Subtype classification based on WHO guidelines further refines treat-
ment decisions by identifying tumor behavior and aggressiveness39.

HistoGPT can predict both tumor thickness and tumor subtypes
and does not require additional reconfiguration or specification of
tumor-specific parameters at any stage of training. Given the query
“The tumor thickness is”, HistoGPT produces a prediction of the depth
of tumor invasion without any fine-tuning. This emergent behavior is
known in the literature as zero-shot learning40. For the 94 samples in
the internalMunich test set, where tumor thicknesswas included in the
original report, we measured a root mean square error (RMSE) of
1.8mm and a significant Pearson correlation coefficient ρ of 0.52
(p = 9.7·10−8, two-sided test) (Fig. 5a). In comparison, the predictions of
the slide-level contrastive baselines (see Methods for a detailed
description), HistoCLIP (RMSE = 4.35mm, ρ =0.006, p = 0.96) and
HistoSigLIP (RMSE = 3.84mm, ρ =0.38, p = 0.002), correlated poorly
with the ground truth. The state-of-the-art patch-based contrastive
baseline PLIP performed even worse (RMSE = 2.78mm, ρ = −0.18,
p =0.08). This highlights the advantage of slide-level approaches,
which aggregate all patches from awhole slide image, over patch-level
approaches. We observed a similar trend in the independent Münster-
3H test set for PLIP and CONCH (Fig. 5e and Supplementary Fig. 4).
Using gradient-attention maps, we gain insight into the reasoning
behind each output. When estimating tumor thickness, HistoGPT
correctly focused on the tumor region (Fig. 4c, left). However,
underestimation occurred when the model struggled to find the cor-
rect spatial orientation even though it recognized the tumormass itself
(Fig. 4c, right). This was evenmore pronounced forHistoGPT-L trained
without a position embedder, which worked on higher resolution
patches that provided more detailed but less contextual information.
However, the addition of a position embedder significantly restored
the model’s spatial awareness (Fig. 4d and Supplementary Fig. 5),
increasing the Pearson correlation to 0.74 (Munich) and 0.59
(Münster).

The zero-shot capabilities of HistoGPT extended to other down-
stream tasks. Basal cell carcinoma (BCC) is the most common type of
malignant skin cancer. Although it is the majority class in the training
set, the training set does not contain BCC subtypes as final diagnoses.
Therefore, BCC subtypes could not be used as labels during supervised
pre-training. This information is only implicitly available as free text
hidden in the microscopic descriptions or critical findings. Interest-
ingly, HistoGPT-Mwas able to extract the hidden information from the
in-distribution training set of the Munich cohort and apply the
acquired knowledge in the out-of-distribution test set of the Münster-
3H cohort to discriminate between three major BCC subtypes
(“superficial”, “solid/nodular”, and “infiltrating”) with a weighted
F1 score of 0.63 (Fig. 5e). Infiltrating BCC is important to identify in
routine diagnostics, as this subtype tends to have a biologically much
more aggressive growth pattern and a higher relapse rate. As shown in
the gradient-attention maps (Fig. 5f), HistoGPT-M correctly attended
to the relevant architectural patterns within the histology slides that
are the hallmarks of each BCC subtype. In comparison, HistoCLIP and
HistoSigLIP achieved weighted F1 scores of 54% and 50%, respectively.

They were worse than HistoGPT-M, especially in the identification of
infiltrating BCC (Fig. 5e and Supplementary Fig. 6). The two vision
language foundation models for pathology image analysis, CONCH
(weighted F1 = 0.31) and PLIP (weighted F1 = 0.09) did not provide
good predictions for this zero-shot classification task, predicting
almost all tissue slides as superficial types.

A frequently asked critical clinical question is whether a tumor is
present at the surgical margin. We extracted this information from 185
reports from the Münster-1K cohort and applied the model without
any fine-tuning (Fig. 5g). HistoGPT-L’s zero-shot margin detection
correctly detected 76% of positive margins (recall), with 73% of those
flagged as positive margins actually being positive (precision), result-
ing in an overall F1 score of 74% for tumor margin classification.
However, the model’s performance in identifying healthy margins was
more modest, correctly classifying 39% of negative margins (recall),
with 43% of those predicted to be negative being correct (precision),
resulting in an F1 score of 41%.

