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ABSTRACT

Modern high-throughput methods allow the investi-
gation of biological functions across multiple
‘omics’ levels. Levels include mRNA and protein
expression profiling as well as additional knowledge
on, for example, DNA methylation and microRNA
regulation. The reason for this interest in multi-
omics is that actual cellular responses to different
conditions are best explained mechanistically when
taking all omics levels into account. To map gene
products to their biological functions, public
ontologies like Gene Ontology are commonly used.
Many methods have been developed to identify
terms in an ontology, overrepresented within a set
of genes. However, these methods are not able to
appropriately deal with any combination of several
data types. Here, we propose a new method to
analyse integrated data across multiple omics-
levels to simultaneously assess their biological
meaning. We developed a model-based Bayesian
method for inferring interpretable term probabilities
in a modular framework. Our Multi-level ONtology
Analysis (MONA) algorithm performed significantly
better than conventional analyses of individual
levels and yields best results even for sophisticated
models including mRNA fine-tuning by microRNAs.
The MONA framework is flexible enough to allow for
different underlying regulatory motifs or ontologies.
It is ready-to-use for applied researchers and is
available as a standalone application from http://
icb.helmholtz-muenchen.de/mona.

INTRODUCTION

The ability of cells to adjust to given environmental or
disease conditions is a result of their ability to perform

specific biological functions and processes. These are in
turn orchestrated by a tight regulation of gene responses
across many molecular levels (Figure 1). The gene product
carrying out the biological function is a result of not only
protein expression and activity but also of gene expression
on mRNA level, gene promotor methylation states and
existing single nucleotide polymorphisms within the
genome. Fine-tuning mechanisms of, for example,
microRNA (miRNA) post-transcriptional modification
of mRNAs also contribute to the joint gene responses of
cells. Finally, protein phosphorylation controls the enzym-
atic activity of a gene product for example in signaling
cascades (1).
Methods for large-scale profiling assess entire molecular

species all at once. For example, microarrays allow to
profile mRNA expression levels. Typically experiments
are conducted to analyse gene responses to different
environmental or disease states. Nowadays, it gets more
and more common to make use of multiple omics tech-
niques at once (2–4). Statistical analyses then yield a list of
responders to the condition across the different species.
Consequently, this allows for the identification of biolo-
gical features that are over-represented among these lists
of gene responses. Owing to the decreasing costs, this
multi-omics approach becomes even more popular.
Therefore, the integration of multiple data types is one
of the key challenges in bioinformatics. Examples
include custom clustering algorithms (5) and the joint
modelling of multiple species such as DNA methylation
and gene expression data (6) or miRNA and gene expres-
sion data (7).
A common approach to find altered biological functions

in a long list of genes is to use statistical methods to
identify significantly over-represented pre-defined gene
sets (8,9). Most commonly, these gene sets represent bio-
logical terms in an ontology like Gene Ontology (GO) (10)
or others such as pathways [e.g. from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (11)].
Many methods deal with the analysis of GO term
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enrichments. The most common methods are based on
Fisher’s exact test (12,13) or gene set enrichment (14) typ-
ically used on either mRNA or protein level. Other
methods were developed to enrich on, for example,
miRNA level using in silico target site predictions
(15,16). Several issues arise when applying these
standard approaches: first, the hierarchical structure of
GO is not taken into account, which results in many re-
dundant terms; second, corrections for multiple testing
have to be performed, but because of the hierarchy of
GO terms, they are not independent from each other.
To overcome these issues, model-based approaches were
introduced, which were initially based on the combination
of the model likelihood and a penalization (17) and were
further optimized by using a Bayesian modelling approach
(18). However, most existing methods are suited for the
analysis of one individual expression layer only. Thomas
et al. (19) have addressed this issue by introducing an
ontology jointly representing disease risk factors and
causal mechanisms based on genome typing and epidemi-
ology studies. The proposed ontology is disease-specific
(nicotine addiction and treatment) and only applicable
to very specific research questions. Recently, an algorithm
was introduced for the combined analysis of the protein
and mRNA level (20). To the best of our knowledge, no
method was yet introduced to handle integrated data from
any omics level, while in parallel coping with term
redundancies and related multiple testing problems.
Here, we propose a model-based method to reliably cal-

culate interpretable probabilities for term activity by
integrating multi-level gene response data. We perform a
multi-level ontology analysis (MONA) using a Bayesian
approach with a computationally efficient method to ap-
proximate the marginal posteriors of ontology terms,
given lists of genes responding to experimental conditions.
MONA is designed to easily handle any combination of
molecular levels in a modular fashion. This is illustrated
by a cooperative and an inhibitory model. We demon-
strate that MONA outperforms existing methods by
integrating multi-omics levels with appropriate biological
models not only on synthetic data but also on three inte-
grative studies covering mRNA, protein, methylation

states as well as post-transcriptional modifications by
miRNA. The framework and inference method is flexible
enough to easily allow for other data, underlying regula-
tory motifs or ontologies.

MATERIALS AND METHODS

Our novel integrative approach MONA couples multi-
level omics data in a flexible manner to a common base
model (Figure 2). The base model is defined as described
previously (17,18) and includes the ontology structure in
form of a Bayesian network. Therefore, ontology terms
are mapped to hidden nodes representing a gene
product, which cannot be fully observed (Figure 2a). In
the modular part of the model, MONA couples ‘observed’
layers to the respective hidden gene response node
(Figure 2b and c). The design of the observed layer is
determined by the experimental setup and depends on
the molecular species measured in the experiment. This
allows for the flexible integration of arbitrary data types.

