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Supplementary figures

What is basal cell carcinoma? Basal cell carcinoma (BCC) is the most commion skin
carncer carncer m the Caucasian population. Its incidence is increasing worldwide,
and it is most common in people over the age of 50 years. The incidence of BCC is
higher in people with fair skin types and in people with light-colored hair: There is a
strong association of basal cell carcinoma with the presence of a prior history of
non-melanoma skin cancer and a family history of basal cell carcinoma. It is
thought to arise from epidermal stem cells. The cell of origin and the factors that
promote BCC formation are not well understood. The most common clinical
presentation of basal cell carcinoma is a solitary, firm, pink or red nodule or papule
on the face or scalp. Basal cell carcinoma can be aggressive, with a lendency fo
recur and metastasize, and can be cosmetically disfiguring.

Supplementary Figure 1. Since the BioGPT language model is frozen during training, HistoGPT can be easily
converted to a language-only model by taking only text as input, while retaining all the capabilities of the
pre-trained BioGPT. Above we see the Ensemble Refinement output for the definition of basal cell carcinoma.

Source data are provided as a Source Data file.
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Supplementary Figure 2. Results of the blinded study in which two pathologists evaluated the performance of the
Al-generated reports against the human reports. We also filtered the data to include only reports for the five
largest classes and for cases where the model's diagnostic prediction matched the ground truth. Source data are

provided as a Source Data file.
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Supplementary Figure 3. Effect of scaling the language module (HistoGPT-S to HistoGPT-M) and the vision module
(HistoGPT-M to HistoGPT-L) as well as different ways of training the position embedder (none at all, trained in stage
1 but frozen in stage 2, trained in stage 1 and fine-tuned in stage 2) on (A) classification and (B) report quality.
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Supplementary Figure 4. Zero-shot prediction of tumor thickness in the (A) internal Munich and (B) external

Munster cohorts using HistoCLIP, HistoSigLIP, PLIP, and CONCH. Source data are provided as a Source Data file.
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Supplementary Figure 5. Zero-shot prediction of tumor thickness in the (A) internal Munich and (B) external
Munster cohorts using HistoGPT-L with different position embedders (see Supplementary Figure 3). Source data
are provided as a Source Data file.
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Supplementary Figure 6. Zero-shot prediction of basal cell carcinoma subtypes in the external Minster cohort
using HistoCLIP, HistoSigLIP, PLIP, and CONCH. Source data are provided as a Source Data file.
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Supplementary Figure 7. The detailed results of the multi-center clinical study at (A) Mayo Clinic, (B) University
Hospital Munster, and (C) Radboud University Medical Center. The graph shows the disease distribution as a bar
plot and the score distribution as a box plot. In the box plots, the center line represents the median, the box limits
represent the interquartile range, and the whiskers extend to the minimum and maximum values. Individual data
points are shown as solid black circles and the mean is shown as a white circle. (D) We also report the results of the
inter-observer variability study. Source data are provided as a Source Data file.
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HistoGPT-M HistoGPT-L without pos. encoding HistoGPT-L with frozen pos. emb. HistoGPT-L with fine-tuned pos. emb.
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Supplementary Figure 8. While HistoGPT-L outperforms HistoGPT-M in most tasks, it lags behind HistoGPT-M in
zero-shot subtyping of BCC. We used linear probing to evaluate the CTransPath and UNI features using 5-fold
cross-validation directly on the Munster cohort. Surprisingly, the features of the smaller vision model were actually
better for BCC subtyping by about 3% as measured by the weighted F1 score. Source data are provided as a Source
Data file.
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Supplementary Figure 9. Directions for future research. The machine learning community is slowly moving
from generative Al to agentic Al. Agentic Al is autonomous, proactive, and capable of making decisions to achieve
complex goals. We believe that the next version of HistoGPT will be such a (multi-)agent system. It will consist of a
capable report generation model trained on at least an order of magnitude more data from multiple centers
around the world. This vision language model will be pre-trained on uncurated reports and fine-tuned on
high-quality curated cases focused on critical diseases and downstream tasks. A thorough error analysis will
provide a comprehensive list of scenarios where the model is likely to struggle, such as slide quality and rare
diseases. Various selection models will then pre-select cases suitable for the report generation model. Using a
more extensive form of Ensemble Refinement, the report generation model will generate thousands of report
candidates, similar to AlphaCode 2, AlphaGeometry, and AlphaProof. A more powerful keyword extractor than we
currently use will then extract all medically relevant keywords from each report. For each keyword, there will be a
specialized classification model that will look at the input slides again to see if, for example, there are indeed
eosinophils in the image when the report mentions them. Only reports that are truly grounded in the input image
will be kept. A general-purpose LLM like GPT-4o then summarizes the reports. The summarized reports are then
checked for internal consistency by a reasoning model such as OpenAl o1 in a chain-of-thought process to see if
the final diagnosis is the same as the critical findings; if the microscopic description is related to the final diagnosis;
and if the text is medically sound according to the literature. All of this is orchestrated by a central agentic model
that can request additional tests or modalities (genomics, transcriptomics, proteomics, radiology, etc.) if the
histologic findings are inconclusive. Source data are provided as a Source Data file.
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Supplementary tables