HistoGPT generalizes to a real-world, multi-center clinical study
How well do the reports generated by HistoGPT work outside of
Munich? To answer this question, four board-certified dermato-
pathologists and two board-certified pathologists from three inde-
pendent clinical institutions evaluated reports generated byHistoGPT-
M and HistoGPT-L on randomly selected cases from daily routine
(Fig. 6a). The institutions are the Mayo Clinic (United States), Uni-
versity Hospital Münster (Germany), and Radboud University Medical
Center (The Netherlands). The reports generated were unguided, i.e.,
neither “Expert Guidance” nor “Classifier Guidance” was used. One
pathologist at each institution analyzed the reports, ignoring differ-
ences in report format due to language or reporting standards. A
second pathologist double-checked the results. They agreed to use the
following scores to grade the reports (see Methods for details): (5)
beyond expectation, (4) highly accurate, (3) generally accurate with
minor variations without clinical impact, (2) partially accurate with
variations that could have clinical impact, (1) minimally accurate, (0)
completely inaccurate. A score greater than 2 indicates a diagnosis that
is considered correct or within an acceptable range of subjectivity
(Fig. 6b). All cohorts include common conditions such as actinic ker-
atosis or basal cell carcinoma, but some classes appear in only one
cohort. The Munich cohort includes all of these classes for training,
with varying numbers of samples and subtypes. For example, neo-
plastic cases have 1554 samples across 64 diseases, with an average of
27 data points per class (Fig. 6c). Overall, HistoGPT produced accurate
reports for the most common neoplastic epithelial lesions (including
basal cell carcinoma, melanocytic nevus, actinic keratosis, and squa-
mous cell carcinoma), achieving an average score of 2 or higher. Per-
formance declined for classes with limited training data (<200 cases
per class) or classes that cannot be predicted from imaging alone, such
as re-excision, which require additional clinical information not avail-
able to the model.

The Mayo Clinic cohort consists of 52 randomly selected
cases with 84 specimens (Supplementary Fig. 7a). According to
their evaluation (Fig. 6c and Supplementary Fig. 7a), HistoGPT
performed particularly well in diagnosing basal cell carcinoma
(achieving a score of 5 in 24 of 25 cases) and melanocytic nevi
(achieving a score of 4 in all 4 cases reported as “nevus cell
nevus”). There was some variation in squamous cell carcinoma
and actinic keratosis cases, with scores of 3 and 4 in 15 of 21 cases.
However, non-tumor/inflammatory conditions and re-excision
cases without residual tumors showed low consistency and
accuracy scores, with 15 of 25 cases scoring 0 and 1. Since His-
toGPT was trained with only 167 melanoma cases (Fig. 3a) and did
not see all possible variations of the disease, it was expected that
the 2 difficult melanoma cases (Fig. 7c) would receive a score of 0.
On the other hand, the good results for melanocytic nevi show
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Fig. 5 | HistoGPT predicts tumor thickness, subtypes, as well as margins in a
zero-shot fashion and provides text-to-image visualization. a HistoGPT
achieved high zero-shot performance in predicting tumor thickness on the
internal Munich test set. The scatter plot is color-coded according to the classes
in Fig. 3a. b HistoGPT’s prediction was also highly correlated with the ground
truth on the external Münster-3H test set, even though it was obtained using a
different measurement protocol. c Since HistoGPT is an interpretable AI system,
we can understand its outputs. Here we show the two examplesmarkedwith a red
arrow in this figure (b). Attention scores range from 0 (low attention) to 1 (high
attention) as indicated by the color bar. d Encoding the position of each patch for
the large HistoGPTmodel greatly improved its spatial awareness. All scatter plots

include the linear regression estimate along with the 95% confidence interval as a
shaded area (orange). Statistical tests were performed using a two-tailed test.
e On the BCC subset of the independent Münster-3H cohort, HistoGPT was the
only slide-level model that correctly predicted infiltrative BCC in most cases. The
two patch-level models CONCH and PLIP failed in this task, predicting almost all
samples as superficial. f Given WSIs of superficial, solid, and infiltrating BCC,
HistoGPT correctly identified their morphological structures as shown by the
high attention regions for the respective text strings. g HistoGPT predicted
whether the surgical margin contained tumor or healthy cells on the out-of-
distributionMünster-1K cohort without fine-tuning. Source data are provided as a
Source Data file.
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that HistoGPT can detect and correctly classify melanocytic
lesions as long as there are enough training samples.

The University Hospital Münster cohort is a random subset of 67
patients from Münster-1K consisting of routine cases (Supplementary
Fig. 7b). Similar to theMayo cohort, the reports generated had a score
of 3 or higher (Fig. 6c and Supplementary Fig. 7b) for actinic keratosis
(4 of 6 cases), basal cell carcinoma (4 of 6 cases), seborrheic keratosis
(6 of 9 cases), melanocytic nevus (4 of 8 cases), and squamous cell
carcinoma (2 of 2 cases). Unlike the Mayo cohort, the Münster cohort
includes 9 other neoplastic conditions that were underrepresented in
the training dataset (e.g., epithelioid hemangioendothelioma), which
lowered the average score in this category to 2. Thus, as shown in the
Mayo cohort, the performance of HistoGPT largely follows the training
distribution (Fig. 3a).

The Radboud University Medical Center cohort includes 949
cases from the test split of the COBRA41 dataset of patients who
underwent skin biopsy. Two pathologists reviewed the generated
reports on a subset of 50 randomly selected cases (Supplementary
Fig. 7c) using the Grand Challenge platform42. They assigned a score of
2 or higher in 32 cases and a score of 3 or higher in 13 cases (Fig. 6c and
Supplementary Fig. 7c). In contrast to the previous cohort, basal cell
carcinoma only received a score of 2 in 15 of 26 cases. The lower
agreement for basal cell carcinomawas due to the fact that sometimes
the wrong tumor subtype was predicted (superficial instead of solid).
This has clinical implications in the Netherlands, where regional
guidelines recommend non-invasive treatment for superficial cases43.
Radboud pathologists also gave lower scores because of translation
errors from German to English, which resulted in incorrect or non-