Base model

The base model can be represented by a Bayesian network
with two layers (Figure 2a) as described previously
(17,18): the (ontology) term layer consists of boolean
nodes indicating whether a term is active. Each term (T)
is connected to a set of hidden gene products (H) as
defined by, for example, GO. This hidden (unobserved)
layer of gene responses has to be introduced between the
ontology and the layer of observed variables, for two
reasons: First, measurement errors result in false positives
(FP) and false negatives (FN) that have to be handled
adequately. Second, incorrect or imprecise term-gene as-
signments may occur, e.g. due to links inferred automat-
ically by GO. Altogether, the hidden gene response layer
also allows for a coherent integration of biological obser-
vations across multiple layers.

More formally, we define our base model (Figure 2a) in
form of conditional probability densities. These condi-
tional densities are defined as follows:

Terms Ti are Bernoulli-distributed boolean random
variables modelled with a prior probability p of being
on. As we do not know p in advance, we place a Beta
prior over p so that we can learn it from the data:

p � Betaða, bÞ ð1Þ

with a and b being the shape parameters of the Beta-
Distribution. When a and b are set to 1, we have a
uniform prior (i.e. before having seen the data, we
consider all possible values for p as equally likely).
Prior knowledge on the distribution of p (e.g. if p is
known to be small) can be included in form of different
choices of a and b (e.g. a=1 and b=5 places most of
the probability mass on values <0.5).
It is worth noting that the previously defined base
model (18) slightly differs form our model: although
we place a continuous prior on the probability for a
term being on, they chose a restrictive, discrete prior
which is defined by default as p 2 f1=N, . . . , 20=Ng
with N being the number of terms.

Figure 1. Multilevel gene responses. The signature of condition-specific
changes in biological functions is captured in gene responses, which are
measurable on many omics levels. When integrated across levels,
organism-wide profiling provides a comprehensive and multilevel
picture that most reliably describes active biological processes.
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Hidden nodes
The nodes Hi represent the underlying hidden response of
each individual gene. They are modelled as boolean vari-
ables, which are deterministically defined such that Hi ¼ 1
if at least one term to which Hi is annotated is on; other-
wise Hi ¼ 0. If we define TðHiÞ to denote the set of terms
to which gene Hi is annotated, then we can write:

PðHijTÞ ¼
1 if 9Tj 2 TðHiÞ : Tj ¼ 1
0 otherwise

�
ð2Þ

Modular framework to integrate multilevel observations

Depending on the number of observed species (e.g.
mRNA, protein and methylation) and their relation to
each other, the observed nodes Oi are connected to
hidden gene responses Hi. With MONA, we present a
general framework allowing for an easy integration of ar-
bitrary molecular species. We illustrate our novel
approach by describing three different models in detail.

Single-species model
In this scenario, measurements are only avavilable for one
species (e.g. mRNA expression). Consequently, each ob-
servation is connected to exactly one hidden node repre-
senting its respective gene product (this can be interpreted
as a special case of Figure 2b with only one observed
species OI

i ).
Observations OI

i are observed with FP and FN rates �I

and �I; similar to p, we place (usually uniform) Beta priors
on �I and �I, as we usually do not know these rates in
advance and want to infer them from the data.

PðOI
i ¼ 1jHiÞ ¼

1� �I ifHi ¼ 1 ðtrue positive: TPÞ
�I ifHi ¼ 0 ðfalse positive: FPÞ

�
ð3Þ

PðOI
i ¼ 0jHiÞ ¼

1� �I ifHi ¼ 0 ðtrue negative: TNÞ
�I ifHi ¼ 1 ðfalse negative: FNÞ

�
ð4Þ

Cooperative model
The cooperative model accounts for studies where meas-
urements of two (or more) different species are available,
which may be regarded as independent noisy observations
(e.g. mRNA and protein) of an underlying common gene
response. In contrast to the single-species model, an
additional species is observed, which is modelled as inde-
pendent observation OII

i of gene product with separate FP

and FN rates �II and �II (Figure 2b). Again, we place Beta
priors on �II and �II. For each additional species, error
rates are defined accordingly.

PðOII
i ¼ 1jHiÞ ¼

1� �II if Hi ¼ 1
�II if Hi ¼ 0

�
ð5Þ

PðOII
i ¼ 0jHiÞ ¼

1� �II if Hi ¼ 0
�II if Hi ¼ 1

�
ð6Þ

Inhibitory model
The inhibitory model is applicable when two species are
measured, but they could not be interpreted as independ-
ent measurements of the hidden gene function (Figure 2c).
A prominent example is the post-transcriptional modula-
tion of mRNA expression by miRNAs. We introduce an

additional hidden variable HI, inh
i to the model for each

respective gene response H. HI, inh
i is a boolean random

variable, which represents the true underlying state of

the inhibitor: If the inhibitor is active, HI, inh
i ¼ 1, other-

wise HI, inh
i ¼ 0. HI, inh

i is modelled to be active with prior

probability pinh (PðHI, inh
i ¼ 1Þ ¼ pinh). HI, inh

i is observed in

form of OI, inh
i with own FP and FN rates �I, inh and �I, inh:

