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A B S T R A C T

Plants and animals/humans have evolved sophisticated innate immune systems to cope with microbial attack. 
Innate immunity implies the presence of membrane-located and intracellular receptors to recognize compounds 
released by damage or by invading pathogens. After detection the receptor molecules initiate intracellular de
fense signaling, resulting in cell death and/or production of defense molecules. Interestingly, the defense 
response includes also memory mechanisms, which allow the organisms to better cope with future microbial 
attacks. Redox mechanisms play an important role in defense signaling. In this review article, we compare the 
innate immune memory of animals/humans and plants and describe how reversible nitric oxide- and reactive 
oxygen species-dependent protein modifications enable the activation of defense signaling proteins and tran
scription factors and regulate the activity of chromatin modifying enzymes to establish innate immune memory. 
We hope to encourage efforts to characterize further molecular redox mechanisms of the innate immune 
memory, which might enable the development of new immunotherapies.

1. Innate immune memory in animals/humans and plants

Animals/humans and plants are continuously exposed to harmful 
biotic factors, for example infective virus particles or pathogenic bac
teria and fungi. Especially plants as sessile organisms have to cope with 
the biotic environment at the place they are growing. But also animals/ 
humans cannot easily escape from such pathogenic factors. On the one 
hand the outer surface of the organisms has direct contact to the envi
ronment, on the other hand biotic factors can enter the organisms via 
mouth/nose (animals/humans) and stomata (plants). In this way also 
internal organs/tissues are automatically exposed to harmful environ
mental factors (Fig. 1). So, especially at the borders to the environment 
effective defense mechanisms are required to respond to negative biotic 
factors.

Vertebrates are using two main immune systems – the non-specific 
broad coverage innate immune system on one side and the highly spe
cific antigen-based adaptive immune system on the other side. The 
adaptive immune system has evolved only in vertebrates and is 
composed of specialized, systemic cells and processes to eliminate 
pathogenic microbes and viruses or infected cells. The invaders are 
recognized via specific antigen-antibody interaction. The adaptive 

immune system can provide long-term protection against specific 
pathogens.

The innate immune system is a conserved defense strategy which has 
evolved in nearly all higher organisms. It enables them to recognize and 
finally protect against pathogenic invaders. It is more generalized and 
provides rapid, but less specific protection against a wide range of 
pathogens.

Since plants do not possess a specific antigen-based adaptive immune 
system, their protection against biotic stress has to rely on their innate 
immune system. The associated immune mechanisms converge on 
phytohormone signaling pathways that drive resistance against different 
types of pathogens.

It was assumed for long time that the immune memory was a solely 
feature of the adaptive immune system. However, memory effects have 
been already described in the innate immune system of plants nearly 
100 years ago [1]. In 1933 priming, at that time termed ‘sensitization’, 
was commonly accepted as predominant phenomenon in plant systemic 
immunity [2]. In the last two decades, molecular, genetic and epigenetic 
tools allowed a detailed characterization of the mechanisms behind this 
immune memory process [1,3–8]. Especially systemic acquired resis
tance (SAR), an inducible defense mechanism that enables long-lasting 
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protection of the whole plant against a broad spectrum of microorgan
isms, has been investigated intensively [9–14]. Interestingly, such an 
innate immune memory occurs not only in plants, but also in animal
s/humans, where it is called “trained immunity”. In general, when an 
organism has experiences biotic or abiotic stress, the signaling pathways 
and genes can become more sensitive or responsive to subsequent 
stimuli, allowing for a more rapid and effective response to future 
challenges (Fig. 2).

In plants and animals/humans, the innate immune response involves 
a complex network of signaling, including phosphorylation reactions 
and the alteration of nitric oxide (NO), reactive nitrogen species (RNS) 
and reactive oxygen species (ROS) production. Finally, the cells respond 
with genetic reprogramming and the synthesis of defense molecules. 
Additionally, cells undergo epigenetic changes in the training/priming 
phase, which have a key function in the memory process. In all of these 
processes, redox molecules as well as phosphorylation reactions have an 
important regulatory function via post-translationally modifying 
signaling proteins, enzymes of the methylation cycle, chromatin modi
fier or histone proteins (summarized in Refs. [15–19]). Moreover, they 
affect RNA-based mechanisms of chromatin regulation [16,18,20]. The 
general principle of innate immune mechanisms is depicted in Fig. 3.