a b
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Fig. 6 |HistoGPTproduces clinically accurate and consistent pathology reports
for commondiseases, as confirmed in a real-world, multi-center clinical study.
a Skin biopsies were randomly collected from routine cases at the Mayo Clinic
(USA), University Hospital Münster (Germany), and Radboud University Medical
Center (The Netherlands). b Two board-certified (dermato-)pathologists at each
site evaluated the generated reports according to the following criteria: (5) beyond
expectation, (4) highly accurate, (3) generally accurate with minor variations
without clinical impact, (2) partially accuratewith variations that could have clinical
impact, (1) minimally accurate, (0) completely inaccurate. A score greater than 2
indicates a diagnosis that is considered correct or within an acceptable range of
subjectivity. c HistoGPT produced consistent and accurate reports for the most

common neoplastic epithelial lesions (achieving an average score of 2 or higher for
each class) and struggled with classes with little training data (<200 data points) or
classes that cannot be predicted from imaging alone (re-excisions). While our
training dataset (the Munich cohort) covers all diseases provided by the three
institutions, it contains many heterogeneous categories with different numbers of
samples and subtypes. For instance, neoplastic cases have 1554 samples across 64
diseases, with an average of 27 data points per class. In addition, reporting stan-
dards vary widely between institutions, resulting in large variability in scores.
Therefore, we also examined interobserver variability by having dermatopatholo-
gists from Mayo (κ =0.055) and Münster (κ =0.295) review the reports generated
for the Radboud cohort. Source data are provided as a Source Data file.
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throcytes similar to images of eosinophils that the model saw during training,
leading to the activation of eosinophil-related concepts in the neural network.

c Similarly, there was a case of Clark’s level II melanoma (top) that mimicked the
Bowenoid growth pattern of squamous cell carcinoma (bottom) andwas predicted
as squamous cell carcinoma. d Another case was a grade 3 acute graft-versus-host
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are provided as a Source Data file.
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nativemedical terms (e.g., “melanocytic nevus”was often translated as
“nevus cell nevus”).

To measure the impact of inter-observer variability, dermato-
pathologists from the Mayo and Münster cohorts registered on the
Grand Challenge platform and independently scored the reports
generated for theRadboud cohort (Fig. 6c and Supplementary Fig. 7d).
They assigned a score of 3 or higher in 27 (Münster dermatopatholo-
gists) and 33 (Mayo dermatopathologists) cases. Basal cell carcinoma
also received a higher average score of 3. Fleiss’ kappa values show
only a slight agreement between Radboud andMayo (κ =0.055), and a
fair agreement between Radboud and Münster (κ =0.295) as well as
Mayo and Münster (κ =0.254). These results suggest that the lower
scores assigned by Radboudpathologistsmaybe influenced, at least in
part, by subjective differences in interpretation rather than solely
reflecting deficiencies in the AI-generated reports. The disagreement
between pathologists highlights how inter-observer variability can
influence study results and suggests that the perceived accuracy of
HistoGPT reports may vary depending on the individual or institution
performing the evaluation.

Pathology-informed analysis of failure mechanisms
The three clinical evaluations confirm our previous findings that His-
toGPT performs well for commondiseases, but worse for rare diseases
(Figs. 3a, e, 4d, e, and 6c). Thus, as with all machine learning algo-
rithms, its quality is limited by its training data44—in our case, the
Munich cohort. For a disease in the long tail of the training distribu-
tion, the neural network has not seen enough data points to capture all
of its possible manifestations and refine its decision boundary45. For
example, some psoriasis cases in the Münster cohort fell into the
eczema category because they shared features with eczema cases that
themodel had previously seen during training (Fig. 7a). Notably, these
two conditions can be difficult to distinguish even for
dermatopathologists46.

This, however, does not answer the question of why HistoGPT
sometimes produces less accurate reports for diseases belonging to
the five largest classes. The Münster dermatopathologists described
the reports generated for Munich as more structured and compre-
hensive. Although they contained more observations than the human
reports, these were not always relevant to the final diagnosis: In one
case, HistoGPT mentioned a bystander cyst that was irrelevant to the
diagnosis of basal cell carcinoma. In another case, the model failed to
detect small objects, such as a scabies mite. On one occasion, the
model incorrectly identified erythrocytes as eosinophils (Fig. 7b shows
a representative example). An evaluation of the Mayo cohort showed
that HistoGPTwas often on the right track, but to a lesser extent than a
human pathologist. In some cases, it wrote a correct microscopic
description but an incorrect conclusion (either the criticalfindings, the
final diagnosis, or both): In one case of Bowenoid squamous cell car-
cinoma, the microscopic description mentioned Bowenoid cells and
actinic elastosis, but the critical findings concluded the presence of
basal cell carcinoma. One of the most challenging cases for HistoGPT
involved Clark’s level IImelanomamimicking Bowenoid squamous cell
carcinoma (Fig. 7c) and an acute grade 3 graft-versus-host disease
(GVHD) resembling actinic keratosis (Fig. 7d). Furthermore, HistoGPT
tended tohallucinate on re-excision specimens, forcing itself tomakea
tumor-related diagnosis when the tissue was tumor-free, which we
believe can be mitigated with more contextual information. We
observed a similar trend in the Münster cohort: a case of melanocytic
nevus illustrates how HistoGPT correctly described the seborrheic
keratosis features of a benign nevus, but completely missed the mel-
anocytic component (Fig. 7e).

