
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation
Paulina Szymczak, Wojciech Zarzecki, Jiejing Wang, Yiqian Duan, Jun Wang, Luis Pedro Coelho,
Cesar de la Fuente-Nunez,* and Ewa Szczurek*

Cite This: https://doi.org/10.1021/acs.accounts.0c00594 Read Online

ACCESS Metrics & More Article Recommendations

CONSPECTUS: The escalating threat of antimicrobial resistance (AMR)
poses a significant global health crisis, potentially surpassing cancer as a
leading cause of death by 2050. Traditional antibiotic discovery methods have
not kept pace with the rapidly evolving resistance mechanisms of pathogens,
highlighting the urgent need for novel therapeutic strategies. In this context,
antimicrobial peptides (AMPs) represent a promising class of therapeutics due
to their selectivity toward bacteria and slower induction of resistance
compared to classical, small molecule antibiotics. However, designing effective
AMPs remains challenging because of the vast combinatorial sequence space
and the need to balance efficacy with low toxicity. Addressing this issue is of
paramount importance for chemists and researchers dedicated to developing
next-generation antimicrobial agents.
Artificial intelligence (AI) presents a powerful tool to revolutionize AMP
discovery. By leveraging AI, we can navigate the immense sequence space more efficiently, identifying peptides with optimal
therapeutic properties. This Account explores the emerging application of AI in AMP discovery, focusing on two primary strategies:
AMP mining, and AMP generation, as well as the use of discriminative methods as a valuable toolbox.
AMP mining involves scanning biological sequences to identify potential AMPs. Discriminative models are then used to predict the
activity and toxicity of these peptides. This approach has successfully identified numerous promising candidates, which were
subsequently validated experimentally, demonstrating the potential of AI in AMP design and discovery.
AMP generation, on the other hand, creates novel peptide sequences by learning from existing data through generative modeling.
This class of models optimizes for desired properties, such as increased activity and reduced toxicity, potentially producing synthetic
peptides that surpass naturally occurring ones. Despite the risk of generating unrealistic sequences, generative models hold the
promise of accelerating the discovery of highly effective and highly novel and diverse AMPs.
In this Account, we describe the technical challenges and advancements in these AI-based approaches. We discuss the importance of
integrating various data sources and the role of advanced algorithms in refining peptide predictions. Additionally, we highlight the
future potential of AI to not only expedite the discovery process but also to uncover peptides with unprecedented properties, paving
the way for next-generation antimicrobial therapies.
In conclusion, the synergy between AI and AMP discovery opens new frontiers in the fight against AMR. By harnessing the power of
AI, we can design novel peptides that are both highly effective and safe, offering hope for a future where AMR is no longer a looming
threat. Our paper underscores the transformative potential of AI in drug discovery, advocating for its continued integration into
biomedical research.
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■ INTRODUCTION
Following the boom of antibiotic discoveries in the 20th
century, the past three decades have experienced a discovery
void, with no novel antibiotic classes reaching the market.6

Concurrently, resistance to existing antibiotics has escalated.7

Antimicrobial resistance has become a significant global health
and economic issue, projected to surpass cancer as a leading
cause of death by 2050.8 The antibiotic discovery process
remains cumbersome, often requiring many years to identify
preclinical candidates, resulting in the lack of antibiotic
innovation.9−11

A promising strategy to combat antimicrobial resistance
involves designing novel antimicrobial peptides (AMPs).
These peptides are typically short (10−100 amino acids),
with a net positive charge (commonly +2 to +9) and a high
proportion (≥30%) of hydrophobic amino acids. Positively
charged AMPs show distinct selectivity for negatively charged
microbial membranes and tend not to target the neutral
membranes of eukaryotic cells. Other than membrane
targeting, modes of AMP action include inhibition of key
processes such as protein or nucleic acid synthesis, protease
activity or cell division. Microbial targets and modes of action
of AMPs are determined by their amino acid composition and
structure, with distinguished AMP classes including proline-
rich, tryptophan- and arginine, histidine or glycine-rich
peptides, majority of which are alpha helical but may also
adopt beta-sheet, linear extension or mixed alpha-beta
conformations. AMPs play important roles in host response
to pathogen infection in a wide range of organisms, and are
found in mammals, amphibia, insects, and microorganisms.12

Importantly, microbes develop resistance to AMPs more
slowly than to traditional antibiotics.13 However, many AMPs
exhibit toxicity to mammalian cells, often assessed through
cytotoxic and hemolytic activities.14 While multiple character-
istics such as solubility and stability are important for AMPs,15

the primary challenge remains in designing peptides that are
highly active and minimally toxic. Given the limited success of
known peptides in the clinic, innovative methods for designing

AMP are essential to enhance their properties beyond those of
existing peptides.15,16

The design of AMPs could be defined as an optimization
problem, namely as searching for the most active and least
toxic peptides within a vast space of potential sequences, with
only scarce data on their properties. Considering sequences of
up to 25 amino acids in length, a brute-force search algorithm
would need to evaluate on the order of 1032 sequences, a task
that is computationally infeasible.17 In contrast, the number of
experimentally verified AMPs (on the order of 104, based on
the DBAASP database18) is minuscule. Peptides with
documented activity against specific bacterial species like
Escherichia coli (E. coli) are even scarcer (around 103).