2. Redox-signaling plays a pivotal role in innate immunity in 
animals/humans and plants

The evolution of photosynthetic active organisms ~2.5 billion years 
ago resulted in accumulation of oxygen and decrease of carbon dioxide. 
On one side essential for energy generation, the oxygen metabolism can 
on the other side produce reactive by-products that oxidize and damage 
all kinds of biological molecules. As a result of evolution, organisms are 
not only adapted to these toxic effects via developing anti-oxidative 
strategies or effective mechanisms to repair the oxidative damage, but 
are also using these reactive compounds as signaling molecules to 
regulate physiological processes, such as growth, development and 
stress response. Besides ROS, NO is another reactive molecule with 
biological effects. NO is a short-lived radical that regulates many 
physiological processes. It is well established that ROS and NO act as 
signaling molecules via transducing extracellular information to induce 
specific cellular response.

The general principle of redox-signaling is highly conserved within 
different kingdoms and is primarily based on redox-dependent modifi
cation of proteins. Metal nitrosylation corresponds to the direct binding 
of NO to transition metals of metalloproteins resulting in a metal
–nitrosyl complexes. In mammals, examples for this type of modification 
are the binding of NO to the iron of the heme center in cytochrome c 
oxidase and soluble guanylate cyclase. In both enzymes, NO binding 
results in conformational changes, leading to inactivation of cytochrome 
oxidase and activation of soluble guanylate cyclase [21,22]. The 
oxidation of distinct amino acids of proteins can result in altered protein 
function/activity and if the modification is reversible, it represents an 
optimal biochemical regulatory mechanism. The most important 
redox-sensitive amino acid is cysteine (Cys), but also other amino acids, 
e. g. tyrosine, tryptophan, methionine, or histidine, can be oxidized. 
During redox signaling, NO or ROS are oxidizing the thiolate anion of 
cysteine residues reversibly to a S-nitrosothiol (Cys-SNO) or the sulfenic 
form (Cys–SOH), respectively [23–25]. The reversible, covalent modi
fication of cysteine thiols by NO is termed S-nitrosation. Additionally, 
oxidation of Cys thiol groups can result in formation of disulfide bridges 
that can be reduced again to thiols via the action of distinct reductases or 
just in presence of strong reducing agents. This kind of post-translational 
modification is also an important redox-signaling mechanism and is 
conserved in all living organisms. However, depended on the concen
tration and exposure time, ROS can have deleterious effects on proteins, 
e. g. formation of irreversible sulfinic (Cys–SO2H) and sulfonic acids 
(Cys–SO3H), or carbonyl groups [26,27]. Moreover, superoxide can 
react with NO resulting in peroxynitrite, a very potent oxidant that ni
trates proteins, lipids, nucleic acids and metabolites [28]. Hence, ROS 
and NO homeostasis is in general very important for optimal perfor
mance of an organism.

In plants, rapid generation and accumulation of ROS and RNS, 
termed as “oxidative burst”, is one of the earliest responses to pathogen 
detection. S-Nitrosothiols regulate different immune signaling pathways 
[29] and there are several immunity-related targets of S-nitrosation 
identified [30]. For instance, NO-dependent regulation of salicylic acid 
binding protein 3 [31], zinc finger protein SRG1 and SRG3 [32,33], 
botrytis-induced kinase 1 (BIK1) [34] and NADPH oxidase RBOHD [35] 
is crucial for effective defense response. Interestingly, there is a direct 
interaction between NO-signaling and ROS production. Pathogen 

Fig. 1. Lung and leaf have direct contact to the environment and are critical entering gates for undesirable biotic factors. The primarily function of the lung 
and leaves is gas exchange, meaning uptake of oxygen (animals/humans) or carbon dioxide (plants) and release of carbon dioxide (animals/humans) or oxygen 
(plants). The gases are taken via mouth/nose (animals/humans) or stomata (plants). In this way also biotic environmental factors are taken up and get in direct 
contact with internal organs and tissues. Created in https://BioRender.com.
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recognition triggers the nitrosative burst, leading to S-nitrosation of 
BIK1 and its activation, including BIK1 phosphorylation. Phosphory
lated BIK1 interacts with RBOHD promoting oxidative burst and asso
ciated defense response [34]. Interestingly, in plants abiotic stress 
reactions are interfering with biotic stress response [36,37]. For 
instance, cold is activating nucleotide-binding leucine-rich repeat re
ceptors, ROS production, MAP kinases and NPR1, resulting in expression 

of defense genes.
In animals/mammals, ROS and RNS fulfil important regulatory 

functions in the activation and performance of defense-related cells, 
such as neutrophils, T-cells, B-cells, macrophages, dendritic cells and 
natural killer cells. During immune-inflammatory responses the redox 
changes are arranged via many different factors, such as mitogen- 
activated protein kinases, the phosphatidylinositol 3-kinase/protein 

Fig. 2. Innate immune memory in plants and animals/humans. A first stimulus is inducing the priming or training process in plants and animals/humans, 
respectively. This physiological state allows a more rapid and robust response to very low levels of a (second) stimulus. Created in https://BioRender.com.