PðOI, inh
i ¼ 1jHI, inh

i Þ ¼
1� �I, inh if HI, inh

i ¼ 1

�I, inh if HI, inh
i ¼ 0

(
ð7Þ

PðOI, inh
i ¼ 0jHI, inh

i Þ ¼
1� �I, inh ifHI, inh

i ¼ 0

�I, inh ifHI, inh
i ¼ 1

(
ð8Þ

(a) (b) (c)

Figure 2. A modular approach for gene set enrichment analysis with multiple observed species. (a) In the base model terms T are connected to
hidden gene products H. Each hidden gene product is observed in form of noisy measurements of one or several species. (b and c) Two examples for
modules coupled to one hidden gene product depending on the biological relationship of the molecular levels analysed. Each molecular species in the
observation layer O has separate error rates. Noise of the measurements is represented by FP and FN rates a and b. Only the hidden gene products
Hi are attached directly to an ontology term. The hidden inhibitor activity HI, inh

i is specific for a respective gene.
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The second observable in the model is the inhibited
species (OI

i ). As opposed to the cooperative model, the
conditional probability density does not only depend on
Hi but also on HI, inh

i :

PðOI
i ¼ 1jHI, inh

i ,HiÞ¼

1��I if ðHI, inh
i ¼ 0^Hi ¼ 1Þ

_ðHI, inh
i ¼ 1^Hi ¼ 0Þ ðTPÞ

�I if ðHI, inh
i ¼ 1^Hi ¼ 1Þ

_ðHI, inh
i ¼ 0^Hi ¼ 0Þ ðFPÞ

8>>><>>>:
ð9Þ

PðOI
i ¼ 0jHI, inh

i ,HiÞ¼

1��I if ðHI, inh
i ¼ 1^Hi ¼ 1Þ

_ðHI, inh
i ¼ 0^Hi ¼ 0Þ ðTNÞ

�I if ðHI, inh
i ¼ 0^Hi ¼ 1Þ

_ðHI, inh
i ¼ 1^Hi ¼ 0Þ ðFNÞ

8>>><>>>:
ð10Þ

This reflects the interaction between the two species:
true gene response can either be explained by uninhibited
first species or if the inhibitor is active without the first
species being active.

Bayesian inference using expectation propagation

For inference a variety of techniques exist. Lu et al. (17)
proposed a maximum-likelihood approach (analysing
only a single level), where the likelihood LðTactivejD, �Þ is
maximized with respect to the set of active GO terms
Tactive, given the observed data D and a set of parameters
y. A drawback of the maximum likelihood method is that
no distribution is inferred and only one local maximum is
found, ignoring alternative solutions. A more robust
approach then used Markov Chain Monte Carlo
(MCMC) methods to estimate the marginal posterior
probabilities PðTjDÞ of being active (18). The marginal
posterior is calculated by using a Metropolis–Hastings al-
gorithm to sample from the joint posterior distribution
PðT, �jDÞ. This approach was termed ‘‘model-based gene
set analysis (MGSA)’’. Such MCMC approaches asymp-
totically provide a random sampler of a target distribution
when being run long enough. Consequently, they are a
family of algorithms commonly used for inferring poster-
ior distributions of Bayesian networks, which cannot be
analysed analytically. However, major drawbacks are
comparatively long run times, and for every model defin-
ition (e.g. if another species is measured), a new custom
sampler has to be implemented that can be very time-
consuming and requires expert knowledge.
To overcome the drawbacks of existing methods, we use

computationally efficient approximate methods (21) to ap-
proximate the marginal posterior.
The marginal posteriors of interest were approximated

using the expectation propagation (EP) algorithm (22).
These marginal posterior probabilities PðTjDÞ (simply
referred to as term probability after the methods section)
can be interpreted as the outcome of the MONA algo-
rithm in form of the probabilities for each term to be
active as best explained by the data. EP makes use of
the factorized structure of the posterior and iteratively
minimizes the local Kullback–Leibler (KL) divergence

from the posterior to a Gaussian approximation of the
posterior.

The posterior of the model factorizes as pð�jDÞ ¼
1

pðDÞ

Q
i fið�Þ, where y are all parameters of the model and

fi functions as defined in the model specifications while
depending on the specific generative model definition.
For example, for the cooperative model � ¼ fp,T,H,�I=II

,�I=IIg such that

pðT,H, p,�,�jDÞ ¼
pðTjpÞpðDjH,�,�ÞpðHjTÞpð�Þpð�ÞpðpÞ

pðDÞ

with the individual factors as defined in Equations (1–6).
In EP, the exact posterior pð�jDÞ is approximated by a
Gaussian distribution qð�jDÞ, which minimizes the KL-

divergence KL½pjjq� ¼
R
pðxÞ log pðxÞ

qðxÞ dx by matching the

first two moments. As pð�jDÞ factorizes in potentially
complicated factors fið�Þ, matching the moments of these
factors can be challenging. Minka (22) proposed an algo-
rithm, which iteratively minimizes the local divergence
between the factors fið�Þ and Gaussian approximationsefið�Þ. As the Gaussian distribution is closed under multi-
plication, the resulting approximation q is also Gaussian.
This is summarized in Algorithm 1.