To navigate this vast search space effectively, sophisticated
algorithms are necessary. These algorithms must strike a
balance between selecting realistic peptide sequences, i.e. those
that resemble existing AMPs, and designing idealistic peptides,
i.e., optimizing peptides for heightened activity and low
toxicity, resulting in a realism-idealism trade-of f. Advances in
AI-driven AMP design revealed two primary strategies: (i)
biological sequence mining, and (ii) generative AI. AMP
mining identifies peptides by exploring genomes and
proteomes and evaluating potential candidates using discrim-
inative models that predict their activity or toxicity. This
approach has successfully yielded peptides that are likely to be
naturally produced, aligning with the realism aspect of the
design. Conversely, generative AI models learn the distribution
of peptide data and generate novel sequences, often optimizing
them with predictive models to enhance activity and reduce
toxicity. This strategy is capable of creating idealistic, synthetic
peptides, potentially exceeding those found in nature, though it
risks producing sequences that may not be sufficiently realistic.
Both genome mining and generative AI approaches have the
potential to dramatically accelerate antibiotic discovery,
enabling the identification of hundreds of thousands of
potential candidate molecules. Indeed, the AI-based algorithms
developed so far have successfully designed and discovered
peptides, some with proven efficacy in preclinical mouse
models.2−5,19,20

Here, we describe recent advancements and the current state
of the art in discriminative methods for assessing activity and
toxicity, which are often instrumental for AI-driven AMP
design. This is followed by a systematic review on the emerging
areas of AMP mining and generative AI-based strategies for
AMP discovery. Finally, we discuss remaining challenges in
AMP design and outline promising research directions.

■ DISCRIMINATIVE METHODS
Discriminative methods serve for both AMP mining and AMP
generation, and are crucial for the selection of promising active
and nontoxic candidates. The majority of models broadly
distinguish AMPs from non-AMPs (e.g., sAMP-pred-GAT,21

AMPlify,22 and AMPpredMFA23). More elaborate approaches
focus on identifying highly potent peptides either via
classification or regression by incorporating information on
MIC measurements into the model.24,25 Strain- or species-
specific discriminators attempt to select peptides with an
activity profile specific to a given microbe, such as AMP-
META,26 or MBC-attention.24 While much less popular due to
data scarcity, approaches for AMP toxicity exist as well, such as
EnDL-HemoLyt,27 AMP-META,26 Macrel28 and others.29−32

Strikingly, only few of the discriminative models are evaluated
experimentally through microbiological assays, and even less
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frequently through hemolytic activity and cytotoxicity assays.

An overview of recent discriminative methods summarizing

employed frameworks, feature types, performed tasks, and

experimental validation is provided in Table 1.

Models and Architectures Applied for the Development of
Discriminative Methods

Traditional ML methods, such as decision trees, Support
Vector Machines (SVMs), and random forest (RF), rely
entirely on sequence-derived descriptors for AMP predic-
tion.33,34 Importantly, because of their simplicity, these

Table 1. Discriminative Methods for AMP Discoverya

method framework feature type task experimental validation approach type

sAMPpred-GAT21 GNN, ATT; MLP sequence-derived
descriptors, structure

AMP ML-based

AMPlify22 LSTM, ATT;
MLP

sequence AMP microbiological assays

AMPpredMFA23 LSTM, CNN,
ATT; MLP

sequence AMP

MBC-attention24 CNN, ATT; MLP sequence derived activity
AMP-META26 LGBM structure, sequence-

derived descriptors
AMP, activity, toxicity microbiological assays

EnDL-HemoLyt27 LSMT, CNN;
MLP

sequence toxicity

Macrel28 RF sequence-derived
descriptors

AMP, toxicity

Pandi et al24 CNN, RNN; MLP sequence activity microbiological assays, hemolysis assays,
cytotoxicity assays

APEX2 RNN, ATT; MLP sequence activity microbiological assays, in vivo animal models,
cytotoxicity assays

Capecchi et al.29 RNN, GRU,
SVM; MLP

sequence activity, toxicity microbiological assays, hemolysis assays

Ansari and
White32

RNN, LSTM sequence toxicity, solubility

ESKAPEE-
MICpred31

LSTM, CNN;
MLP

sequence, sequence-
derived descriptors

activity microbiological assays

Ansari and
White30

LSTM; MLP sequence toxicity, non-fouling
activity, SHP-2

Zhuang and
Shengxin38

QSVM sequence-derived
descriptors

toxicity

AmPEPpy34 RF sequence AMP
Orsi and
Reymond46

GPT-3; MLP sequence toxicity, solubility LLM-based

iAMP-Attenpred40 BERT; MLP pLM embedding AMP
PepHarmony41 ESM, GearNet;

MLP
sequence, structure solubility, affinity, self-

contaction
SenseXAMP42 ESM-1b; MLP pLM embedding activity
HDM-AMP43 ESM-1b; DF pLM embedding activity microbiological assays
AMPFinder51 ProtTrans,

OntoProtein;
MLP

pLM embedding activity

LMPred52 ProtTrans; MLP pLM embedding activity
PHAT49 ProtTrans; MLP pLM embedding secondary structure
PeptideBERT47 BERT (ProtBert);

MLP
pLM embedding toxicity, solubility,

non-fouling activity
TransImbAMP53 BERT; MLP pLM embedding activity
AMPDeep45 BERT (ProtBert);