Fig. 3. The principle of innate immune mechanisms is evolutionary conserved in plants and animals/humans. Pathogen perception is achieved via specific 
membrane-bound or intracellular receptor proteins. Signaling makes use of redox and phosphorylation reactions (post-translational modifications). Main targets of 
these modifications are summarized in boxes on the right. Finally expression of defense-related genes and production of defense molecules are regulated in this way. 
Moreover, stress memory is induced via chromatin modulation to enable a faster and stronger response to future infections. Chromatin structure and accessibility is 
affect by methylation of C5 position of cytosine [1], modification of lysine, arginine, serine, threonine and tyrosine residues of histone tails [2] and the interaction 
with non-coding RNA [3]. Created in https://BioRender.com.

C. Lindermayr and A.Ö. Yildirim                                                                                                                                                                                                            Redox Biology 84 (2025) 103702 

3 

https://BioRender.com
https://BioRender.com


kinase B signaling pathway, nuclear factor kappa beta (NF-κB), HIF1α, 
the mechanistic target of rapamycin, and others [38]. Moreover, intra
cellular and extracellular levels of ROS/RNS are important for perfor
mance and survival of individual immune cells. Important sources of 
ROS production in innate immune response are, similar as in plants, 
NADPH oxidases (primarily NOX2 and NOX4) [39–41].

In macrophages, alteration of the redox state is crucial for controlling 
many vital cellular functions, such as transcription, differentiation and 
inflammatory response [42–44]. NO, especially produced from induc
ible nitric oxide synthase (iNOS) has also important roles in immune 
regulation, inflammation and microbial invasion [45]. Together with 
ROS, NO can have toxic effects on invading bacteria and virus to prevent 
infection. This includes for example S-nitrosation of vital pathogen en
zymes. Antiviral effects of NO has been demonstrated against RNA and 
DNA viruses via affecting virus replication [46–48]. However, there are 
also examples that viral activities can impair host NO production [49]. 
Besides that, NO seems to be involved in regulating epithelial ciliary 
beating, which is a first physical barrier to prevent pathogens reaching 
the inside of the lung [50].

Moreover, NO regulates the activity of several inflammatory medi
ators on the posttranslational level. NF-κB has a pivotal function in the 
inflammatory response of the airway epithelium. Dependent on the time 
of exposure and the NO level, the “activity” of NF-κB increases or de
creases. After iNOS induction, elevated NO increases activation of NF-κB 
via cGMP-dependent and independent pathways. To avoid prolonged 
NF-κB activation and consequently inflammation, NO inhibits NF-κB 
“activity” via a feedback mechanism [51]. Moreover, a dual redox 
regulation of NF-κB via H2O2 has been described [52]. Interestingly, NO 
increases interleukin 8 (IL-8) expression in airway epithelial cells 
highlighting the importance of NO in the initiation of an inflammatory 
response in the airway epithelium [53]. In sum, redox-associated 
mechanisms modulate a large number of immune response pathways 
and an imbalance of the redox system can result in a decreased or 
increased immune response.

3. Redox-signaling in innate immune memory

Redox signaling seems to be a key process in “training” of the im
mune system in both plants and animals (Fig. 4). In plants, exposure to 
biotic stressors leads to production of NO and ROS, which can subse
quently modulate and activate cellular pathways regulating the defense 
response (Fig. 4A). In this context, NO and ROS can also function as 
second messengers in priming plants for future stress conditions. For 
example, extracellular polysaccharides of Bacillus cereus AR156 are 
priming plant defense by inducing the accumulation of H2O2 followed 
by activation of peroxidases and superoxide dismutases, primarily via 
SA and MAPK signaling pathways [54]. Pyocyanin, produced by Pseu
domonas aeruginosa 7NSK2, increases H2O2 levels both in the treated 
leaves as well as in distal leaves resulting in resistance to blast disease 
(Magnaporthe grisea) but not sheath blight (Rhizoctonia solani). Inter
estingly, applying the antioxidant sodium ascorbate together with 
pyocyanin alleviates the opposite effect, suggesting that ROS can act in 
different directions in priming against different diseases [55].