Algorithm 1: EP for approximating the posterior (22).

Implementation using probabilistic programming in
infer.NET

We use probabilistic programming to perform the infer-
ence within the Infer.NET framework (http://research.
microsoft.com/infernet) (23). Infer.NET is a framework
allowing for Bayesian inference in graphical models,
which has been used successfully in the bioinformatics
community in recent years (24,25). The approximation
of the marginal posterior is performed by the infer.NET
inference engine. The main advantage is that it is
straightforward to specify different models of gene re-
sponses, given a common base model. Thus, changing
model specification and adding additional species only
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requires few lines of code resulting in a fast and flexible
framework for Bayesian gene set analysis.

Evaluation of performance using synthetic data

Realistic synthetic data generated for the single species
and the cooperative model were sampled from genome-
wide yeast genes mapped to GO (10) (retrieved October
2012). We used the Bioconductor package org.Sc.sgd.db
(http://www.bioconductor.org/packages/release/data/ann
otation/html/org.Sc.sgd.db.html), which annotated 3890
terms to 6396 genes. Realistic data for the inhibitory
model were generated by sampling from hgu133
plus2.db (http://www.bioconductor.org/packages/release/
data/annotation/html/hgu133plus2.db.html) for Affy-
metrix human genome annotations where 14 740 genes
are annotated with 10 944 terms. We randomly selected
3–6 independent terms to be active in each data set. We
sampled the corresponding observed species according to
the single species, cooperative and the inhibitory model,
respectively. This was done for a range of different par-
ameter values of �I=II, �I=II and pinh. For the single/co-
operative and the inhibitory model, we generated 600
and 400 synthetic data sets with different levels of obser-
vation noise, respectively. More specifically, for the single-
species model and the cooperative model, we chose three
different settings: �I=II ¼ 0:25 and �I=II ¼ 0:25; �I=II ¼ 0:25
and �I=II ¼ 0:4; �I=II ¼ 0:1 and �I=II ¼ 0:4. The inhibitory
model was evaluated for four different levels of
observation noise and miRNA activation: �I=I, inh ¼ 0:25,
�I=I, inh ¼ 0:25 and pinh ¼ 0:25; �I=I, inh ¼ 0:25, �I=I, inh

¼ 0:25 ¼ 0:25 and pinh ¼ 0:4; �I=I, inh ¼ 0:1, �I=I, inh ¼ 0:4
and pinh ¼ 0:25; �I=I, inh ¼ 0:1, �I=I, inh ¼ 0:4 and pinh ¼ 0:1.

We compared results of MONA to the related
approaches for GO enrichment analysis, all suited for
analysing single-species data. We quantified the statistical
significance of differences in predictive power between the
following approaches: inferring active GO terms based on
(i) one species only with MGSA, (ii) one species-model of
MONA and (iii) multi-level integrative method MONA.
Therefore, we performed an receiver-operating-character-
istic (ROC) analysis of each synthetic data set and
quantified the statistical significance between two different
approaches by performing a paired t-test (Bonferroni cor-
rected) between the respective area-under-the-curve
(AUC) values. In addition, we show precision-recall
curves for selected models because the number of true
positives is usually orders of magnitude smaller than the
number of true negatives.

Although, most similar to MONA, MGSA (18) can
only be applied to individual molecular levels. As
MGSA is an MCMC sampling scheme for inferring
marginal posteriors for the single-species model and con-
verges to the exact solution when run long enough, we
used the solutions provided by the MCMC sampling as
gold standard for the single-species model. To illustrate
benefits over the commonly used Fisher’s exact test for
GO enrichment, where each term is tested independently,
we also tested the null-hypothesis of a term being off for
all terms and calculated ROC curves based on the
P-values for all data sets.

For the single-species model as well as the cooperative
model, we used uninformative priors for a, b and p to
introduce as little bias as possible. However, when the
marginals yielded an unrealistic value for P (i.e. >30%
of terms being on), we repeated the inference with a
weakly informative prior for p and set the shape param-
eters of the Beta distribution a and b to one and five,
respectively, placing most of the probability mass on
values <0.5 (this was necessary in �5% of the synthetic
data sets). As we found that parameters p in the inhibitory
model converged to unrealistic values more often, we
always performed inference with weakly informative
priors in this case.

RESULTS AND DISCUSSION

We extensively evaluated MONA on synthetic data and
three integrative studies. The three biological studies
encompass several molecular levels, demonstrating the
applicability of MONA to any multi-omics studies.
We compare MONA to MGSA and Fisher’s exact test,

where individual levels were analysed separately. For
simplified comparisons, we considered a GO term to be
active, if its probability exceeded 0.5. MONA ran with 30
iterations, which was sufficient to reach convergence.