We used Ensemble Refinement to reveal the true distribution of
themodel for the above case (Fig. 7e). In 1 out of 10 resampled reports,
HistoGPT mentioned the presence of a melanocytic nevus and made
the correct diagnosis, suggesting that the model can be better

calibrated. This is consistent with our findings in theMunich andMayo
cohorts, where themodelmaymiss the clinically relevant diagnosis on
the first attempt. These limitations can be explained from first princi-
ples: HistoGPT relies on its vision module to perceive the input image,
which it transforms into a series of neural activations representing
high-level concepts such as diagnosis, tissue composition, or cell
type47,48. Because HistoGPT was trained on one cohort, differences in
staining protocols, scanning devices, and patient populations will
inevitably shift the model’s activations—a phenomenon known as
batch effect. For example, the model appears to have learned that
eosinophils are typically stained an intense pink and are often sur-
rounded by tumor-infiltrating lymphocytes (Fig. 7b). When it
encounters erythrocytes that appear in a similar color range and
environment, the model’s neural circuitry activates eosinophil-related
features, leading to the prediction of eosinophils. This occurred not
only in the Munich cohort during the blinded study but also in the
Münster cohort during the clinical evaluation. Similarly, the cases with
melanoma mimicking Bowenoid growth pattern (Fig. 7c) and GVHD
resembling actinic keratosis (Fig. 7d) lead to the activation of squa-
mous cell carcinoma and actinic keratosis-related features, respec-
tively. We attribute this problem in part to the patch encoder, which
may not be able to better discriminate some features (Supplementary
Fig. 8). This is consistent with recent findings in the literature that
vision language models are primarily bottlenecked by their vision
module49,50. Inconsistencies in the reports generated are also likely due
to clinical heterogeneity. For example, there was one case of sebor-
rheic keratosis in the Münster cohort that was correctly predicted as
the final diagnosis. However, the model reported verruca vulgaris, a
very similar condition in this case, as the critical finding. This suggests
that the image features activated highly related concepts in the cross-
attention module that the language module had difficulty disen-
tangling, leading to self-contradiction in the generated report.

Discussion
With HistoGPT, we present a vision language model that generates
pathology reports from multiple full-resolution gigapixel WSIs, e.g.,
from a serial section. The generated reports are highly accurate and
consistent with both human reports and original specimens for the
most commonneoplastic diseases, as verified by an international team
of six board-certified pathologists and dermatopathologists in amulti-
center, multi-cohort clinical study. HistoGPT is on par with state-of-
the-art multiple instance learning classification models for diagnosis
prediction. It surpasses the state-of-the-art general-purpose founda-
tion model GPT-4V, which is considered a useful tool in many clinical
and pathological applications51–53, in tissue description. HistoGPT also
outperforms the state-of-the-art pathology foundation models PLIP
and CONCH in zero-shot downstream tasks such as tumor thickness,
subtype, and margin prediction. It is a proof-of-concept that data-
driven, large-scale generative AI has great potential to assist patholo-
gists in their clinical routine and help evaluate, report, and understand
common dermatopathology cases. We have developed this model for
research purposes only and as such it may not be used in patient care.

HistoGPT was trained on only 6705 clinical cases—about the
number of cases a pathologist in Germany must have seen to qualify
for the dermatopathology examination54. This number is small by LLM
standards, wheremodels are typically trained on billions of image-text
pairs from the Internet. This means that HistoGPT has probably not
seen enough training signals to generate detailed reports for all sce-
narios. For example, it performs worse on inflammatory diseases,
which contain almost all minority classes, than on common diseases
such as basal cell carcinoma, where even subtyping works in a zero-
shot fashion. A Pearson correlation of 0.52 for tumor thickness pre-
diction or a weighted F1 score of 0.63 for tumor subtype prediction
could be improved with more training data or explicit fine-tuning
for this task. Nevertheless, these results demonstrate the potential of
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data-driven, large-scale generative AI, as HistoGPT was able to learn to
predict tumor thickness with only 644 implicitly labeled samples.

So far, our model has only been trained and tested on dermatol-
ogy cases. Therefore, it cannot yet be generalized to pan-cancer
diagnosis. In addition, our training dataset suffers from severe class
imbalance, which limits its usefulness for minority classes. This pro-
blem can be partially mitigated by either “Expert Guidance” or “Clas-
sifier Guidance”. However, guidance also has its limitations, as the
generated reports tend to be of higher quality when the model’s own
diagnostic prediction is also correct (Supplementary Fig. 2). While we
have evaluated HistoGPT in real-world medical cohorts, only a large-
scale study can confidently quantify the impact of future models on
patients (like Breslow staging and clinical intervention). We believe
that a future version of HistoGPT will require the use of reinforcement
learning from human feedback55 to calibrate the model’s prediction to
the most clinically relevant diagnosis. In addition, a mixture of train-
time and test-time compute scaling along a multi-agent system will
likely be required to unleash the full potential of generative AI (Sup-
plementary Fig. 9).

