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ABSTRACT
Many biochemical processes exhibit intrinsic stochastic
fluctuations. These intrinsic fluctuations can be modeled
using the chemical master equation (CME). The estima-
tion of the parameters of the CME is challenging because
the CME is a high or infinite dimensional system.

We compare two approaches currently used to esti-
mate parameters of CMEs from population snapshot data.
The first approach relies on a truncation of the CME, the
finite state projection, and uses the data directly. The sec-
ond method relies on moment equations – dynamical sys-
tems computing the moments of the CME solution – and
merely uses the moments of the data. The second method
is computationally more efficient, however, it cannot use
all information contained in the data. In this manuscript,
we assess the statistical power of the individual approaches
and study moment equations of different order. Further-
more, we refine the likelihood function for the moment
equation and introduce a novel validation method.

We performed a comparative study of the commonly
used 3-stage model of gene expression. Using maximum
likelihood estimates and a rigorous uncertainty quantifi-
cation based on profile likelihoods, we show that the fi-
nite state projection approach is statistically more power-
ful than approaches based on moment equation. Never-
theless, even in case of partial observations, the first and
second moments of the CME solution are highly informa-
tive and permit parameter identifiability. These findings,
in combination with the novel tools for validation and un-
certainty analysis, improve the insight into the problem
class.

1. INTRODUCTION

In recent years, a multitude of studies have shown that
many biochemical processes in prokaryotic and eukary-
otic cells exhibit intrinsic stochastic fluctuations [1]. These
fluctuations arise from low copy-number effects and are
particularly significant for transcription and translation [2].
It is now known that these fluctuations are in many cases
required for cellular function, e.g., for robust decision mak-
ing on the population level [1].

The stochastic dynamics of biological processes can
be described using continuous-time discrete-state Markov
chains (CTMCs). The statistics of these Markov chains
are governed by the chemical master equation (CME). In-
dividual realizations of the process can be obtained via
stochastic simulation algorithms (SSAs) [3, 4]. The
stochastic process can be studied by analyzing statistics
of many such realizations. Alternatively, the CME can be
simulated using the finite state projection (FSP) method [5],
which relies on truncation of the state space of the CME.
While SSAs and the FSP are in principle capable of re-
solving all details of the dynamics of the CME, they im-
pose a significant computational cost. This computational
cost already becomes intractable for many small-scale sys-
tems. As an alternative, the method of moments (MM)
[6, 7, 8] can be employed to capture the overall statistics
of the process, such as mean and variance of individual
species as well as covariances.

While the SSA, the FSP, and the MM all have advan-
tages and disadvantages, a joint property is that they re-
quire accurate parameter values. The models and simu-
lations are only predictive if good estimates of the reac-
tion rates are available. Several estimation methods, re-
lying on different models, were proposed (see, e.g., [9]
and references therein), however, in most studies only the
optimal parameter estimate has been considered, and the
methods have not been compared. In this manuscript, we
study the parameter estimates and confidence intervals ob-
tained using FSP and MM. We present the individual like-
lihood functions and evaluate the informativeness using
profile likelihoods. This is done for the widely used 3-
stage model of gene expression [2], which is depicted in
Figure 1.

2. METHODS

2.1. Modeling and simulation

2.1.1. Chemical master equation

The time evolution of the state X = (X1, . . . , Xns)
T ∈

Nns
0 of stochastic biochemical reaction networks is mostly

described using CTMCs. The statistics of CTMCs are
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Moment equation (order 1):

µ̇Doff = τoffµDon − τonµDoff

µ̇Don = τonµDoff − τoffµDon

µ̇r = krµDon − γrµr

µ̇p = kpµr − γpµp

Figure 1. Three-stage gene expression model. (left) Schematic of the 3-stage gene expression model shows two DNA
states (on, off), mRNAs and proteins. Transitions as well as synthesis and degradation reactions are shown as arrows.
(right) Moment equations for means and variances of the individual species. The subscripts indicate the dependency, e.g.,
µr is the mean mRNA number.

governed by the CME. For a process with nr chemical
reactions,

Rk :
ns�

i=1

ν−ikXi →

ns�

i=1

ν+ikXi,

with reaction stoichiometries ν−k , ν+k , and νk = ν+k − ν−k ,
and reaction propensities ak(X, θ), the CME is
∂

∂t
p(x; t) =

nr�

k=1
x≥ν+

k

ak(x− νk, θ)p(x− νk; t)−
nr�

k=1

ak(x, θ)p(x; t).