Performance on synthetic data

We found that approximate inference with MONA in a
single-species model yielded equally good results as the
MCMC-based inference with MGSA (Figure 3) for three
different noise levels. AUC values for MGSA and the
single-species model of MONA were 0.932, 0.878, 0.946
and 0.922, 0.87, 0.943, respectively. We used paired t-tests
to test the null-hypothesis that both inference methods
result in equal performance for a given observation error
rate. Resulting P-values of 0.007, 0.14 and 1 indicate that
only for error rate � ¼ 0:25 and � ¼ 0:25, the difference in
AUC was significant. However, in this case, the mean dif-
ference in AUC of only 0.01 was rather small. This cor-
responds to an overall good quality of the EP
approximation used by MONA compared with the exact
inference method of the MGSA implementation.
AUC curves generated by MGSA do seem to differ

systematically from the ROC curves generated using
single-species MONA (Figure 3): for all error rates,
MGSA achieved higher true-positive rates for low FP
rates. This is a consequence of systematic differences
between the MCMC sampling approach and EP. For
MGSA, the probability of a term being ‘on’ is restricted
to 20 discrete values between 0.0002 and 0.0051 so that all
models with a higher value for P have a probability of 0.
In contrast, for the EP algorithm a continuous Beta prior
ð0, 1Þ is used.
Furthermore, the EP approximation is designed such

that it prefers broad approximations and due to this
zero-avoidance can assign non-zero probabilities to
models that actually have a zero probability (this is the
opposite behaviour of the MCMC sampling approach,
which assigns zero probability to all models with
P > 0:0051, some of which actually may have a non-zero
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probability). Consequently, MGSA should be used
instead of using the approximate EP inference for a
single species if only one level of observations is available.
The differences in performance of the models are also
illustrated via precision-recall curves (Supplementary
Figures S1–S6).
When comparing the benefits of using integrated data

information over individual data levels, the cooperative
model yielded AUCs, which were significantly better
than the performance of MGSA (P< 10�12 in all
settings). Similarly, in the inhibitory setting, MONA per-
formed significantly better than MGSA (P < 10�6) for low
(10%), medium (25%) and high (40%) influence of
miRNA activation (Figure 4). As expected, the benefit
of including knowledge on the second species was
greatest for the setting with high miRNA influence. In
this setting also, the benefit of the model-based single-
species approach over the Fisher test was smallest.

Run time
For evaluating run times, we applied MONA (here, the
cooperative model), MONA on single-species level and
MGSA on the synthetic data described earlier in the text
and repeated this procedure 10 times. MGSA took 192.59
s on average (SD ¼ 45:09s) to compute the results,
whereas MONA and single-level MONA took 8.45 and

6.96 s on average, respectively (SD ¼ 0:44s; SD ¼ 0:36s).
MONA has a considerable gain of run time performance.
MONA had only a slight increase in run time when a
second species was introduced in the model.

Combining mRNA and protein expression

The induction of environmental stress to an organism
leads to changes on all molecular levels to cope with the
new condition. An integrative study in yeast investigated
changes in the proteome and transcriptome in response to
an osmotic shock by NaCl (3). The regulatory response
was measured at different time points after NaCl treat-
ment. We adopted the testing procedures for differential
expression from the original study to calculate P-values of
mRNAs and proteins (3). We then considered mRNA and
protein as responsive to osmotic stress if their calculated
P< 0.05. In addition, we applied a threshold of the
absolute median fold change over time of >0:5 and
>0:3 for mRNA and protein, respectively. Of 5916
genes and 2207 proteins annotated to a GO term, 1274
genes and 214 proteins were responding to osmotic shock.

The cooperative model is applicable to the present two-
level study of gene and protein expressions (Figure 5a).
Here, we assume that differential expression of a specific
gene can be observed on both, mRNA and protein level.

(a) (b) (c)

Figure 3. Performance of the cooperative model on synthetic data for three different levels of noise: (a) medium noise (�I=II ¼ 0:25, �I=II ¼ 0:25), (b)
high noise (�I=II ¼ 0:25, �I=II ¼ 0:4) and (c) mixed noise (�I=II ¼ 0:1, �I=II ¼ 0:4). AUC values are listed in the respective figure legends. With MONA,
the inference is based on two species, and all other algorithms are based on one species only.

(a) (b) (c) (d)

Figure 4. Performance of the inhibitory model on synthetic data for three different levels of miRNA activation and two different noise levels: (a)
medium noise levels, medium miRNA influence (�I=I, inh ¼ 0:25, �I=I, inh ¼ 0:25, pinh ¼ 0:25), (b) medium noise levels, high miRNA influence
(�I=I, inh ¼ 0:25, �I=I, inh ¼ 0:25, pinh ¼ 0:4), (c) mixed noise levels, medium miRNA influence (�I=I, inh ¼ 0:1, �I=I, inh ¼ 0:4, pinh ¼ 0:25) and (d) mixed
noise levels, low miRNA influence (�I=I, inh ¼ 0:1, �I=I, inh ¼ 0:4, pinh ¼ 0:1). AUC values are listed in the respective figure legends. With MONA, the
inference is based on two species, and all other algorithms are based on one species only.
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This was shown to hold especially for upregulated
genes (3). However, in practice, it is possible that differ-
ential expression can only be observed in one of these
species due to measurement limitations or also biological
reasons [imperfect correlation between mRNA and
protein expression (26)]. This is accounted for in the
generative model by introducing FP and FN rates
(Figure 2).

MONA yields probabilities for GO term for yeast
response to osmotic shock, whereof we considered 19
GO terms to be active as their marginal posterior
P> 0.5 (Figure 5c). Amongst those terms, five terms had
a probability of one to be active.