Munich precision recall fl-score
HistoGPT-L 0.48 0.49 0.48
HistoGPT-M 0.45 0.47 0.45
HistoGPT-S 0.43 0.45 0.44
PerceiverMIL 0.42 0.46 0.44
CLSGuidance - - -

Supplementary Table 1. Classification results (precision, recall, F1 score) on the Munich test set.

Queensland precision recall fl-score
HistoGPT-L 0.94 0.51 0.57
HistoGPT-M 0.92 0.56 0.64
HistoGPT-S 0.92 0.57 0.65
TransMIL 0.91 0.48 0.51
PerceiverMIL 0.92 0.63 0.71
CLSGuidance 0.85 0.83 0.83

Supplementary Table 2. Classification results (precision, recall, F1 score) on the Queensland test set.

Linkoping precision recall fl-score
HistoGPT-L 0.84 0.79 0.81
HistoGPT-M 0.74 0.42 0.51
HistoGPT-S 0.58 0.45 0.51
TransMIL 0.76 0.69 0.71
PerceiverMIL 0.81 0.51 0.58
CLSGuidance 0.71 0.64 0.65

Supplementary Table 3. Classification results (precision, recall, F1 score) on the Linkoping test set.

Miinster-3H accuracy
HistoGPT-L 0.94
HistoGPT-M 0.88
HistoGPT-S 0.88
TransMIL 0.90
PerceiverMIL 0.90
CLSGuidance 0.88

Supplementary Table 4. Classification results (accuracy) on the Mlnster-3H test set.
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TCGA-SKCM accuracy

HistoGPT-L 0.45
HistoGPT-M 0.30
HistoGPT-S 0.29
TransMIL 0.19
PerceiverMIL 0.27
CLSGuidance 0.66

Supplementary Table 5. Classification results (accuracy) on the TCGA-SKCM test set.

CPTAC-CM accuracy
HistoGPT-L 0.32
HistoGPT-M 0.11
HistoGPT-S 0.14
TransMIL 0.07
PerceiverMIL 0.13
CLSGuidance 0.72

Supplementary Table 6. Classification results (accuracy) on the CPTAC-CM test set.

Munich precision recall fl-score
BCC vs NRM 0.96 0.94 0.95
BCC vs ALL 0.97 0.96 0.97
AKK vs SCC 0.83 0.82 0.83
NVC vs SCM 0.92 0.86 0.89

Supplementary Table 7. Classification results (precision, recall, F1 score) on the Munich
test set using HistoGPT-M with output classes restricted to the binary classes.

BCC vs NRM precision recall fl-score
accuracy 0.94
macro avg 0.94 0.82 0.87
weighted avg 0.96 0.94 0.95

Supplementary Table 8. Detailed classification results (precision, recall, F1 score) on the Munich
test set (BCC vs NRM) using HistoGPT-M with output classes restricted to the binary classes.
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BCC vs ALL precision recall fl-score

accuracy 0.96
macro avg 0.91 0.95 0.93
weighted avg 0.97 0.96 0.97

Supplementary Table 9. Detailed classification results (precision, recall, F1 score) on the Munich
test set (BCC vs ALL) using HistoGPT-M with output classes restricted to the binary classes.