The solution of the CME depends on the parameters θ,
which are for instance reaction rates.

The CME is defined for all reachable states x ∈ Ω ⊂

Nns
0 , where ns is the number of biochemical species. The

set of reachable states Ω is in general very large, or infi-
nite, rendering a direct solution of the full CME infeasible.
Fortunately, the set of states with a significant probability
mass is often small. This is exploited by the FSP, a di-
rect method for approximating the solution of the CME [5]
with pre-specified accuracy. Therefore, a subset ΩFSP of
the set of reachable states Ω is chosen. The time evolution
of p(x; t) with x ∈ ΩFSP is described by the CME, but
influxes from states x − νk /∈ ΩFSP are removed. Proba-
bilities p(x; t) resulting from the simulation of this trun-
cated system, which can be shown to be a lower bound for

the actual probabilities of the CME, converge to the ac-
tual probabilities by growing ΩFSP until the pre-specified
accuracy is met.

A requirement for the application of the FSP is that
the number of states with a significant probability mass is
not too large. Novel algorithms can handle some million
states [10]. Beyond this, the direct numerical simulation
becomes infeasible.

2.1.2. Method of moments

In situations where the FSP is no longer applicable, the
method of moments can be employed to approximate the
solution of the CME [6]. The MM, also called moment
equation, does not reproduce the exact solution of the CME.
Instead, it computes the moments of p(x; t), i.e. mean

µi(t) =
�

x∈Ω

xip(x; t),

variance

Cij(t) =
�

x∈Ω

(xi − µi(t))(xj − µj(t))p(x; t),

and higher-order moments [6]. The dynamics of the mo-
ments are governed by a set of ordinary differential equa-
tions (ODEs). Given that chemical reactions are at most
bimolecular, the ODEs for the mean and the variance are
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dµi

dt
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nr�

k=1

νik



ak(µ, θ) +
1

2

�

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2

Cl1l2



 ,

dCij

dt
=

nr�

k=1



νik
�

l

∂ak(µ, θ)

∂xl
Cil + νjk

�

l

∂ak(µ, θ)

∂xl
Cjl + νikνjk



ak(µ, θ) +
1

2

�

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2

Cl1l2









+
nr�

k=1



νik
�

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2

Cil1l2 + νjk
�

l1,l2

∂2ak(µ, θ)

∂xl1∂xl2

Cjl1l2



 ,

in which Cil1l2 and Cjl1l2 are third order moments ac-
cording to notation used in [6]. The governing equation
for arbitrary moment orders can be found in [6, Equa-
tion (2.46)]. If all reactions are at most mono-molecular,
the moment equation is closed, meaning that the evolution
of moments of order m does not depend on moments of
order greater than m. In this case, the moment equations
are exact. If bimolecular chemical reactions are present,
the moment equation ODEs are not closed, and the eval-
uation of a moment of order m requires the moments of
order m+1 [6]. Moment closure techniques must be em-
ployed [11], and the resulting moments will only be an
approximation of the true moments of the solution of the
CME.

Moment equations are in general low-dimensional com-
pared to the CME. Thus, they can generally be solved
more efficiently. However, a drawback is that a finite num-
ber of moments does not allow the reconstruction of the
underlying distribution p(x; t). Hence, information is lost.