To investigate to what extent the probability of active
terms depends on the cooperative influence of mRNA and
protein activity, we first calculated P-values resulting from
Fisher’s exact test on mRNA and protein level separately
(Figure 5b). Most of the terms that were determined as
active by MONA were also significantly enriched among
results of Fisher’s exact test on both mRNA and protein
level. Expectedly, some terms were active with a high
probability, although they were only significant on
mRNA level. This indicates that MONA uses the

protein information to enhance the probability of certain
terms but not necessarily dependent on it.
We next examine the biological relevance of active bio-

logical functions identified by MONA (Figure 5c, green
bars) starting with the most likely terms. The term ‘cellular
response to oxidative stress’ (P=1) is consistent with the
original study (3), which reported the general induction of
stress response genes on both, mRNA and protein, levels.
Typically, there is a high overlap of genes for osmotic and
oxidative stress (27), whereas the oxidative stress response
is activated following the osmotic stress condition. A key
gene known to be activated during this process is the
oxidoreductase GRE2 (27), which is also responding in
the present study on both mRNA and protein level.
Another result of the original study was the induction of

genes involved in trehalose metabolism (3), which was
shown to be directly linked to the yeast stress response
(28). MONA identified the term ‘trehalose metabolic
process’ (P=1) in good agreement with these findings.
In the same context, MONA identified the following
terms: ‘energy reserve metabolic process’ (P ¼ 0:92),
‘hexose catabolic process’ (P ¼ 0:68), ‘monosaccharide
catabolic process’ (P ¼ 0:70), ‘glucose catabolic process’

(a) (c)

(d)(b)

Figure 5. Analysis of mRNAs and proteins on salt stress in yeast. (a) The cooperative model for mRNA (magenta) and protein (yellow) was used to
specify the hidden gene response (green). (b) For each GO term, P-values of Fisher’s exact test on mRNA and protein level are plotted against each
other. Active terms resulting from MONA are marked as dots and are colour- and size-coded by its respective MONA term probability. (c)
Probabilities of terms derived from MONA and MGSA on mRNA and protein level. (d) Term probabilities plotted against the P-values of
Fisher’s exact test for MGSA on mRNA and protein level. (c and d) Blue and red lines indicate probability of 0.5 and significance level of 0.05,
respectively.
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(P ¼ 0:65), ‘alcohol catabolic process’ (P ¼ 0:74) and
‘glucose transport’ (P ¼ 0:76). In addition, the ‘respira-
tory electron transport chain’ term (P=1) is active
under osmotic stress conditions arising also due to the
oxidative stress response. The activation of proteins
involved in mitochondrial electron transport chain is
crucial to counteract the production of reactive oxygen
species upon salt stress (29). The activity of ‘arginine bio-
synthetic process’ (P ¼ 0:81) is also in agreement with the
literature, as it has been reported to be induced during
oxidative stress (30). Accordingly, the original study
reported ‘amino acid biosynthesis’ as being enriched in
their analyses. Interestingly, MONA identified arginine
as a more a specific amino acid to be active, which
offers a more detailed insight to yeast stress response to
an osmotic shock.
We finally compare MONA results with MGSA on

mRNA and protein level, where only four and two
terms were active, respectively. Terms identified on
mRNA level alone were also considered as active by
MONA, but had always lower probabilities < 0:6
(Figure 5c, purple bars) and were also significantly
enriched among the results of Fisher’s exact test
(Figure 5d).
One of the two terms identified on protein level by

MGSA (Figure 5c, yellow bars) is ‘oxidation reduction
process’, which was also identified by mRNA MGSA
(P ¼ 0:99) and MONA. The other active term is ‘small
molecule catabolic process’ (P ¼ 0:52). Interestingly
MONA is able to identify the more specific child-term
‘respiratory electron transport chain’, which we have
shown to be in agreement with literature. Both terms
were also highly enriched at Fisher’s exact test on
protein level (Figure 5d).

Combined DNA methylation and mRNA expression

Although resistance of tumour cells to certain
chemotherapeutic substances has been intensively
investigated, the underlying mechanisms are still poorly
understood. To that end, regulatory changes to cisplatin
resistance in ovarian cancer cells were studied on DNA
methylation and mRNA expression levels (4). As major
differential effects were reported for upregulated genes, we
selected over-expressed mRNA [extracted from the list of
differentially regulated genes published by Li et al. (4)] and
hypomethylated promoters. Hypomethylated gene pro-
moters are considered responsive to cisplatin treatment if
the log fold change after the third round of cisplatin treat-
ment is below �0.5. GO analysis was then performed for
observations of gene products comprising 776 upregulated
mRNAs and 1453 hypomethylations of respective gene
promoters of total 13 635 genes assigned to a GO term.
This study was also analysed with MONA using the
cooperative model (Figure 6a).
All active terms identified by the integrative analysis of

MONA (Figure 6c) were also significantly enriched by
Fisher’s exact test on mRNA level (Figure 6b). In
contrast, none were significantly enriched by Fisher’s
exact test on methylation level only.

The original study reported that upregulated and
hypomethylated genes play a role in cell cycle progression
(4). The underlying general process was not identified by
MONA; however, we find more specific subprocesses to be
active on cisplatin treatment. Cell cycle checkpoints play
the most important role in survival of cisplatin-treated
cells (31). In particular, induction of cell cycle arrest at
G1 or G2/M phases in response to DNA damage is
affected in cisplatin-resistant cells (31). Our results reflect
exactly this finding (Figure 6c), as MONA identifies not
only ‘M/G1 transition of mitotic cell cycle’ (P=1) but
also ‘G2/M transition of mitotic cell cycle’ (P ¼ 0:68). In
addition, ‘regulation of exit from mitosis’ (P ¼ 0:54) and
‘regulation of chromosome segregation’ (P=1) relate to
the process of cell cycle arrest.