MLP
pLM embedding toxicity

Zhang et al.48 BERT; MLP pLM embedding activity
Ma, Yue, et al5 BERT, ATT,

LSTM; MLP
sequence AMP microbiological assays, in vivo animal models,

hemolysis assays, cytotoxicity assays
iAMP-CA2L39 CNN, Bi-LSTM,

MLP; SVM
structure AMP structure-based

sAMP-VGG1655 CNN; MLP sequence-derived
descriptors

AMP

AMPredictor56 ESM; MLP sequence-derived
descriptors, structure

activity microbiological assays, in vivo animal models,
hemolysis assays

aGNN: Graph Neural Network; ATT: attention mechanism, MLP: Multi-layer perceptron, LSTM: Long Short-Term Memory, CNN:
Convolutional Neural Network, LGBM: Light Gradient-Boosting Machine, RF: Random Forest, RNN: Recurrent Neural Network, GRU: Gated
Recurrent Unit, SVM: Supporting Vector Machine, QSVM: Quantum Supporting Vector Machine, GPT-3: Generative Pre-trained Transformer 3,
BERT: Bidirectional Encoder Representations from Transformers, ESM: Evolutionary Scale Modeling, DF: Deep Forest, Bi-LSTM: Bi-directional
Long Short-Term Memory.
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methods can be employed to infer biological insights, such as
analysis of Shapley Additive exPlanations to reveal differences
in AMP mechanisms of action between Gram-negative and
Gram-positive bacteria.26 Another example of a traditional ML
discriminator for AMPs is Macrel,28 a random forest model,
trained on an unbalanced data set containing a ratio of
approximately 1:50 of AMPs vs non-AMPs to more closely
mimic the expected distribution in a genome mining task than
a balanced data set. Macrel was successfully applied in a recent
large AMP mining study, AMPSphere.3 The relative simplicity
and on-par or, for some tasks, better performance than more
sophisticated, deep-learning (DL) based approaches make
traditional ML methods a recommendable choice for AMP
identification.35

Still, compared to traditional machine learning methods, DL
models have the potential to increase effectiveness in
addressing more complex challenges and improve prediction
accuracy for AMP discrimination.36,37 The most ubiquitous DL
methods in AMP prediction are derived from models originally
devised for natural languages, such as recurrent neural
networks (RNNs),19,25,29 or long short-term memory
(LSTM) architectures.25,30−32 Furthermore, attention mecha-
nisms have emerged as a pivotal component of many recent
architectures. Through examination of features related to
sequence composition, such as frequency of occurrence of each
amino acid, and backward and forward relationships, these
models gain a profound comprehension of the ″semantics″
inherent in biological sequences. Models such as AMPlify22

achieve that by incorporating autoregressive models like Bi-
LSTM and attention layers. Although convolutional neural
networks (CNNs) were originally introduced for vision-related
tasks, they are also used for AMP prediction, based on
sequence-derived features. One example of a CNN-based
model is MBC-Attention,24 which combines multibranch
CNN with attention mechanism to regress the minimum
inhibitory concentration of AMPs against E. coli. An approach
combining the strengths of both autoregressive and CNN-
based methods is AMPpred-MFA,23 which uses both bidirec-
tional-LSTMs and CNNs, followed by multihead attention
mechanism to extract context dependencies of peptide
sequences. Finally, a quantum supporting vector machine
was proposed by Zhuang and Shengxin to detect toxicity of
peptides based on sequence derived descriptors.38

Large Language Models Applied in Discriminative
Methods

While deep learning networks such as RNNs, LSTMs or CNNs
do take into account the context relationships within amino
acids, the recent large language models (LLMs) based on the
transformer architecture offer novel opportunities for analysis
of large corpuses of sequence data, in particular by efficiently
leveraging the attention mechanism. In particular, LLMs have
been successfully applied to protein sequences, resulting in so-
called protein language models (PLMs).39 The process of
training such models usually follows two steps. First, a
transformer model is pretrained on a large corpus of proteins
in a generative task, and then fine-tuned to a specific
downstream task, such as function, property, or structure
prediction. Similarly to ML-based approached, PLMs have
been applied to predict antimicrobial activity5,40−45 and
nontoxicity,46−48 but other properties such as solubility or
secondary structure41,46,47,49 have been tackled as well (Table
1).

Compared to typical proteins, peptides are shorter in length
and have relatively less complex tertiary structure. Moreover,
the number of known bioactive peptides is much smaller than
the number of known proteins, and the number of AMPs
validated by experimental methods is limited. Therefore, direct
application of PLMs without additional fine-tuning to AMP
data would result in models biased toward more protein-like
properties. Indeed, models trained on proteins, ‘chopped
proteins’ (short subsequences of proteins) and peptides result
in different embeddings of the input sequences and the models
trained on shorter sequences have more generalized embed-
dings and perform better in downstream tasks.50 While
attempts to directly use text-based pretrained LLMs without
additional pretraining on protein corpus have been made,40,46

this approach was shown to result in inferior performance to
RNNs46 as the embeddings trained on natural text are likely
not suitable for the domain of peptide sequences.

The most prevalently used LLM architectures are bidirec-
tional encoder representation from transformers (BERT),
which are effective in dealing with long-distance dependencies
and thus learn the global context information on input
sequences. Apart from such BERT-based models, other
encoder-only architectures are successfully employed for
AMP classification, in particular Evolutionary Scale Modeling
(ESM) encoders, built upon the concept of integrating both
sequence and evolutionary information.41−43 OntoProtein, a
BERT-like model based on both protein sequences and the
gene ontology (GO), was incorporated into AMPFinder51 to
predict the functional types of AMP. However, in a recent
evaluation by Dee,52 full encoder-decoder transformer
architectures49,51,52 were proven to outperform the encoder-
only models, confirming the results of Elnaggar et al., who
performed similar benchmarking for proteins.44

Apart from architecture, the PLM models in AMP prediction
differ also by their pretraining corpus, with most methods
using UniRef50,41−43,49,51,52 fewer using UniRef100,47,51 and
individual cases pretraining on Pfam,53 BFD,45,52 and
UniProt,48 or merging corpuses.51 The selection of the
pretraining corpus has a significant influence on model
performance, as more diverse corpuses, such as UniRef50
having lower between-sequence similarities than UniRef100,
were shown to improve results without any changes to the
architecture.52