Methods
All research procedures were conducted in accordance with the
Declaration of Helsinki. Ethical approval was granted by the Ethics
Committee of the Technical University of Munich (reference number
2024-98-S-CB) and the Ethics Committee of Westfalen-Lippe (refer-
ence number 2024-157-b-S). The tissue samples used were from an
existing biobank and were not collected specifically for this study.

As this was a retrospective data collection and the data were fully
anonymized, informed consent was not obtained in consultation with
the local ethics committee. No compensation was provided as there
was no direct participant involvement in the study.

Sex and/or gender were not considered in the study design
because the goal was to train a vision language model to generate
pathology reports based solely on tissue descriptions. The input
reports used to train the model did not include sex or gender infor-
mation, and this information was not relevant to the study objectives.
Therefore, no sex- or gender-based analysis was performed.

Patient cohorts
Munich cohort. All 15,129 histology specimens from the Munich
cohortwereprocessed and stained (with hematoxylin and eosin) at the
Department of Dermatology, Technical University of Munich. They
were scanned with a 20× objective at 0.173 micrometers per pixel at
the Core Facility Imaging at Helmholtz Munich. All slides were fully
anonymized. One hundred random cases are provided in the Supple-
mentary Material along with the reports. An example report (trans-
lated from German to English using a machine translation model)
reads: “Final diagnosis: Scar. Microscopic findings: A wedge-shaped
excidate with compact massive orthohyperkeratosis, focally regular
acanthosis of the epidermis with hypergranulose, focally clearly flat-
tened epidermis with elapsed reticles is presented. Underneath den-
sely packed, partly hypereosinophilic cell-poor collagen fiber bundles,
vertically placed capillary vessels. In the depth more homogenised
hypereosinophilic proliferating collagen fiber bundles. Critical find-
ings: Hypertrophic, keloid-like scar. Partial excision.”

Münster cohort. All 1300 histologic samples of the Münster cohort
were processed and stained (with hematoxylin and eosin) at the
Department of Dermatology, University Hospital Münster. They were
scanned with a 20× objective at 0.46 micrometers per pixel using a
Hamamatsu NanoZoomer S360 MD at the Department of Dermatol-
ogy, University Hospital Münster. The cohort includes 300 cases of
three BCC subtypes (superficial, solid/nodular, infiltrating) with
100 samples each and 1000 cases from daily routine without special
selection. All slides were fully anonymized. An example report (AI-

translated fromGerman to English) reads: “Lichenplanus-like keratosis
(regressive solar lentigo/flat seborrheic keratosis), no evidence of
basal cell carcinoma in the present biopsy.”

Mayo cohort. A subset of 52 retrospective dermatopathology cases
consisting of 84 specimens was randomly selected from a one-week
period at the Mayo Clinic Dermatology, a tertiary medical center der-
matology clinic. Cases were previously diagnosed by board-certified
dermatopathologists with more than ten years of independent prac-
tice in academic centers with a digital pathology environment. Slides
were scanned using a standard whole slide image scanner, and WSIs
were viewed on a digital pathology image viewing platform in wide-
spread use at the contributing authors’ institution. The 52 selected
cases included 50 neoplastic epithelial lesions (including basal cell
carcinoma, squamous cell carcinoma, actinic keratosis, verrucous
keratosis, seborrheic keratosis, inverted follicular keratosis), four cases
of nevus, four cases of dermatitis, two cysts, eight re-excisions (cases
with “no residual” findings), twomelanomas, one case of drug reaction
(with generalized pustulosis), and 13 miscellaneous/other cases, for a
total of 84 specimens. An example report reads: “Skin, rightmelolabial
fold, punch biopsy: Infiltrating basal cell carcinoma with variably clear
cell features, lateral biopsy edge involved, see comment COMMENT:
The carcinoma is confirmed by positivity to CK903.”

Radboud cohort. The COBRA41 dataset contains 5147 slides from
4066 patients. All related slides were collected from the archives of
the Department of Pathology at Radboud University Medical Center,
scanned with a 3DHistech Pannoramic 1000 scanner (3DHistech,
Hungary) at 20× magnification (pixel resolution 0.24 µm), and sub-
sequently anonymized. The test set was used for evaluation. It con-
tains a total of 949 cases, with 493 non-BCC and 456 BCC samples.
Non-BCC cases include patients with epidermal dysplasia (actinic
keratosis or Bowen’s disease) or benign conditions. Superficial BCC
was observed in 24% of the slides, nodular BCC in 69%, micronodular
BCC in 24%, and infiltrative BCC in 33%. For the reader study, a subset
of 50 cases was randomly selected from daily routine, of which 50%
were BCC (1/2 low-risk subtype, 1/2 high-risk subtype) and 50% were
non-BCC cases.

Clinical reader study
The purpose of the reader study is to simulate the use of HistoGPT in a
clinical setting to measure its diagnostic accuracy and evaluate its
performance on real-world medical data. All participating (dermato-)
pathologists agreed on the criteria defined in the main paper. Their
interpretation is discussed here. How strictly they are followed and
applied to individual cases depends on the subjective judgment of
each evaluator.