Furthermore, MONA specifically determined two GO
terms ‘mismatch repair’ (P ¼ 0:65) and ‘double-strand
break repair’ (P ¼ 0:98) to be active that were shown to
be related to cisplatin resistance (31). In the same study,
DNA recombination processes, such as resolving Holliday
junctions, were shown to contribute to cisplatin resistance
as well (31). In agreement with that, the respective GO
term DNA ‘recombination’ (P ¼ 0:99) was found to be
active by MONA.

Also, the next term with a high probability—glycolysis
(P=1)—was previously reported to be upregulated in
cisplatin resistance (32). In addition, we observe the fol-
lowing terms with a direct link to glycolysis: ‘monosac-
charide catabolic process’ (P ¼ 0:68), ‘hexose catabolic
process’ (P ¼ 0:80), ‘glucose catabolic process’
(P ¼ 0:76) and ‘acetyl-CoA metabolic process’ (P=1).
As the latter has highest probability, we can conclude,
only by applying MONA, that it plays a more important
role than other glycolysis-related terms.

Furthermore, another two processes shown to be
involved in cisplatin resistance were also revealed by inte-
grative MONA: the mitochondrial respiratory chain was
shown to be inhibited when cell undergo apoptosis on
cisplatin treatment (33) (‘respiratory electron transport
chain’, P ¼ 0:98). Finally, cholesterol levels were shown
to be increased in cisplatin-resistant cells (34) (‘cholesterol
biosynthetic process’, P=1).

Among the results of MGSA on mRNA level, only four
GO terms were considered active. Two of them were not
active when analysed with MONA (‘sterol biosynthetic
process’, P ¼ 0:65 and ‘cellular respiration’, P ¼ 0:61).
However, MONA identified the more specific terms ‘chol-
esterol biosynthetic process and ‘respiratory electron
transport chain’. In the literature, only the more specific
terms identified by MONA are reported (33,34).

MGSA on methylation level did not yield any active
term. Terms with high MONA probabilities had MGSA
probabilities on methylation level close to 0 (Figure 6c).
At the same time, MONA results differed considerably
from mRNA MGSA results. The same trend was
observed by also comparing P-values of Fisher’s exact
test of mRNA and methylation level (Figure 6b). Only a
small number of terms had a low P-value on both levels
and closer inspection of these terms showed that these are
general GO terms. Strikingly, only integration of both
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levels and simultaneous analysis with MONA alone
yielded most relevant results.

As it is not clear from Figure 6b, how much the results
generated by MONA are influenced by the combination of
both, methylation and mRNA data, we illustrate these
combinatorial influences in Supplementary Figure S7.
We observe that there are a number of terms, which
could only be identified by integrating both species simul-
taneously using MONA (rather than using single species
MONA or MGSA). These include previously discussed
terms such as ‘M/G1 transition of mitotic cell cycle’,
‘G2/M transition of mitotic cell cycle’, ‘mitotic sister chro-
matid segregation’, ‘mismatch repair’, ‘double-strand
break repair’ and ‘regulation of exit from mitosis’.

Combined miRNA/mRNA data with inhibitory model

In contrast to the previous example, where the observed
species were independent observations of the underlying
gene response, we now treat the case where the observed
species interact in form of inhibition. It was previously
reported (35) that different cancer classes can be classified
by their gene expression signatures and also by miRNA
expression profiles (36). We selected class-specific markers
on mRNA and miRNA level by performing a one-way

ANOVA on respective expression profiles with subsequent
FDR correction and considered those with adjusted
P < 0:05 as differentially expressed. We considered a
gene to be miRNA-regulated if one putative miRNA regu-
lator [predictions from TargetScan (37)] was also cancer
class-specific and significantly anti-correlated with its
target mRNA expression. Among 8535 measured
mRNAs assigned to a GO term, 3783 were specific for a
certain cancer class and 917 were miRNA regulated.
Now, we use the inhibitory model for MONA to

identify processes distinguishing different cancer classes
on mRNA and miRNA level (Figure 7a). The inhibitory
model can be interpreted such that a non-observed gene
response may be compensated in the model by being cur-
rently regulated by miRNAs.
The integrated analysis with MONA identified five

terms to be active (Figure 7c). By comparing the un-
adjusted P-values of active terms on mRNA and
miRNA level, we observed that three active term are sig-
nificantly enriched on both, mRNA and miRNA level
(Figure 7b and c, ‘actin cytoskeleton organization’,
P ¼ 0:65, ‘actin filament-based process’, P ¼ 0:56 and
‘regulation of signal transduction’, P ¼ 0:52). The top
ranked terms ‘cell adhesion’ (P=1) and ‘biological

(a) (c)

(b) (d)