In Arabidopsis, SAR-related ROS is produced by chloroplasts, mito
chondria or by plasma membrane-localized NADPH oxidase “respiratory 
burst oxidase homolog D” (RBOHD) [6]. In SAR, a newly identified 
receptor-like cytoplasmic kinases, “RPM1-induced protein kinase” 
(RIPK), was proposed to regulate ROS production [56]. RIPK phos
phorylates the N-terminal part of RBOHD. Consequently, mutation of 
RIPK results in reduced ROS accumulation and impaired SAR in 
response to pipecolic acid and SA [56], suggesting that this kinase might 
be acting specifically in SAR as positive regulator of RBOHD-mediated 
ROS production. Recently, H2O2 has been identified as mobile signal 
that activates the transcription factor “CCA1 hicking expedition” via 
sulfenylation of a cysteine residue in systemic tissues [57]. In addition, 
redox signaling via ROS and NO can directly activate defense-related 

genes and lead to the synthesis of phytohormones, such as salicylic 
acid, that on one side help to enhance the immune response and on the 
other side act as essential initiator of local and systemic priming of the 
defense system [58]. Interestingly, the production of antioxidants, such 
as glutathione (GSH), play a key role in redox-signaling in innate im
mune memory, predominantly via keeping the optimal “oxidative-r
eductive balance” [59,60]. This has been demonstrated for example by 
buthionine sulfoximine-dependent inhibition of GSH biosynthesis, 
which resulted in elevated ROS accumulation, accelerated oxidative 
damage and finally in compromised SAR [59]. Moreover, analysis of 
knock-out mutants of γ-glutamylcysteine synthetase (cad2-1, pad2-1), 
an enzyme of the GSH biosynthesis pathway, further demonstrated 
that GSH is required for SA signaling and the activation of defense 
response [60–62]. In this context the function of thiol reductases, such 
as glutaredoxin and thioredoxin (TRX) also needs to be mentioned. 
These enzymes catalyze the reduction of oxidized cysteine residues to 
enable RNS and ROS signaling and to preserve the activity of antioxidant 
enzymes in innate immune memory [6,63,64]. E. g. S-nitrosylation of 
NPR1 at Cys156 facilitates its disulphide-linked oligomerization, 
thereby impeding NPR1-induced gene activation [65]. Both, 
TRX-h5-dependent disulphide reduction as well as TRX-h5-dependent 
denitrosylation of NPR1, result in its nuclear transloction, where 
NPR1 is involved in activation of defense genes [65–67]. Similarly, 
mammalian NF-κB transcription factor function in the respiratory 
epithelium is inhibited by site-specific S-nitrosylation. In response to 
cytokine stimulation, NF-κB is denitrosylated by thioredoxin 1 enabling 
its transcriptional activity [68].

Like in plants, GSH metabolism also contributes to the establishment 
of innate immune memory in animals/humans [69,70]. Inhibition of 
β-glucan induced GSH biosynthesis with buthionine sulfoximine resul
ted in decreased IL-6 accumulation after LPS re-stimulation. However, 
the detailed regulatory role of GSH in induction of immune training is 
not known. It’s important to highlight that the function of redox 
signaling in innate immune memory is complex and context-dependent. 
ROS/NO-dependent signaling plays also a key function in the activation 
of the immune response in animals/humans [38,71–73] (Fig. 4B). Here 
too, exposure to pathogens results in the accumulation of NO and ROS, 
which subsequently activate immune cells as well as transcription fac
tors that are regulating immune gene expression. Moreover, NO and 
ROS function as second messengers in amplifying the immune response 
and training of cells for future infections, although the target proteins 
and their redox-sensitive cysteine residues are still not completely 
characterized for these processes [43,74–78]. Remarkably, β-glucan or 
Bacillus Calmette-Guérin-induced elevated ROS levels have been 
observed even after a 5-day resting period and pretreatment with the 
ROS scavenger N-acetyl cysteine significantly reduces TNFα production 
compared to cells treated with β-glucan alone [69]. Although these re
sults demonstrate a participation of ROS in establishing innate immune 
memory, the exact ROS-dependent molecular mechanisms still needs to 
be investigated in detail.