• We focus on key diagnoses that directly affect clinical decisions,
excluding subjective subtyping unless it affects patient safety.
Differences in wording and formatting are also ignored, as these
vary between regions and practices. As long as the diagnosis fol-
lows the same clinical guidelines, it receives an accuracy score
of 4 or 5.

• If the final diagnosis is completely wrong and has no clinical
impact, it receives an accuracy score of 0 or 1. However, if the
essential diagnosis is completely wrong and has a clinical impact,
it is always scored as 0.

• If the diagnosis is in the correct spectrum, but there is variation in
subjective assessment, it often receives an accuracy score of 3. For
example, hypertrophic or bowenoid actinic keratosis vs. squa-
mous cell carcinoma in situ.

• If themodel recognizes the pattern and selects a close differential
diagnosis, but not the correct diagnosis, it receives an accuracy
score of 2 or 3, depending on the setting. For example, verrucous
keratosis vs. seborrheic keratosis (accuracy score 3), verruca
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vulgaris/HPV-associated papilloma vs. seborrheic keratosis
(accuracy score 2).

Image preprocessing
We treat all WSIs belonging to a patient as one input. In other words,
we have patient-level samples instead of slide-level or even patch-level
data points. For CTransPath, the WSIs were downsampled 4 times,
tessellated into non-overlapping patches of 256× 256 pixels, and
resized to 224 × 224 pixels using the Python library SlideIO. UNI was
trained at higher resolutions and larger patch sizes. Thus, we down-
sampled the WSIs 2 times and used image patches of 512 × 512 pixels.
Background images were detected and excluded using RGB thresh-
olding and Canny edge detection. The inputs were then converted to
PyTorch tensor objects and normalized with a mean of (0.485, 0.456,
0.406) and a standard deviation of (0.229, 0.224, 0.225). We used this
specific image size and normalization parameter according to the
configurations of these pre-trained visionmodels.We typically process
1000 to 10,000 patches per slide, although this number can vary
widely as some slides may contain only a few hundred spots while
others may contain tens of thousands.

Model architectures
We used CTransPath17 (~30 million parameters) as our pre-trained
vision encoder for HistoGPT-S and HistoGPT-M to extract 768-
dimensional feature vectors for each image patch and concatenated
them along the sequence dimension to obtain a matrix of size n × 768,
where n is the number of image patches. The inputs are then fed into
thePerceiver Resampler26, whichwasoriginally proposed for the vision
languagemodel Flamingo27. We changed the default number of latents
from 64 to 640 becauseWSIs aremuch larger than natural images and
require a larger dimensional latent space to store the additional
information. We kept the output size of 1536 because it worked well in
our experiments. The fixed-size outputs of dimension 640 × 1536 are
then used as keys and values in the tanh-gated cross-attention block
(XATTN). The query vectors come from the pre-trained language
model BioGPT23 (~350 million parameters for the base model in
HistoGPT-S and ~1.5 billion parameters for the large model in His-
toGPT-M/L). In particular, we used one XATTN block after each lan-
guage layer according to the high-performance configuration of
Flamingo. The output layer of HistoGPT is a linear classifier over the
vocabulary. For HistoGPT-L, we used UNI18 (~ 300 million parameters)
as our pre-trained vision encoder, which returns feature vectors of
dimension 1024 instead of 768. We used a three-dimensional factor-
ized position embedder adapted from NaViT28 to encode the absolute
x and y coordinates of each patch, as well as a z coordinate indicating
which slide it belongs to.

Many vision languagemodels in pathology are currently based on
contrastive learning, such as PLIP and CONCH, where the embedding
distance is minimized between positive pairs and maximized for
negative pairs during training. However, these models have been
trainedon small imagepatches of about 224 × 224pixels. Thus, they do
not encode slide-level or even patient-level information and cannot be
used for the downstream tasks presented in this paper (e.g., tumor
subtyping and thickness prediction). We have extended these con-
trastive models to the slide level with HistoCLIP and HistoSigLIP and
demonstrated an improvement over previous approaches. They use
the feature mean of the pre-trained Perceiver Resampler as the image
representation and the EOS token of the pre-trained BioGPT as the text
representation. A contrastive loss then aligns both feature vectors in
the commonembedding space. ForHistoCLIPweused the same loss as
for CLIP56. For HistoSigLIP we used the loss proposed in SigLIP57. To
improve performance and avoid training instabilities, we froze the
vision encoder during training. This technique is called locked-image
text tuning58). We also compared HistoGPT with the patch-based
foundation models PLIP and CONCH. To aggregate the patch-level

results to the slide-level, we used majority voting and the aggregation
algorithm developed for MI-Zero59, respectively. We used PLIP as one
of the current SOTA vision language models for pathology. As a vision
languagemodel, PLIP can assign a textual description to each patch. In
particular, we canassign the tumor subtypeprediction as a text label to
each patch and then aggregate them to obtain the prediction for the
whole slide. This approachwas pioneered inMI-Zero. Our results show
that this approach is not effective for certain tasks such as tumor
subtype prediction and tumor thickness estimation. These two tasks
require a comprehensive understanding of the entire tissue sample,
which cannot be achieved by simply aggregating patch-level predic-
tions. Using HistoGPT and, as an intermediate step, HistoCLIP/Histo-
SigLIP, we showed that a vision language model must be trained end-
to-end on all patches simultaneously. This allows us to learn a slide-
level representation that cannot be obtained by simply applying patch-
only sampling techniques on top of existing pathology models. To
further emphasize this point, we also evaluated another zero-shot
foundation model for pathology, CONCH.