2.2. Parameter estimation

In this work, we considered population snapshot data Dk =��
Ȳ (s)(tk), tk

��Sk

s=1
, k = 1, . . . , N , obtained by sam-

pling cells s = 1, . . . , Sk from the cell population and
measuring one (or more) properties of these cells, e.g.,
using flow cytometry or microscopy. For notational sim-
plicity, we assume that one observable, Ȳ = h(X), can be
measured. The observation function h describes the type
of measurement; in the most simple case h(X) = Xi.
The measurement is assumed to be noise-free as we later
want to assess the informativeness of single-cell data vs.
the moments.

Given a realization X at a certain time tk, the proba-
bility of observing Ȳ at time tk is p(y = Ȳ ;x = X). The
total probability to observe Ȳ at time tk is obtained by
taking into account all possible realizations X ∈ Ω of the
process. Given that the number of molecules is a discrete
variable, this total probability is obtained by marginaliz-
ing over the state space Ω,

p(y; tk, θ) =
�

x∈Ω

p(y;x) p(x; tk, θ),

where p(x; tk, θ) is the solution of the CME. Bearing in
mind that we do not consider any measurement noise, y is

a deterministic function of x, y = h(x), thus

p(y|x) =

�
1 if y = h(x)
0 otherwise,

so the sum simplifies to

p(y; tk, θ) =
�

x∈Ω
h(x)=y

p(x; tk, θ).

Following the argumentation above, the probability distri-
bution p(y; tk, θ) is the distribution from which the obser-
vations are drawn. Thus,

p(y = Ȳ (s)(tk)) = p(y; tk, θ), s = 1, . . . , Sk.

In the following, we compare two classes of likelihood
functions for these data, namely an FSP-based likelihood
function and a moment-based likelihood function with re-
spect to their statistical power. As mentioned before, we
do not consider any measurement noise in this compari-
son, but the inclusion of noise in the presented procedure
would be rather straightforward.
2.2.1. FSP-based estimation

As outlined earlier, for CTMCs with a small effective state
space, the FSP can be used to approximate the solution
of the CME for a given parameter set θ. Using this ap-
proximation of the probability distribution of the hidden
state, p(x; t, θ), and the corresponding approximation of
the probability distribution of the observable, p(y; t, θ),
the likelihood of the stochastic process,

L
FSP
D (θ) = c

N�

k=1

Sk�

s=1

p(y = Ȳ (s)(tk); tk, θ),

can be evaluated. Basically, the probabilities are evalu-
ated and multiplied for all observed states. The constant
c depends only on the data and can be neglected for op-
timization purposes. For a detailed introduction of this
FSP-based likelihood function, we refer to [12, 13]. Given
the FSP-based likelihood function, the estimation problem
can be formulated. The FSP-based maximum likelihood
(ML) estimation problem is:

maximize
θ

logLFSP
D (θ)

subject to ΣFSP(θ),
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in which ΣFSP(θ) denotes the finite-dimensional ODE
model resulting from the FSP of the CME on the sub-
set ΩFSP. To reduce numerical problems, the problem is
formulated using the log-likelihood function logLFSP

D (θ).
Furthermore, we optimize the logarithm of the parameters
ξ = log10(θ) to ensure positivity and improve the perfor-
mance of the optimization routines. The optimal solution
of the FSP-based ML estimation problem is the parame-
ter vector for which the likelihood of observing the single
cell data is maximized. This estimator uses all available
information.

2.2.2. Moment-based estimation

For many processes the approximation of the CME so-
lution using the FSP is not feasible because the number
of states with non-negligible probability is too large. In
such cases, the moment equation can be employed to ap-
proximate the statistics of the CME solution. To employ
moment equations for parameter estimation, the statistics
of the snapshots are computed, e.g., mean and variance,

µ̄y(tk) =
1

Sk

Sk�

s=1

Ȳ (s)(tk),

C̄yy(tk) =
1

Sk

Sk�

s=1

�
Ȳ (s)(tk)− µ̄y(tk)

�2
.