Interestingly, in oxLDL-induced trained immunity in human mono
cytes, mTOR regulates cytosolic and mitochondrial ROS production 
[79]. Furthermore, ROS production has been observed in monocytes in 
case of training with Bacillus Calmette-Guérin and oxLDL [80]. 
Pre-treatment of laying and broiler hen monocytes with a combination 
of β-glucan microparticulates and IL-4 resulted in enhanced expression 
of IL-1β, HIF1α and iNOS after re-stimulation with LPS [75]. In contrast, 
enhanced NO production and CD40 expression was only observed in 
layers [76]. Moreover, scavenging of ß-glucan-induced ROS accumula
tion reduced the amount of released IL-6 and IL-8 in A549 lung epithelial 
cells, suggesting a regulatory function of ROS in initiating innate im
mune memory [78]. In response to injury, intracellular accumulation of 
H2O2 in hemocytes is required for induction of the cytokine upd-3 in 
adult Drosophila. Interestingly, at the site of a sterile injury, hemocyte 
activation and production of ROS resulted in innate immune training 
and protection against subsequent infection [77]. Moreover, ROS 
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production activates the transcription factor HIF1α, which is involved in 
metabolic reprogramming during innate immune memory [81–83]. 
While NO and ROS can be beneficial in training/priming the innate 
immune response, excessive NO and ROS production can lead to cellular 
damage and the development of chronic inflammatory diseases (mal
adaptive trained immunity).

Interestingly, the function of ROS as long distance signaling mole
cules might be important for establishing systemic innate immune 
memory in animals/humans and plants. The principle of systemic ROS 
signaling is based on cell-to-cell signaling [84–87]. Extracellular NADPH 
oxidase-produced ROS is detected by neighboring cells and initiates 
extracellular ROS production in these cells, which is again detected by 
neighboring cells. This results finally in so called “ROS waves”, which 
are spreading throughout cell colonies, tissues, or even organisms [87]. 
In Arabidopsis, leucine-rich-repeat receptor-like kinase “H2O2-induced 
Ca2+ increases 1” (HPCA1) functions as H2O2 receptor, which is initi
ating the amplification and propagation of this extracellular ROS 
signaling [88]. Overall, redox signaling seems to be a key process in 
trained immunity and understanding the mechanisms of redox signaling 
in innate immune memory may enable to engineering new ther
apeutics/compounds to strengthen human, animal or plant immunity.

4. Redox-regulation of epigenetic processes in innate immune 
memory

Epigenetic modifications play a crucial role in innate immune 
memory. Such modifications involve a range of different molecular 
mechanisms, such as DNA methylation, histone modifications, as well as 
the synthesis of non-coding RNA molecules. Their primarily function is 
the regulation of the accessibility of the DNA for regulatory proteins and 
transcription factors. This includes on one side the compactness of the 
chromatin structure and on the other side the ability of DNA-binding 
proteins to interact with the DNA. Epigenetic modifications can be 
inherited through cell division and can be influenced by environmental 
factors.

In plants, alteration of the chromatin structure is important for 
regulating gene expression in response to biotic stress and the involve
ment of chromatin modifications in immune priming was also described 
[89]. In SAR, transcriptional memory is associated with sustained 
changes in histone modifications, such as H3K4me2, H3K4me3, 
H3K9ac, H4K5ac, H4K8ac, and H4K12ac [90,91]. In animals/humans, 
chromatin modifications also function as important regulators of im
mune responses and immune memory. There are multiple epigenetic 
marks associated with trained immunity. For example, an enhanced 
level of H3K4me3, a mark observed at the promoter regions of actively 
transcribed genes, an enhanced level of H3K4me1, typically found at 
distal enhancers, as well as an enhanced level of H3K27ac, which marks 
active enhancers and promotor regions, have been observed after 
stimulation of human monocytes/macrophages with β-glucan or BCG 
[92,93]. Additionally, an enhanced level of the activating mark 
H3K14ac has been observed in many stimuli-induced immune training 
conditions [94], whereas the level of the repressive histone mark 

H3K9me2 decreased [95].
Interestingly, the level of some of these marks is altered by ROS/RNS. 