Figure 6. Analysis of mRNAs and gene promoter methylation of cisplatin resistant versus parental ovarian cancer cells. (a) The cooperative model
for mRNA (magenta) and methylation (orange) was used to specify the hidden gene response (green). (b) For each GO term, P-values of Fisher’s
exact test on mRNA and methylation level are plotted against each other. Active terms resulting from MONA are marked as dots and are colour-
and size-coded by its respective MONA term probability. (c) Probabilities of terms derived from MONA and MGSA on mRNA and methylation
level. (d) Term probabilities plotted against the P-values of Fisher’s exact test for MGSA on mRNA and methylation level. (c and d) Blue and red
lines indicate probability of 0.5 and significance level of 0.05, respectively.
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adhesion’ (P ¼ 0:96) were significantly enriched on
mRNA level and at least higher enriched on miRNA
level than expected by chance, although just above 0.05.
Both terms mostly consist of the same set of genes; there-
fore, algorithms identify both terms with comparable
probabilities to be active. Interestingly, all active processes
identified by MONA were shown to contribute to invasive
cell migration, which is a key mechanism in dissemination
of cancer cells during metastasis (38). We can therefore
conclude that only MONA was able to identify facets of
invasive tumour migration as a distinctive feature of dif-
ferent tumour classes on mRNA and miRNA level.
MGSA at mRNA level resulted in only the term

‘response to steroid hormone stimulus’ to be active
(Figure 7c). This process can discriminate different
tumour classes. However, it is too unspecific to describe
the affected mechanisms well. Only few terms had non-
zero probabilities in MGSA, although they were signifi-
cantly enriched by Fisher’s exact test (Figure 7d). This
indicates that no process was consistently affected on
mRNA level only.
Standard enrichment methods at miRNA level only

consider all target genes of miRNAs. MGSA on miRNA
(targets) yielded two active terms ‘nervous system devel-
opment’ (P ¼ 0:73) and ‘protein modification process’
(P ¼ 0:54). For both, Fisher’s exact test P-values were
only borderline significant (Figure 7d), whereas many

terms had lower P-values. A larger number of specific
processes seemed to be affected by miRNA regulation.
Terms identified by MGSA on miRNA level were again
general and a literature search suggested them to be unre-
lated to cancer-specific processes. Our integrated
approach, in contrast, revealed processes that are known
to be specifically related to the behavior of different
tumour classes.

CONCLUSION AND OUTLOOK

It is well known that a set of cellular processes is differ-
ently active among cells in different conditions. These con-
ditions can be induced by an external stimulus but can
also arise from different cell types or tissues. The activa-
tion of a certain cellular process in turn implies the induc-
tion of a specific set of genes. We therefore expect that if a
cellular process is active, the corresponding genes also
respond to the condition. However, ‘gene response’ is an
abstract term, and we may observe it differently on differ-
ent levels (e.g. mRNA, protein, methylation). Hence, we
integrate gene response as latent variable in multi-omics
observations. This concept is represented as a Bayesian
network in MONA (Figure 2).

The models introduced here plugged to the base model
are only a subset of possible models. Although we have
introduced a cooperative and inhibitory model separately

(a) (c)

(d)(b)

Figure 7. Analysis of post-transcriptional fine-tuning of mRNA expression by miRNA activity across various cancer cell types. (a) The inhibitory
model for mRNA (magenta) and methylation (blue) was used to specify the hidden gene response (green). Lack of observations on mRNA may be
explained by miRNA activity. (b) For each GO term, P-values of Fisher’s exact test on mRNA and miRNA level are plotted against each other.
Active terms resulting from MONA are marked as dots and are colour- and size-coded by its respective MONA term probability. (c) Probabilities of
terms derived from MONA and MGSA on mRNA and miRNA level. (d) Term probabilities plotted against the P-values of Fisher’s exact test for
MGSA on mRNA and miRNA level. (c and d) Blue and red lines indicate probability of 0.5 and significance level of 0.05, respectively.
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plugged to the hidden gene response, MONA allows us to
easily couple both models or even add more observation
levels. For example, available miRNA-mRNA data can be
used in parallel to, for example, protein data. Likewise,
methylation, mRNA and protein levels can be inferred
simultaneously with a cooperative model with three obser-
vations. This simply corresponds to an additional node in
the observation layer (Figure 2b). In addition, the design
allows us to implement additional models to simultan-
eously capture different molecular levels (Figure 1). For
example, when measuring proteins and the metabolome of
cells, we may introduce third ‘activating’ model, where,
for example, an existing metabolite may have an
activating (unlike an inhibiting) effect on a proteins
activity. Protein phosphorylation levels may also serve
as activating evidence of a proteins function. Even
complex gene interactions may be a basis for a model
that could be plugged to the hidden gene response. The
development of more and more powerful techniques for
the inference of gene interactions (39) leads to a compre-
hensive and reliable knowledge of gene regulation and
may improve the outcome of the MONA algorithm.
Another improvement could also be achieved by
introducing a weighted variant of MONA. Here, the mag-
nitude of the fold change between different conditions
could be considered to infer the hidden gene response.

The ontology used in MONA is not exclusively tailored
to GO but may also be applied to ontologies like KEGG
pathways (11) or even disease phenotypes (40). In
summary, our novel framework for gene set analysis
provides three major features: First, it can handle an ar-
bitrary number of different molecular species. Second,
MONA is able to overcome typical problems with
redundancies in standard GO analysis, which is a major
problem in functional analysis. Finally, MONA is flexible
in defining the underlying model describing the gene
response to different conditions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [41,42].
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