Since BioGPT and many other popular LLMs had all been pre-
trained on mostly English literature, we needed to translate
the German reports into English to take advantage of their cap-
abilities. For the translator, we chose a standard machine translation
model based on the Transformer encoder-decoder architecture24

with the checkpoint name “Helsinki-NLP/opus-mt-de-en” available on
Hugging Face.

Model training
We pre-trained the Perceiver Resampler in a fully supervised manner
by predicting the final diagnosis using a linear classifier on top of the
slide encoder. Since the labels are provided at the patient level, this
approach is also known as multiple instance learning (MIL). The clas-
sification headwas then discarded and the resampler was plugged into
the vision language model. We froze all layers of HistoGPT except the
cross-attention blocks. Our generative training is based on causal
language modeling: Given an input, we mask the next tokens and let
the model predict them. This is done in parallel over all input tokens
using an upper triangular causal attention mask.

For training, we used the AdamW optimizer with betas of (0.9,
0.95), a weight decay of 0.1, and an epsilon of 1e-8. The learning rate
started at zero and warmed up linearly over 10 epochs to 1e-4 before
decaying tenfold according to a cosine annealing schedule. We used a
gradient accumulation of 32 to simulate a larger batch size. Each
training stage consisted of 100 epochs using mixed precision training
and gradient clipping to a Euclidean norm of 1.0. For contrastive
learning, we used standard hyperparameters56,57. All models were
trained on an NVIDIA A100-SXM4-80GPU on a High Performance
Cluster. HistoGPT-L required 7 days of training.

During training, we randomly augmented the text inputs to avoid
overfitting common words and phrases. This was done beforehand
using GPT-4 to sample 9 paraphrased reports with the default tem-
perature of 1.0 and nucleus sampling of 1.0. The prompt used was:
“Rewrite the following text but be as accurate and faithful as possible
to the original. Do not add or remove any information! Also, do not
change the phrases ‘Microscopic findings:’ and ‘Critical findings:’, but
leave them as they are.”

Classifier guidance
We enabled class imbalance awareness in HistoGPT by using a
lightweight and specialized classification model. The classifier pre-
dicts one-hot encoded class indices, which are converted to text
strings using a lookup table and inserted into HistoGPT. Suppose the
training set contains C classes. Assume that at inference time we face
a classification problem with c classes, where c ⊂ C. We extract fea-
tures from each training sample with a pre-trained Perceiver
Resampler and fit a classifier (either a linear layer or a full-sized
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model) that predicts these c classes. With this approach, we reduced
the 167-class classification problem to a more tractable subset of
classes. For BCC vs. ¬BCC, we considered all samples that are not
BCC to be ¬BCC and fitted an MLP with 100 neurons. For Melanoma
vs. ¬Melanoma, we followed the same procedure. For all other clas-
sification tasks, we only trained on the specific subset. For example, if
we want to classify BCC vs. SCC vs. AK vs. SK, we train a classifier only
on the BCC, SCC, AK, and SK training features and ignore the
remaining classes. Some datasets (Münster-3H, Queensland, and
Linköping) only provide annotation masks as labels. They may con-
tain different disease labels for different regions in the same slide. In
this case, we considered the prediction of at least one of the ground
truth classes to be accurate.

Interpretability maps
Tomake HistoGPTmore interpretable, we used partial derivatives and
associated the output latents of the Perceiver Resampler with the
corresponding input vectors. We then weighted the image features
with the text features using the cross-attention scores. This gives us a
saliency map, which we call a gradient attention map. It shows which
word in the generated report corresponds towhich region in aWSI. For
example, we can showwhere themodel sees basal cell carcinoma, how
it detects tumor-infiltrating lymphocytes, and which regions it con-
siders when measuring tumor thickness. In this way, we provide an
approach to explainable AI by aligning visual and linguistic
information.

The output of the Perceiver Resampler consists of 640 latent
vectors. We computed the gradients of these latents with respect to
the input patches using backpropagation. Thus, the gradient G has
the form num_patches × num_latents. It tells us which image tokens
influence which latent feature most. The mean along the latent
sequence thus gives us the most important image regions according
to the vision resampler. How can we use this information to deter-
mine which of these regions corresponds to which word? One idea is
to give higher weights to the latents corresponding to the words we
are interested in. We get these weights by looking at the cross-
attention scores of the last XATTN layer. The attentionmatrixA has a
dimension of num_tokens × num_latents. Thus, given a target word,
we can identify the corresponding target tokens and use the corre-
sponding rows in the attention matrix as weights. Overall, the pro-
posed Gradient x Attentionmap is given by the weighted mean (GT ○
A[target_tokens,:].mean(dim =0)T)T.mean(dim = 1).