In mammals, NO regulates histone and DNA methylation in different 
ways (reviewed in Refs. [96–98]). On one side, NO affects the tran
scription of DNA and histone methyltransferases as well as demethy
lases. For instance, the expression of H3K9-histone methyltransferases is 
differentially regulated by NO in human cells. In response to NO treat
ment, the expression of both H3K9-tri-methylases, SETDB2 and 
SUV39H2, is increased, while that of the H3K9-di-methylase G9a is 
decreased [96,99]. Moreover, application of the RNS and ROS gener
ating compound RRX-001 reduced the expression of mammalian DNA 
methyltransferases (DNMTs) resulting in decreased global DNA 
methylation levels [100]. In contrast, the expression of DNMTs is not 
changed after treatment of mammalian cells with the NO donor SNAP 
[101].

On the other side, DNA and histone methylation can be regulated via 
the supply of the predominant methyl-group donor S-adenosylmethio
nine (SAM). In both animals and plants, the availability of SAM is 
controlled via redox mechanisms. The activity of S-adenosylmethionine 
synthetase, for instance, is inhibited by S-nitrosylation of a cysteine 
residue nearby its substrate binding site [102,103]. But there is also 
evidence that other enzymes of the SAM metabolism, such as methionine 
synthase, S-adenosylhomocysteine hydrolase or betaine homocysteine 
methyltransferase, are targets for redox modifications [104–106].

Moreover, NO directly affects the enzymatic activities of chromatin- 
modifying enzymes. For example, application of NO to a nuclear ex
tracts, increased the activity of DNMTs [101]. Similarly, Helicobacter 
pylori induced endogenous NO production correlated with increased 
DNMT activity and resulted in increased DNA methylation [107]. 
Furthermore, several studies have demonstrated that HMTs activities 
are also redox-sensitive [108,109]. For instance, the NO donor 
DETA-NO globally increases H3K9me2, H3K9me3, and H3K36me3 
levels in macrophages. This could be due to the NO-dependent inhibition 
of non-heme iron dioxygenases such as JmjC domain-containing histone 
demethylases and TET DNA-demethylases. Here, NO and the catalytic 
non-heme iron of the enzymes is forming a nitrosyl–iron complex [99,
110]. In sum, redox reactions are important mechanisms to regulate the 
activity of chromatin-modifying enzymes, enabling alteration of histone 
modification patterns and DNA methylation levels in mammalians and 
might play a key role in stress memory.

In plants, the activity of chromatin-modifiers responsible for histone 
(de)acetylation and (de)methylation and DNA (de)methylation seems to 
be also controlled by ROS and/or NO [106]. There is evidence that 
cysteine residues of plant HDAC6 are a target for NO [111]. Moreover, 
H3K9 and H3K14 acetylation is enhanced in genes involved in plant 
defense response after treatment with NO [112], which could be also 
part of the priming and memory process.

Interestingly, plants and animals/humans share a group of conserved 
histone deacetylases [16]. The comparison of the amino acid sequences 
of 18 Arabidopsis HDACs and 18 Homo sapiens HDACs revealed, that 
HsHDAC1, HsHDAC2, HsHDAC3 share 43,9–55,9 % sequence identity 
with AtHDAC6, AtHDAC7, AtHDAC9, and AtHDAC19. Within the 