While most models directly proceed with training by adding
prediction heads to the pretrained models and fine-tuning for
discriminative AMP tasks, some approaches incorporate an
additional phase of fine-tuning beforehand, for example using
secretory data as an additional corpus45 for toxicity prediction
or data for sequences shorter than 50 amino acids.41 Such
additional pretraining phases may shift the pretrained model’s
focus toward distributions of sequences that are more peptide-
or AMP-like. Indeed, as peptides are much shorter and with
simpler structure than proteins, LLMs pretrained on proteins
may not adequately represent the peptide distribution.50

Representations of Peptides Used by Discriminative
Methods

Various discriminative models differ by the representation of
peptides as their input features. The most prevalent
representation is the amino acid sequence. While it can serve
as a primary input to the model, it is also used to obtain
sequence-derived descriptors or embeddings from pretrained
models. Feature encoding using PLMs outperformed human-
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engineered features in a benchmarking study of Garciá-Jacas et
al.54 Still, Zhang et al. improved the performance of their
model SenseXAMP42 in AMP prediction by fusing the
embedding of a pretrained protein model with traditional
protein descriptors (PD). SenseXAMP performed better than
simply fine-tuning pretrained models, indicating that tradi-
tional PDs continue to play a crucial role in AMP screening
tasks. Other approaches convert a sequence to an image, either
using cellular automata40 or atom connectivity information,55

and then apply CNNs as the architecture for discriminative
models.

Apart from methods that focus on amino acid sequence as
the primary peptide representation, some methods try to
incorporate structural information as an additional, comple-
mentary view. Of particular interest are methods that leverage
graph-based approaches to encode structural information
about peptides. For example, sAMP-pred-GAT21 integrates
structural, sequence, and evolutionary information on peptides
to construct a graph attention network (GAT) used to identify
AMPs. Similarly, AMPredictor56 is a Graph Convolutional Net
that incorporates Morgan fingerprints, peptide contact maps,
and embedding from ESM to regress MIC values. Graph
encoding was also combined with pLM embedding in
PepHarmony,41 which merges sequence-level encoding from
ESM with structure-level embedding from GearNet in
multiview contrastive learning.

■ AMP MINING
The availability of biological sequence data has seen an
unprecedented expansion in recent years sparking efforts to
discover new AMPs using mining strategies. AMP mining
involves applying the previously discussed discriminative
methods to biological sequence data, including genomes,
proteomes, and metagenomes. Historically, AMPs were
oftentimes found in the skin secretions from amphibians.57

While AMP mining requires careful handling to minimize false
positives, particularly given the very large size of input data
sets, it can yield high-quality predictions that have been
substantiated through both in vitro and in vivo validations.3,5,58

The AMP mining approaches primarily target antimicrobial
properties and they differ by the type and source of analyzed
biological sequence collections (Table 2). Majority of AMP
mining methods do not rely on toxicity predictors, likely due to
their low reliability.
Biological Sequence Collections Amenable for AMP
Mining

Today, millions of genomes are accessible, and, together with
metagenomes (which contain the genomic material of multiple
organisms in a microbial community) or proteomes, they are
collected in public databases.59−63 An example of rich data is
the nonredundant Global Microbial Gene Catalogue
(GMGCv1), created from thousands of metagenomes across
numerous habitats. This resource includes billions of open
reading frames (ORFs) clustered at a high nucleotide identity
level, resulting in hundreds of millions of species-level
unigenes.64 The GMGCv1 also contains tens of thousands of
AMR genes, identified through homology-based searches
against the Comprehensive Antibiotic Resistance Database
(CARD)65 and alignment with known resistance gene
sequences. In another study, Duan and colleagues constructed
a global microbial catalog of small open reading frames
(smORFs), which encode small proteins. The catalog, named

GMSC, was derived from thousands of publicly available
metagenomes across multiple distinct habitats and thousands
of high-quality isolate genomes. GMSC contains close to a
million nonredundant smORFs with comprehensive annota-
tions and provides a tool called GMSC-mapper to identify and
annotate small proteins from microbial (meta)genomes.60

AMP Mining of Genomes and Proteomes

Recently, the human proteome was explored as a source of
antibiotics.4,66−68 The landmark study of Torres et al.
employed an algorithm that utilized key physicochemical
properties such as sequence length, net charge, and average
hydrophobicity to predict antimicrobial activity. Building on
the work of Pane et al.,77 this algorithm models antimicrobial
potency as being linearly dependent on physicochemical
properties raised to exponents - model parameters that were
fitted using known AMPs. Specifically, the algorithm scanned
42,361 protein sequences from the human proteome and
identified 2,603 potential AMP candidates, many of which
were previously unrecognized as antimicrobials or to play a
role in host immunity. By avoiding known AMP motifs and
focusing on physicochemical characteristics, these explorations
led to the discovery of novel antimicrobials, several of which
were synthesized, validated experimentally, and showed
efficacy in animal models.

AI has also enabled biological mining efforts69 to explore
proteins from extinct species, such as Neanderthals and
Denisovans, revealing a new set of antimicrobial sequences
and launching the field of molecular de-extinction.19 In this
work, the authors introduced panCleave - a random forest
model for proteome-wide cleavage site prediction. For
selection of candidate AMPs, apart from expert curation,
they used a consensus of six publicly available traditional ML-
based AMP models, including Macrel.28 Another study mined
the proteomes of all available extinct organisms, including the
woolly mammoth. Using a more powerful deep learning model
called APEX,2 this study led to the discovery of novel AMPs,
such as neanderthalin-1, mammuthusin-2, and elephasin-2,
which now represent preclinical candidates. These computa-
tional efforts have drastically accelerated our ability to discover
new antibiotics, transforming a process that once took years
into one that can be completed in hours.70

An alternative approach for mining for phage peptidoglycan
hydrolases (PGHs)−derived antimicrobial peptides was
proposed by Wu et al.71 The study introduced a computational
pipeline to mine AMPs derived from ESKAPE microbes (a
group of clinically dangerous pathogens comprising Enter-
ococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa and Enter-
obacter spp) and their associated phages. To evaluate the
antibacterial activity of the extracted peptides, the authors
trained a model with CNNs and LSTM layers, basing on the
model used by Ma et al.5 The result is a database, ESKtides,
containing over 12 million peptides with predicted high
antibacterial activity.
AMP Mining of the Microbiome

Using the human gut microbiome as the biological sequence
resource, Ma et al.5 mined for AMPs using deep learning
techniques, including LSTM, attention, and BERT. The study
identified 181 peptides showing antimicrobial activity, many of
which had less than 40% sequence homology to known AMPs,
demonstrated significant efficacy against antibiotic-resistant,
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Gram-negative bacteria, and in reducing bacterial load in a
mouse model of lung infection.