These measured moments are compared to moments pre-
dicted by the model and the observation function h(x).
Since the sample sizes Sk are often quite large – for flow
cytometry often in the order of 104 – it follows from the
central limit theorem that the empirical moments, e.g.,
µ̄y(tk) and C̄yy(tk), are almost normally distributed
around the true moments [14]. Hence, a normal error
model is assumed,

L
MM
D,µy

(θ) =
N�

k=1

N

�
µy(tk, θ)|µ̄y(tk),σ

2
µ̄y
(tk)

�
,

L
MM
D,Cyy

(θ) =
N�

k=1

N

�
Cyy(tk, θ)|C̄yy(tk),σ

2
C̄yy

(tk)
�
,

where N (·|µ,σ2) is the probability density of the normal
distribution. Such a likelihood function can be derived for
every moment predicted by the model, e.g., also the third
and fourth order central moments. Clearly, the considera-
tion of additional, non-redundant moments provides addi-
tional information about the model parameters as the in-
dividual likelihood functions are multiplied, e.g., if mean
and variance are employed then a reasonable likelihood
function is

L
MM
D (θ) = L

MM
D,µy

(θ) · LMM
D,Cyy

(θ).

Unfortunately, also the computational complexity of sim-
ulating the moment equations increases with each addi-
tional moment considered in the model.

The likelihoods LMM
D,µy

(θ), LMM
D,Cyy

(θ) and those for
the higher-order moments require information about the

error variance of the respective empirical estimator, e.g.,
σ2
µ̄y

for µ̄y(tk) and σ2
C̄yy

for C̄yy(tk). The variance of
the estimators for the first and second order moments can
be found in [14]. For third and higher-order moments the
calculation of these estimators become increasingly com-
plex, and we did not find respective results in the liter-
ature. To circumvent the analytical derivation, we pro-
pose to estimate the variance of the empirical estimators
using non-parametric bootstrapping [15]. This approach
employs a two-step procedure. At first, a sample of size
Sk is drawn from {Ȳ (s)(tk)}

Sk
s=1 (all Ȳ (s)(tk) have prob-

ability 1
Sk

) and the moments of this artificial sample are
evaluated. This step is repeated a large number of times,
in general more than one thousand times, yielding a large
sample for each moment of interest. Therefore, the vari-
ance of each moment can easily be computed from the
corresponding sample. This sample variance is a reliable
measure for the uncertainty, if Sk � 1. It does not require
any distribution assumption for p(y; tk, θ) and is easily ap-
plicable to any higher-order moments.

Given the likelihood function LMM
D (θ), which is the

product of the likelihood functions for the moments of in-
terest, the moment-based ML estimation problem,

maximize
θ∈Rnθ

+

logLMM
D (θ)

subject to ΣMM(θ),

can be formulated. ΣMM(θ) is the model used to simulate
the moment equations for the moments of interest.

2.2.3. Identifiability and uncertainty analysis

As the measurement data are limited and potentially noise
corrupted, the parameters can in general not be estimated
precisely. To assess the remaining parameter uncertainty
and the practical identifiability, we use profile likelihoods
[16]. Given the likelihood function LD(θ), the profile
likelihood of parameter θi is

PL(θi) = max
θj �=i

LD(θ).

This profile likelihood PL(θi) is the maximal likelihood
for a given value of θi. Using the profile likelihood, the
likelihood ratio R(θi) = PL(θi)/LD(θ̂) can be evaluated,
in which θ̂ is the ML estimate. The likelihood ratio R is
one at the globally optimal point θ̂i and approaches zero
for large |θi − θ̂i| if the parameter is identifiable. The
area under PL(θi) provides a reasonable measure for the
uncertainty of parameter θi. For further details, we refer
to [16, 17].

In the following, we employ profile likelihoods to as-
sess the information content of the moments of the data
in comparison with that of the full distribution of data.
More information will result in many identifiable parame-
ters and small parameter uncertainties.
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(a) Four stochastic realizations of the 3-stage model of gene expres-
sion.
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(b) Population snapshot data used for parameter estimation.