AKK vs SCC precision recall fl-score
accuracy 0.82
macro avg 0.82 0.83 0.82
weighted avg 0.83 0.82 0.83

Supplementary Table 10. Detailed classification results (precision, recall, F1 score) on the Munich
test set (AKK vs SCC) using HistoGPT-M with output classes restricted to the binary classes.

BMN vs SCM precision recall fl-score
accuracy 0.86
macro avg 0.86 0.79 0.82
weighted avg 0.92 0.86 0.89

Supplementary Table 11. Detailed classification results (precision, recall, F1 score) on the Munich
test set (BMN vs SCM) using HistoGPT-M with output classes restricted to the binary classes.

BCC vs ALL precision recall fl-score
accuracy 0.98
macro avg 0.94 0.96 0.95
weighted avg 0.98 0.98 0.98

Supplementary Table 12. Detailed classification results (precision, recall, F1 score) on the Munich

test set (BCC vs ALL) using HistoGPT-M with classifier guidance.

AKK vs SCC precision recall fl-score
accuracy 0.88
macro avg 0.87 0.87 0.87
weighted avg 0.87 0.88 0.87

Supplementary Table 13. Detailed classification results (precision, recall, F1 score) on the Munich

test set (AKK vs SCC) using HistoGPT-M with classifier guidance.
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BMN vs SCM precision recall fl-score

accuracy 0.89
macro avg 0.81 0.89 0.84
weighted avg 0.91 0.89 0.89

Supplementary Table 14. Detailed classification results (precision, recall, F1 score) on the Munich
test set (BMN vs SCM) using HistoGPT-M with classifier guidance.

Minster-3H precision recall fl-score
HistoGPT-M 0.68 0.59 0.63
HistoCLIP 0.63 0.57 0.54
HistoSiglLIP 0.53 0.53 0.50

Supplementary Table 15. Basal cell carcinoma zero-shot subtyping results (precision, recall,
F1 score) on the Mlnster-3H test set.

Munich rmse pearson p-value
HistoGPT-L  1.5362 +0.6003 1.6039e-10
HistoGPT-M  1.7965 +0.5167 9.6945e-08
HistoCLIP 4.3549 +0.0057 0.95619369
HistoSiglLIP 3.8409 +0.3786 0.00016752
PLIP 2.7834 -0.1787 0.08468900

Supplementary Table 16. Tumor thickness zero-shot estimation results (root mean square
error, person correlation coefficient, p-value) on the Munich test set.

Munich beta® betal p-value
HistoGPT-L 0.6478 +0.7793 1.6039%e-10
HistoGPT-M 0.7930 +0.6357 9.6945e-08
HistoCLIP 1.9850 +0.0042 0.95619369
HistoSiglLIP 1.1020 +0.2205 0.00016752
PLIP 2.2663 -0.2594 0.08468900

Supplementary Table 17. Tumor thickness zero-shot estimation results (linear regression)
on the Munich test set.

Tran et al. 2025 HistoGPT



Miinster-3H rmse pearson p-value

HistoGPT-L 0.8673 +0.4817 2.9699%e-07
HistoGPT-M 0.9772 +0.3870 5.8530e-05
HistoCLIP 3.9079 -0.1637 0.10009248
HistoSigLIP 1.4632 +0.1014 0.31048499
PLIP 1.4326 -0.0371 0.71066124
CONCH 3.7847 +0.0400 0.68952419

Supplementary Table 18. Tumor thickness zero-shot estimation results (root mean square
error, person correlation coefficient, p-value) on the Mlnster-3H test set.

Miinster-3H beta® betal p-value
HistoGPT-L  ©.3352 +0.9648 2.9699e-07
HistoGPT-M 0.4220 +0.4625 5.8530e-05
HistoCLIP 1.2530 -0.0666 0.10009248
HistoSiglLIP ©.9001 +0.0770 0.31048499
PLIP 1.0199 -90.0325 0.71066124
CONCH 0.8939 +0.0227 0.68952419

Supplementary Table 19. Tumor thickness zero-shot estimation results (linear regression)
on the Munster-3H test set.