In another study, deep learning discriminator methods were
applied for the task of anticancer peptide (ACP) prediction,
leveraging the overlap between ACPs and AMPs.72 The study
employed a high-throughput mining process to identify 40
potential ACPs from the gut microbiome metagenomic data.
Out of these, 39 peptides showed significant anticancer activity
in various cancer cell lines. Two peptides, in particular,
demonstrated exceptional efficacy in reducing tumor size in a
mouse model without causing toxicity.

Furthermore, nearly a million new potential AMPs were
recently discovered by computational analysis of the global
microbiome.3 Using machine learning, the authors explored
the vast diversity of the microbial world, analyzing 63,410
metagenomes and 87,920 microbial genomes. Additionally,
identification of the peptides in proteomics and tran-

scriptomics data was used as a filtering step after identification
based on genomic sequence, The study resulted in the
computational prediction of nearly a million candidates for
new AMP, which were deposited in the AMPSphere database.

Another study integrated metagenomes from four different
body sites to identify smORF-encoded peptides.58 To evaluate
smORFs that were likely to encode AMPs, the authors used a
random-forest based discriminator model. The study identified
323 candidate antibiotic peptides, showing activity against
clinically relevant pathogens, both in vitro and in vivo.

Finally, several recent studies turned to mining microbiomes
other than human gut, focusing on particularly promising
species that are known to effectively maintain microbiome
homeostasis.73,74 For example, Klimovich et al. performed
high-throughput transcriptome and genome sequencing,
followed by machine learning-based analysis of freshwater
polyp Hydra’s microbiome. The study revealed that AMP-

Table 3. Generation Approaches to AMP Discovery

method generation mode controlled generation aimed properties
generation
framework experimental validation MD

AMP-GAN93 unconstrained conditional generation sequence length, microbial tar-
get, target mechanism, activity

cGAN microbiological assays, cytotoxicity as-
says

yes

MMCD102 unconstrained conditional generation, con-
trastive learning

AMP, ACP diffusion

CLaSS80 unconstrained discriminator-guided filter-
ing

AMP, activity, nontoxicity,
structure

WAE microbiological assays, in vivo animal
models, cytotoxicity assays, hemolysis
assays

yes

LSSAMP83 unconstrained latent space sampling secondary structure vector quan-
tized VAE

microbiological assays, in vivo animal
models, cytotoxicity assays, hemolysis
assays

AMP-Diffu-
sion101

unconstrained positive-only learning AMP PLM + diffu-
sion

microbiological assays, in vivo animal
models, cytotoxicity assays

AMPGAN v294 unconstrained conditional generation sequence length, microbial tar-
get, target mechanism, activity

cGAN

AMPTrans-
LSTM82

unconstrained discriminator-guided filter-
ing

AMP LSTM + trans-
former

Zeng et al.99 unconstrained discriminator-guided filter-
ing

AMP PLM microbiological assays

Jain et al.96 unconstrained active learning AMP GFlowNets +
active learn-
ing

Pandi et al.24 unconstrained discriminator-guided filter-
ing

activity VAE microbiological assays, cytotoxicity as-
says, hemolysis assays

yes

M3-CAD85 unconstrained conditional generation, dis-
criminator-guided filtering

microbial target, nontoxicity,
mode of action

cVAE microbiological assays and in vivo,
cytotoxicity assays, hemolysis assays

Ghorbani et al.88 unconstrained AMP VAE
MODAN97 optimized bayesian optimization Activity and nontoxicity Gaussian proc-

ess
microbiological assays, hemolysis assays

Cao et al.92 unconstrained discriminator-guided filter-
ing

AMP GAN microbiological assays yes

Diff-AMP100 unconstrained discriminator-guided filter-
ing

AMP Diffusion

HydrAMP1 unconstrained,
analogue

conditional generation AMP, activity cVAE microbiological assays, hemolysis assays yes

AMPEMO98 optimized discriminator-guided filter-
ing

AMP, diversity Genetic algo-
rithm

Buehler et al.103 unconstrained conditional generation secondary structure, solubility GNN
Renaud and
Mansbach84

unconstrained,
analogue

latent space sampling AMP, hydrophobicity VAE

Capecchi et al.29 unconstrained discriminator-guided filter-
ing, positive-only learning

activity, nontoxicity RNN microbiological assays, hemolysis assays

Multi-CGAN90 unconstrained conditional generation activity, nontoxicity, structure cGAN
QMO89 optimized zeroth-order optimization,

gradient descent
activity, nontoxicity WAE

PandoraGAN91 unconstrained positive-only learning antiviral activity GAN
PepVAE86 unconstrained latent space sampling activity VAE microbiological assays
ProT-Diff104 unconstrained discriminator-guided filter-