Figure 2. Dynamics of the 3-stage model of gene expres-
sion. (a) Time-dependent protein number in four repre-
sentative cells together with the population mean. (b) Pop-
ulation snapshot data obtained by sampling single cell tra-
jectories. The size of the markers in (b) is proportional to
the number of observed cells with the corresponding pro-
tein number. Due to the long tail of the distribution, the
mode of the data seen in (b) differs significantly from the
mean of the data depicted in (a).

3. RESULTS AND DISCUSSION

3.1. Parameter estimation for the 3-stage model of gene
expression

In this section, we compare the performance of previously
mentioned estimation methods, namely, FSP-based and
MM-based parameter estimates, using the common 3-stage
model of gene expression [2]. A schematic of the pro-
cess and the corresponding moment equations for mean

and variance are shown in Figure 1. The model has six
parameters: the transition rate of DNA into the on-state
(τon), the transition rate of DNA into the off-state (τoff),
the transcription rate in the on-state (kr), the rate of mRNA
degradation (γr), the translation rate (kp), and the rate of
protein degradation (γp). In the following, we study the
problem of estimating these rates from protein measure-
ments. Therefore, we generate artificial data

Dk =
��

Ȳ (s)(tk), tk
��105

s=1
, k = 1, . . . , 10,

with tk = k and Ȳ being the number of proteins. For the
generation of the artificial data, the parameter vector

θtrue = (τon, τoff, kr, γr, kp, γp)
T

= (0.05, 0.05, 5, 1, 4, 1)T

is used. We refer to this parameter vector θtrue as the true
parameter vector in the following. Also, no measurement
noise is considered in the generation of the data. In the
initial state, mRNA and protein numbers follow a Pois-
son distribution with mean 4 and 10, respectively. The
probability to be in the DNA on-state is 0.7. Figure 2 de-
picts sample paths of the model (Figure 2(a)) as well as the
snapshot data (Figure 2(b)) used for parameter estimation.
Using these data we estimate θ = (τon, τoff, kr, γr, kp, γp)T.

For FSP-based and moment-based likelihood functions
the maximum likelihood estimates are computed and the
parameter uncertainty is evaluated. For the
moment-based likelihood function we employed differ-
ent moment orders. The uncertainty of the moments has
been determined using the non-parametric bootstrapping
approach introduced before.

Figure 3 depicts the model simulation for the ML es-
timates for the different likelihood functions along with
the data. It is clear that for all ML estimates we observe
a good agreement with the data used for the estimation.
To validate the ML estimates, we employed the higher-
order moments of the data, which have not been used for
the parameter estimation. We find that all ML estimates,
which were obtained using at least the mean and the vari-
ance, successfully predict the higher-order moments not
used to obtain the ML estimates. Only the ML estimate
computed merely from the mean of the data fails. Thus,
the information contained in the mean is insufficient. This
is confirmed by the profile likelihoods shown in Figure 4,
which show that all likelihood functions establish identi-
fiability, except the moment-based likelihood function of
order 1. A careful comparison of the profile likelihoods
shows that the uncertainty in the estimation of the param-
eters decreases as more information (more moments) are
used. Since the FSP-based likelihood function makes use
of all the information, the resulting parameter uncertain-
ties are minimal. If the moment order is increased, the
confidence intervals for moment-based likelihood func-
tion also become more narrow, however even for moment
order 4, the result of the FSP remains superior. Note that
for all likelihood functions, the true parameters are con-
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Figure 3. Model-data comparison for ML estimates obtained using different likelihood functions. ML estimation has
been performed using moment-based likelihood functions of different orders (order 1: mean; order 2: mean and variance;
order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-based likelihood
function. Gray error bars show the mean and 4-σ intervals ([µ−4σ, µ+4σ]) of the measurement data. For the different ML
estimates the fit is illustrated by showing the model output (blue lines, —) and the measurement data (grey error bars).
All models describe the respective data well. To assess the predictive power of the model, the ML estimates are used
to predict the higher-order moments (magenta lines, —) which have not been employed for the parameter estimation.
The ML estimate computed using moment-based estimation of order 1 fails to provide good prediction, while already
information about mean and variance (order 2) is sufficient to obtain a predictive model.

tained in the 95% confidence intervals constructed from
the profile likelihoods (not shown).