Evaluation metrics
We introduce two other non-trivial baselines: given the ground truth,
compare two random reports with two arbitrary diagnoses (lower
baseline), and compare two random reports with the same diagnosis
(upper baseline). The logic behind this approach is straightforward.
Medical texts often follow a structured format with a similar writing
style, typically including a general description of the specimen and
frequent use of common technical terms. In addition, certain diseases
manifest homogeneously across patients, resulting in nearly identical
report descriptions within a patient group. In such cases, the few
unique terms in the reports become critical in distinguishing between
different diagnoses. Therefore, these two baseline comparisons pro-
vide reference points for measuring the overall performance of our
models.

Automatic evaluation of the reports generated by HistoGPT is a
non-trivial task. Popular evaluation methods for natural language
generation such as BLEU-460, ROUGE-L61, and METEOR62 primarily
compare n-grams between two documents and may not effectively
capture semantic similarities. In fact, two texts may describe the same
phenomena in twodifferentways,making aword-by-wordcomparison
unfair. Therefore, we focus on two different quantitative performance
measures: keyword overlap and sentence similarity. For the former, we

use a comprehensive glossary of human-curated dermatological
vocabularies31 to extract importantmedical keywords from the ground
truth notes. In addition, we use ScispaCy32, a biomedical named entity
recognition (NER) tool, to capture a broader range of technical terms.
We then determine how many keywords from the ground truth text
can be found in the generated text. The Jaccard index is used to
quantify their overlap. To find amatch in the generated report, we use
an advanced version of Gestalt pattern matching (Ratcliff and Ober-
shelp, 1988) available in the Python library difflib. We use the default
cutoff threshold of 0.6. This value strikes a balance between matching
every word as a target and matching only exact overlaps. The latter is
undesirable because it ignores different grammatical forms of a word.
As a result, some unrelated words will inevitably be matched. In this
case, the Jaccard index can be considered a relative measure, since the
same approach is applied to each model.

The above measures still miss some semantic nuances because
certain concepts or observations (e.g., diseases, tissues, cells) may be
expressed in complex phrases, possibly even involving negations. To
remedy this, we use BioBERT33

fine-tuned63 for natural language
inference and semantic textual similarity assessments. This embed-
ding model provides the feature vectors of the generated report and
the ground truth, allowing us to compute their cosine similarity as a
measure of semantic understanding. To go beyond the domain-
specific use of language, we apply a general large-scale embedding
model, GPT-3-ADA25, to capture a broader range of linguistic infor-
mation. Similarly, we use BERTScore64 to compute the syntactic rela-
tionship between generated and ground truth reports at the
subword level.

The automatic reporting metrics above are an approximation of
the actual text quality. To date, many language models have used
precise word-matching metrics such as BLEU, METEOR, or ROUGE to
compare two sentences. This is not appropriate for medical texts,
which can be more nuanced. Our semantic-based approach better
captures these nuances, but this also means that the differences
between the scores are more subtle, but still important, as one or two
words can completely change the clinical interpretation.

HistoGPT was trained to generate reports in the style of the
Munich cohort from the Technical University of Munich. When com-
paring the generated report with the original reports from the in-
distribution test split, a high agreement can be expected due to similar
reporting standards. The out-distribution Münster cohort from the
University Hospital Münster, on the other hand, contains standardized
reports with smart phrases and custom templates. Therefore, the
evaluation scores are not comparable on an absolute scale and should
be viewed as a relative metric that compares different models on the
same datasets.

For Ensemble Refinement, we summarize the bootstrapped
reports by prompting GPT-4-Turbo with the instruction “Summarize
the following text:”. SinceER ismassively time-consuming and relies on
expensive API calls, we only compute the scores on a randomsubset of
the test set (10%). However, the standard deviation among the samples
remains similar to the models on the full test set, indicating that the
final score would not change much. ER is closely related to boosting
and ensemble learning. Therefore, we recommend using a well-based
model such as HistoGPT-L over HistoGPT-S or a text-only model to
turn a weak learner into a strong learner.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The 100 patient cases from
the Munich cohort used in the blinded study and the 51 patient cases
from the Münster cohort for the clinical evaluation are available at
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https://huggingface.co/datasets/marr-peng-lab/histogpt-dataset (DOI:
10.57967/hf/4692). The remaining samples are either publicly available
at the link provided or can be requested from the original investiga-
tors: COBRA CPTAC Linköping (https://datahub.aida.scilifelab.se/10.
23698/aida/drsk) Queensland (https://espace.library.uq.edu.au/view/
UQ:8be4bd0) TCGA Source data are provided with this paper.

Code availability
The code for the model can be found at https://github.com/marrlab/
HistoGPT and https://zenodo.org/records/15045841 (DOI: 10.5281/
zenodo.15045840)65. Theweights for themodel are available at https://
huggingface.co/marr-peng-lab/histogpt (DOI: 10.57967/hf/4866). The
repository is released under the Apache License 2.0, an OSI-approved
open-source license. The code is freely available for use, distribution,
and modification under the terms of this license. There are no access
restrictions. The implementation uses the Transformers library
developed by Hugging Face66, which is also released under the Apache
2.0 License. All required attributions are included in the source code.
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