ing, positive-only learning
AMP, activity PLM + diffu-

sion
microbiological assays and in vivo,
cytotoxicity assays, hemolysis assays

MOQA87 optimized D-wave quantum annealer activity, nontoxicity binary VAE microbiological assays, hemolysis assays
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encoding genes underwent a recent, rapid evolution in the
Hydra species, that AMPs are selectively expressed in certain
cell types, and finally, that the AMP activity follows a spatial
pattern, suggesting that depending on the microhabitat
different cocktails of AMPs targeting different bacterial species
are secreted to generate a specific chemical landscape to locally
control the density and shape the composition of the
microbiome of Hydra.73 Another study, based on a deep
learning model with Dense-Net blocks and a self-attention
module,74 focused on the gut microbiome of cockroaches,
which harbors harmful species without occurring pathogenesis.
Exhaustive Mining of Combinatorial AMP Sequence
Spaces for Short Peptides
Instead of mining natural biological sequence resources, recent
efforts focus on evaluating all possible sequences of up to a
fixed, short length. Huang et al. developed a machine-learning-
based pipeline to systematically identify effective AMPs from a
vast virtual library of peptides made of 6−9 amino acids.75

Their pipeline consists of multiple sequential machine-learning
modules designed to filter, classify, rank, and predict the
efficacy of potential AMPs. Since their discriminator models
were trained on the GRAMPA data set,76 a compiled collection
of MIC measurements that could suffer from lab-specific
biases, the authors adopted a two-step experimental validation
strategy, refining their discriminator after the initial stage to
mitigate possible biases in the training data. The results of the
study include the identification of three potent hexapeptides
that exhibit strong antimicrobial activities against multidrug-
resistant pathogens, comparable efficacy to penicillin in
treating bacterial infections in mice, and low toxicity. Another
study focused on developing AMPs against Acinetobacter
baumannii, scanning through the entire libraries of hexapep-
tides, heptapeptides, and octapeptides, encompassing tens of
billions of candidates. Their pipeline included classifiers for A.
baumannii-specific AMPs, trained on an extremely scarce
training data set of only 148 sequences using a few-shot
learning strategy involving pretraining and multiple fine-tuning
steps.

■ AMP GENERATION
Generative AI holds the promise to transform the discovery of
novel drug candidates.79 By learning and modeling underlying
data distributions, generative AI may become indispensable
tools for peptide generation in the future. Several generative AI
methods have already been applied for this purpose, showing
promising results and paving the way for future advancements
in peptide-based antimicrobial drug discovery.1,15,80,81

Modeling Frameworks Employed in AMP Generation
The generative AI approaches applied so far differ by the
specific modeling framework that they use (Table 3). While
the use of autoregressive models, such as LSTMs and more
generally RNNs,29,82 has been explored, they are currently less
frequently used compared to other methods. The majority of
research thus far has focused on the implementation of
variational autoencoders (VAEs)1,25,83−88 or Wasserstein
autoencoders.80,89 Generative adversarial networks
(GANs)90−94 have also seen significant application, demon-
strating their ability to generate new AMP sequences. Most
AMP generation methods focus on generating candidates with
promising antimicrobial candidates, with a smaller number
addressing hemolytic or cytotoxic properties as well. While
some generative AI studies included microbiological testing of

generated AMP candidates, relatively few were further tested in
animal models (Table 3). The different model architectures
and their training processes have been discussed in detail in
our recent review.95

Controlled AMP Generation

Generative AI methods can efficiently produce thousands of
plausible peptide candidates, making it crucial to direct the
generation process toward acquiring desired properties to
increase the likelihood of identifying relevant hits. One
fundamental approach to controlled generation is the use of
auxiliary discriminators to guide the generative process and to
filter top candidates. In the CLaSS model,80 discriminative
models are trained on the latent space of a WAE, guiding the
generation toward peptides with targeted activity and toxicity.
Another straightforward strategy is based on positive-only
learning, as demonstrated by PandoraGAN,91 where only
highly active peptides are used for training. However, both
discriminator-guided filtering and positive-only learning are
limited by the sparse availability of positively labeled training
data, namely active and nontoxic AMPs.

The advancement of GAN or VAE-based models has led to
the development of their conditional variants, such as
cGANs90,93,94 and cVAEs.1,85 These models are configured
during the generation phase to produce peptides more likely to
meet specific criteria. For instance, Multi-CGAN90 optimizes
the generation process to address multiple properties
simultaneously, while M3-CAD,85 a multimodal, multitask,
and multilabel cVAE, targets eight feature categories including
predicted 3D structure, species-specific antimicrobial activities,
antimicrobial mechanisms, and toxicity.

Additionally, some methods exploit the model’s latent space
to guide generation. Techniques such as latent space sampling
allow for the selection of peptides from regions expected to
encode desirable attributes.83,84,86 For example LSSAMP83

discretizes the latent representation to encode both sequence
and structural information, facilitating the generation of
peptides with desired secondary structures.

To tackle challenges like training data deficiency, the model
of Szymczak et al., called HydrAMP, introduced several key
enhancements to the standard cVAE framework.1 The model
focused on generating highly active antimicrobial peptides
(AMPs) by conditioning on properties like low MIC values.
HydrAMP included a pretrained classifier to ensure that the
generated peptides retained the desired properties. To improve
training stability, the authors added terms to the loss function
that made sure the generated peptides closely matched the
input and that the latent representations of the input and the
generated peptides matched as well. HydrAMP also featured
the ability to modify an existing peptide to meet specific
activity conditions, controlled by a creativity parameter. Higher
creativity led to more diverse analogues. Unlike standard
cVAEs, which generate peptides by sampling from the latent
space, HydrAMP could improve both known AMPs and
peptides experimentally proven to lack antimicrobial activity.
Molecular dynamics (MD) simulations provided additional
descriptors of peptide activity, which, combined with a
classifier ensemble, helped rank candidates for experimental
testing. Finally, the most promising peptides were synthesized,
and their activity and toxicity were experimentally validated.
Using HydrAMP, Szymczak et al. discovered 15 novel, highly
potent AMPs, that were active against several strains of
bacteria, including multi drug resistant strains.
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Analog generation, as employed by HydrAMP, is one way of
lead optimization for AMPs, as it produces peptides similar to
a nonactive prototype but with enhanced properties. A
promising research direction for idealistic peptide design is
direct optimized generation, often using tailored cost functions.
In this domain, QMO89 uses zeroth-order gradient optimiza-
tion to navigate the latent space. Other approaches addressing
the optimization challenge include active learning with
GFlowNets,96 quantum annealing,87 Bayesian optimization,97