Fig. 4. Simplified model showing functions of ROS/NO in innate immune memory in plants (A) and animals/humans (B). Elicitors are detected via elicitor- 
specific receptor molecules. In plants, this interaction is activating RIPK, which is phosphorylating NADPH oxidase RBOHD resulting in ROS production. Similar in 
animals, elicitor-receptor interaction activates mTOR, which is inducing ROS production via NOX2/4. Moreover, elicitor-receptor interaction leads to mitochondrial 
ROS production as well as NO production. To keep the redox balance, in both systems biosynthesis of glutathione is required for establishing innate immune memory. 
Moreover, thiol reductases are reducing oxidative thiol modifications to facilitate RNS and ROS signaling and to preserve the activity of antioxidant enzymes. 
Produced NO inhibits nuclear histone deacetylases and histone demethylases resulting in loosen chromatin structure at SAR/TI-related genes. Redox-sensitive plant 
histone deacetylases are 6, 7, 9, and 19, whereas histone deacetylase 1, 2, and 3 are redox-sensitive animal histone deacetylases. In both systems, H3K4 methylation 
and H3K14 acetylation is increased resulting in accessible chromatin structure reflecting gene priming. Additionally, NO regulates the supply of the methyl group 
donor S-adenosylmethionine via inhibition of S-adenosylmethionine synthetase. Moreover, ROS and NO can directly activate transcription factors responsible for 
expression of SAR/TI-related genes. Extracellular ROS is inducing “ROS waves”, which are spreading throughout cell colonies, tissues, or even organisms as part of 
systemic innate immune memory. SAMS: S-adenosylmethionine synthetase, SAH: S-adenosylhomocysteine, MT: methyltransferase, HDAC: histone deacetylase, HDM: 
histone demethylase, HAT: histone acetyltransferase, HMT: histone methyltransferase, GSH: glutathione, NOX: NADPH oxidase, RBOH: respiratory burst oxidase 
homolog D, me: methyl group, ac: acetyl group. Created in https://BioRender.com.
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catalytic domain the identity is up to 70 %. Human HDAC2 is S-nitro
sated at Cys262 and Cys274, both are located close to the substrate 
biding site [113,114]. These cysteine residues are also conserved in 
HDAC6, HDAC9 and HDAC19 of many plant species [115] and there is 
already evidence that these cysteine residues are a target for NO in 
plants as well [111,116,117]. In AtHDAC7 only the cysteine residue 
corresponding to Cys262 of HsHDA2 is conserved. Interestingly, the 
physiological function of AtHDAC6, AtHDAC9, and AtHDAC19 is related 
to stress response [111,118,119] and also the function of mammalian 
HDAC1, HDAC2, and HDAC3 is described in context of stress and im
mune response [120,121]. Important similarities in redox signaling in 
plant and animal/human innate immune memory are summarized in 
Fig. 4.

5. Conclusion

Animals/humans and plants share sophisticated mechanisms for 
sensing and responding to invading pathogens and particles. They 
include receptor proteins and cellular signaling enzymes and similar 
modifications of the chromatin structure. Enhanced levels of H3K4me3 
marks in defense gene promoters enable a faster and more effective 
response to future challenges. Redox molecules, such as ROS and NO are 
key players in regulating stress response, adaptation as well as immune 
memory and many redox-dependent mechanisms are conserved in ani
mals/humans and plants. The increasing knowledge about these mech
anism in innate immune memory might offer promising tools to improve 
human/animal health as well as sustainable agriculture. Actually, there 
are already several redox-based priming approaches described and dis
cussed. In plants, different “redox-priming” strategies have be followed 
in the past, e. g. treatment with redox-active compounds (e. g. H2O2, 
sodium nitroprisside, S-nitrosoglutathione, hydrogensulphide, GSH, 
ascorbate) to induce/prime redox-sensitive genes or genes of the anti- 
oxidative system (summarized in Refs. [122–124]) to finally improve 
stress response or enhance growth and development. For example, redox 
priming of Zygophyllum simplex seeds with H2O2 or NO donor sodium 
nitroprusside improves seed germination and seedling growth under 
high salinity conditions [125]. Moreover, application of H2O2 reduced 
negative drought effects and improved yield in quinoa [126]. But also 
expression of pathogen-related defense genes can be induced by spray
ing a NO donor solution (S-nitrosoglutathione) on the leaf surface [60]. 
However, since NO donors are often quite unstable when directly 
applied to the plant surface (light-sensitivity), nanoparticles have be 
used to encapsulate NO donors resulting in a higher stability and a 
slower NO release [127]. Encapsulation of redox-active compounds 
might by also a promising approach to enable a controlled, tissue- or 
organ-specific redox-priming in humans/animals. This is of special 
importance, since an uncontrolled use of such redox compounds could 
unbalance intracellular redox-signaling resulting in contradictory or 
harmful effects due to unwanted activation of redox-sensitive tran
scription factors.

Although therapies with anti-oxidative compounds have demon
strated potential in conditions primarily driven by oxidative stress, their 
effectiveness in diseases with complex and multifactorial causes is still 
debated. A more nuanced understanding of the functions of redox- 
sensitive proteins and their redox-modified cysteine residues in 
trained immunity is essential for developing targeted treatments that 
aim to modulate specific redox-signaling pathways. Moreover, a tar
geted activation/inhibition of the “ROS wave” might allow to modu
lating the spreading of the redox response. In general, small molecule 
compounds that selectively target specific redox-sensitive processes 
have already shown encouraging preclinical results and might enter the 
way into clinical trials. In sum, such redox-based approaches can be 
promising tools for developing new immunotherapies to promote 
trained immunity on one side and to treat excessive or defective trained 
immunity on the other side.
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