HistoGPT-L precision recall fl-score
negative 0.43 0.39 0.41
positive 0.73 0.76 0.74
accuracy 0.64
macro avg 0.58 0.58 0.58
weighted avg 0.63 0.64 0.64

Supplementary Table 20. Zero-shot tumor margin detection results (precision, recall,
F1 score) on the Munster-1K test set using HistoGPT-L.

HistoGPT-M precision recall fl-score
negative 0.29 0.12 0.17
positive 0.68 0.87 0.76
accuracy 0.63
macro avg 0.48 0.49 0.46
weighted avg 0.55 0.63 0.57

Supplementary Table 21. Zero-shot tumor margin detection results (precision, recall,
F1 score) on the Munster-1K test set using HistoGPT-M.
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Munich dictionary scispacy biobert gpt-3-ada

HistoGPT-M-ER 0.73 0.68 0.75 0.92
Guided 0.77 0.70 0.76 0.94
HistoGPT-L 0.63 0.56 0.75 0.93
Guided 0.65 0.56 0.79 0.94
HistoGPT-M 0.64 0.56 0.75 0.92
Guided 0.67 0.59 0.80 0.94
HistoGPT-S 0.63 0.56 0.75 0.92
Guided 0.66 0.58 0.79 0.94
GPT-4-Vision 0.54 0.55 0.50 0.86
Guided 0.62 0.61 0.67 0.91
BioGPT-1B(F) 0.44 0.41 0.64 0.89
Guided 0.61 0.53 0.77 0.93
BioGPT-1B(P) 0.12 0.10 0.41 0.82
Guided 0.12 0.14 0.55 0.88
Lower bound 0.44 0.41 0.62 0.88
Upper bound 0.66 0.58 0.77 0.93

Supplementary Table 22. Text quality results using semantic-based metrics (Jaccard index for
Dictionary and ScispaCy; cosine similarity for BioBERT and GPT-3-ADA) on the Munich test set.

Munich bleu-4 meteor rouge-1 bertscore
HistoGPT-M 0.07 0.21 0.23 0.71
Guided 0.11 0.22 0.24 0.72
HistoGPT-S 0.08 0.22 0.23 0.71
Guided 0.11 0.23 0.25 0.72
BioGPT-1B(F) 0.01 0.16 0.17 0.65
Guided 0.10 0.23 0.24 0.71
BioGPT-1B(P) 0.02 0.10 0.11 0.54
Guided 0.04 0.22 0.15 0.60
Lower bound 0.01 0.15 0.16 0.65
Upper bound 0.13 0.24 0.27 0.73

Supplementary Table 23. Text quality results using syntax-based metrics (BLEU-4, METEOR,
ROUG-L, BERTScore) on the Munich test set.
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Miinster-1K dictionary scispacy biobert gpt-3-ada

HistoGPT-M-ER .59 .60 .50 .86
HistoGPT-L 0.61 0.48 .51 0.86
HistoGPT-M 0.46 0.49 .51 0.86
HistoGPT-S 0.46 0.49 .51 .86
GPT-4-Vision 0.16 0.51 .31 0.79
BioGPT-1B(F) 9.29 0.39 0.44 0.83
BioGPT-1B(P) 0.06 0.04 0.25 0.78
Lower bound .17 0.32 0.40 0.83

Supplementary Table 24. Text quality results using semantic-based metrics (Jaccard index for
Dictionary and ScispaCy; cosine similarity for BioBERT and GPT-3-ADA) on the Minster-1K test set.

Cohorts Patients Reports Classes Split
COBRA 4,066 YES BCC & others Test
CPTAC-CM 92 NO Melanoma Test
Linkoping 99 NO BCC & others Test
Mayo 52 YES BCC & others Test
Munich 6,705 YES BCC & others Train
Munster 1,300 YES BCC & others Test
Queensland 290 NO BCC & others Test
TCGA-SKCM 292 NO Melanoma Test

Supplementary Table 25. Overview of all cohorts used in the study (COBRA, CPTAC-CM, Link6ping,
Mayo, Munich, Munster, Queensland and TCGA-SKCM).
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