and evolutionary algorithms.98

Large Language Models Applied in AMP Generation
With the current success of tools such as chatGPT, generative
language modeling becomes popular also in the field of AMP
generation. While pretrained LMs are widely used in
discriminative tasks, their application to AMP generation has
been limited. AMP generation from pLMs typically involves
either decoder-like architectures such as GPT99 or a diffusion
process trained on continuous embeddings obtained from
pretrained LMs.100,101 Unfortunately, these methods have so
far implemented relatively simplistic strategies for controlled
design, relying mainly on either positive-only learning or
discriminator-guided filtering.99−101 A promising direction has
been the use of contrastive learning, as in MMCD102 where
training of a diffusion-based model involves contrasting the
embeddings of known positive AMP examples with negative
ones.

■ CHALLENGES AND PROSPECTS FOR THE FUTURE
With the AI revolution transforming the world today, there is
growing potential for AI to enhance the design of novel AMP-
based antibiotics and to fight antimicrobial resistance. Indeed,
many breakthroughs have been made in recent
years.1,2,4,5,15,19,20,74

The two described approaches: AMP mining, and AMP
generation, equipped and enhanced by the use of cutting edge
discriminative methods, are among the most promising
strategies for AI-driven AMP discovery. However, limitations
of existing tools in this domain need to be addressed, and open
avenues of research remain unexplored.
Challenges to Be Addressed in the Realm of
Discriminative Models
Despite intensive development of discriminative models,
challenges remain regarding their application in the AMP
field. First, the development of predictive methods is hindered
by the relatively small volume of available data. Recent
approaches based on transfer learning, with particularly wide
usage of pretrained and fine-tuned LLMs, promise to partially
solve the problem of data scarcity. More developments for
computational handling of low-data regimes, as well as
initiatives enhancing data sharing and experimental validation
efforts are needed as the data for multiresistant strains will
remain insufficient for training strain-specific activity pre-
dictors. Finally, more emphasis should be placed on developing
methods predicting peptides’ toxicity, a major barrier to the
clinical application of AMPs. Currently, due to limited training
data, existing methods for hemolytic activity prediction
perform suboptimally, while cytotoxicity prediction methods
are severely lacking.

Another major challenge is the lack of experimentally
validated negative examples, which is easily explained by the
lack of incentive to generate negative data.105 Moreover, a
peptide may falsely appear negative if not tested against a

sensitive strain or due to technical issues such as clumping in
solution which can easily be mistaken for lack of activity. The
lack of well-defined negatives poses a particularly difficult
problem in the supervised learning paradigm. As shown by
Sidorczuk et al.106 negative data set construction heavily
influences the performance of models in the task of AMP
prediction. Some approaches try to address the issue by
modifying the loss function, for example by using asymmetric
loss that down-weights the negative samples,53 or by adapting
the data sampling procedure, for example down-sampling the
negative examples.30,48 Additionally, different studies deter-
mine both positives and negatives under different experimental
conditions, such as medium and bacterial concentrations,
further adding confusion to the definition of labels for model
training.15 Therefore, databases of AMPs should be populated
by researchers not only with the experimentally validated
positives, but also negatives, and standards for the experimental
conditions should be unified.

In addition, full use of peptide structural information could
be more effective for functional prediction. However, due to
scarce structural information, in-depth analysis of the
importance of structure formation for AMP property
prediction is currently limited. Moreover, the structures
available in the databases such as DBAASP are obtained
without taking into consideration neither the proximity of the
cell membrane nor the effect of self-association of the peptides
into larger aggregates. Additional structural information such
as secondary and tertiary structures and post-translational
modifications could be considered in future studies, providing
an opportunity to improve the performance of AMP
predictions.

Moreover, it is crucial to verify the robustness and
generalizability of the model on different independent data
sets. However, existing deep learning models have not yet been
objectively evaluated using external data sets, which should be
addressed.35

While quite successful at classification of linear peptide data,
current discriminative methods are not applicable to a wide
realm of modified peptides. A significant subset of antimicro-
bial peptides contains noncanonical building blocks such as
cycles, β-amino acids, modified cysteines, and lipid attach-
ments, distinguishing them from purely linear peptides,
however those types of peptides are not abundant enough
for AI classifier training107 Existing FDA-accepted AMPs, such
as polymyxins, significantly differ from such linear peptides.108

This limits the applicability of discriminative methods for
detection of clinically relevant AMPs. Therefore, more data on
complex and modified peptides should be deposited in
dedicated databases to enable AI model training.