3.2. Discussion

The computational complexity of the simulation of CTMCs
renders the estimation of their parameters challenging. Dif-
ferent methods have been proposed to circumvent this com-
plexity, among other the moment equations [18, 9, 14]. In
this work, we evaluate the information contained in the
moments of measurement data with respect to parameter
estimation (by employing moment-based likelihood func-
tion) and compare it with the complete information con-
tained in population snapshot data (by employing FSP-
based likelihood function). The practical identifiability
and the uncertainty of the parameter estimates are assessed
using profile likelihoods. To the best of our knowledge,
this is the first profile likelihood-based uncertainty anal-
ysis for stochastic processes, probably because the eval-

uation of the likelihood function is computationally often
infeasible. This is not the case if a moment-based estima-
tion is employed.

As a case study, we consider the widely used 3-stage
model of gene expression [2]. For this model, we show
that measurements of the mean expression do not in gen-
eral ensure identifiability, but rather that measurements of
the variance are required. This is consistent with results
by Munsky et al. [18] for the two-stage model of gene
expression. Information about third and fourth order mo-
ments can decrease the uncertainty further, however this
reduction is often insignificant. The full information con-
tained in the data, which is exploited by the FSP-based
estimation, remains out of reach for the MM-based esti-
mation approach.

Although the FSP-based likelihood function is statis-
tically more powerful, parameter estimation based on the
moment equation is the method of choice for processes,
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Figure 4. Parameter uncertainty for different likelihood functions. The parameter uncertainty and parameter iden-
tifiability has been evaluated for moment-based likelihood functions of different orders (order 1: mean; order 2: mean
and variance; order 3: mean, variance and skewness; and order 4: mean, variance, skewness and kurtosis) and the FSP-
based likelihood function. The profile likelihoods (blue lines, —) indicate that the measurements of the mean do not
carry enough information to identify the parameters. Information about mean and variance ensures identifiability, and
the uncertainty is slightly reduced if additional moments are used. The FSP-based likelihood function, which exploits all
information contained in the data, yields the smallest uncertainties. All confidence intervals (not shown), derived from
likelihood profiles, contain the true parameter values (red lines, —), which indicates consistency.

in particular, if the FSP is infeasible. Furthermore, pa-
rameter estimation using the moment equation is more ef-
ficient. The parameter estimation using the moment equa-
tion of order 2 is roughly 30 times faster than the pa-
rameter estimation using the FSP. However, it remains to
be studied how moment closures, which are required for
systems including bimolecular reactions, influence the pa-
rameter estimation. If a bias is introduced, as we expect,
it should be analyzed how a refinement of the moment
equation, e.g., the conditional moment equation [19], can
be used to improve the results.

Beyond the profile likelihood-based evaluation of the
information encoded in the moments, we introduced a non-
parametric bootstrapping approach to evaluate the uncer-
tainty of the empirical estimates of the moments. This ap-
proach allows for the construction of likelihood function
without additional distribution assumptions. Furthermore,
we illustrated how the higher-order moments, which have
not been used for parameter estimation, can be used for
model validation. This approach is attractive, as models
can basically be fitted and validated on the same dataset.
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and F. Allgöwer, “Parameter estimation for the CME
from noisy binned snapshot data: Formulation as
maximum likelihood problem,” Extended abstract at
Conf. of Stoch. Syst. Biol., Monte Verita, Switzer-
land, July 2011.
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