Furthermore, data on other important properties of peptides
could be used in the future to train better classifiers. For
example, peptides can be degraded in vivo, resulting in half-
lives that are insufficient for translational development.
Currently, relevant training data on half-lives is not available
and would greatly benefit AI-driven design. Such data could be
collected by conducting systematic experimental studies that
measure peptide stability in various biological environments,
and compiling the results into publicly accessible databases for
machine learning applications. To our knowledge, there is also
no available data about ADMET properties of AMPs, which
could be used to train AI models. To address this challenge, a
large experimental study testing ADMET properties of
peptides would be required. Alternatively, as performed by
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Mishra and Muthukaliannan et al.,109 machine learning
approaches for predicting ADMET properties of small
molecules could be applied to SMILES representations of
peptides. However, such predictions may be unreliable due to
the larger size and different physicochemical properties of
peptides compared to small molecules.
Challenges to Be Addressed in AMP Mining

AMP mining in biological sequences brings the advantages of
identifying highly realistic peptides as AMP candidates. Indeed,
the biological peptide sequences contain only L-amino acids
and thus can be easily synthesized by solid phase synthesis with
low costs and limited byproduct reactions. AMPs secreted in
living organisms, such as in the gut microbiome, may
specifically target invading microbes while avoiding toxicities
to hosts. However, the potential of biological sequence mining
strategies for discovering AMP candidates is realized only
under specific conditions: first, AMPs with high activity and
low toxicity must be present within the biological sequences
being mined; second, the discriminative methods used must be
capable of accurately identifying these AMPs. While the
existing mining approaches have already proven success-
ful,2,3,5,19,74 these conditions underline the necessity of having
both a rich biological data set and robust discriminative
models. Furthermore, the genomic context has long been
recognized as a critical factor in functional predictions of
biological sequence properties.110 Recent advancements have
seen techniques from natural language processing being
innovatively applied to gene function prediction, providing
new ways to interpret complex biological data.111−113 Adapting
these approaches in the context of AMP mining could allow for
better use of the limited labeled data for AMPs, but testing
their accuracy empirically remains an open problem.

AMP mining could also benefit from expanding the
analytical framework beyond genomics and proteomics alone
by integrating additional data types into the predictive models.
These could include transcriptomics data, which has been
shown to be predictive of protein function114 or ribosomal
sequencing data.115 However, there is still a shortage of data
sets with these data types compared to the widespread
availability of genomes.

While some peptides are produced by a complex process of
post-translational modifications or even nonribosomally, many
peptides are encoded by single genes, which can be directly
transcribed and translated, or derived from the cleavage of a
single precursor protein. This simpler genetic architecture
makes peptides particularly amenable to exploitation for
biotechnological purposes. Exploiting the potential of bio-
synthetic gene clusters, which must be expressed as a group to
produce the desired compound116,117 could prove beneficial
for AMP discovery.

Moreover, processing each sequence independently with a
pretrained model, although practical, overlooks valuable
information contained in natural variations. Where multiple
sequences are available,118 employing models that analyze
multisequence alignments rather than individual sequences can
offer significant benefits.

Finally, since AMP mining relies on discriminative methods,
their limitations transfer naturally to this approach. In
particular, as discriminative methods cannot detect complex,
chemically modified peptides, currently only linear peptides
can be mined. Although recent AMP mining studies did
perform preclinical testing of the most promising AMP

candidates in animal models, none of those candidates went
further to clinical studies yet.
Challenges to Be Addressed in AMP Generation

Similarly to AMP mining, generative AI has the potential to
accelerate AMP discovery, but several obstacles remain. First,
evaluation and benchmarking of generative models prove
difficult. Generated peptides are most often evaluated with
respect to diversity, novelty, and similarity to training data, but
the activity and toxicity remain unknown except for a small
experimentally validated subset. Auxiliary discriminators are
used to estimate those properties of interest, but the choice of
such models is entirely arbitrary, making comparison between
models impossible. Second, as generative methods are capable
of generating thousands of candidates within a short span of
time, efficient methods to rank top candidates are needed.
Currently, top candidates are selected using extensive filtering
and expert knowledge. The existing generative approaches are
also limited in their performance due to low data availability.
Additionally, searching for potent peptides can be thought of
as generating examples out-of-distribution, a widely recognized
problem in generative modeling.

With few exceptions,97 generative AI methods operate only
on the 20-letter amino acid alphabet, without taking into
account post-translational modifications or nonstandard amino
acids. Thus, they are unable to sample from the huge space of
peptides with chemical modifications, thereby largely under-
estimating the full complexity of the peptide world. Further
extensions of the generative models to account for non-
standard amino acids may result in highly potent AMP designs
in the future. So far, there is not enough training data to equip
generative AI with the abilities to directly design such complex
peptides as those currently in use in the clinic. However, the
promising linear peptide candidates can be further enhanced
by rational design, increasing their stability, efficacy and safety
by choosing from the repertoire of typical chemical
modifications, such as cyclization, residue phosphorylation or
addition of lipids.12

In comparison to AMP mining, relatively fewer AMPs
obtained from generative AI methods were confirmed
preclinically in vivo, which may stem from the fact that the
majority of AI laboratories have limited experimental
capacities. Therefore, AI-discovered AMPs are yet to be tested
in clinical trials. This calls for collaborative efforts of AI,
chemical and biological laboratories joining forces with
industrial partners to cover the steps from discovery to the
clinics.

Finally, the emerging generative AI methods are usually
benchmarked and developed for generation of text or images
and are not always well-suited for the generation of peptides.
Importantly, most existing generative AI models need specific
modeling extensions to achieve controlled generation, which
poses an important research direction that is largely unex-
plored for the design of AMPs.

■ SUMMARY
The future of antimicrobial peptide discovery is on the cusp of
a transformative revolution with the integration of AI
technologies. Since early pioneering work demonstrated that
machines could design peptide antibiotics effective in
preclinical mouse models,20 this field has grown and matured
significantly. AI-driven approaches have already dramatically
accelerated our ability to identify new AMPs. By leveraging
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large-scale genomic and proteomic data, coupled with
sophisticated generative and discriminative models, AI will
facilitate the design of potent AMPs specifically tailored to
combat emerging resistant pathogens. This synergy between AI
and biotechnology promises to accelerate the drug discovery
process while also overcoming limitations associated with
traditional approaches.
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global microbiome, with a focus on small proteins, including
antimicrobial peptides.
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