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Abstract 

We consider the problem of renal mass risk classification to support doctors in 

adjuvant treatment decisions following nephrectomy. Recommendation of adjuvant 

therapy based on the mass appearance poses two major challenges: first, morpho-

logic patterns may sometimes overlap across subtypes of varying risks. Second, 

interobserver variability is large. These complexities encourage the use of compu-

tational models as accurate noninvasive tools to find relevant relationships between 

individual perioperative renal mass characteristics and patient risk. In addition, recent 

evidence highlights the importance of clinical context as a promising direction to 

inform treatment decisions post-nephrectomy. In this work, we aim to identify relevant 

clinical markers that can be predictive of renal cancer prognosis. As a starting point, 

we perform a clinical feature ablation study by training a logistic regression baseline 

model to predict renal cancer patients’ eligibility for adjuvant therapy. The training 

dataset consisted of medical records of 300 individuals with renal tumors who under-

went partial or radical nephrectomy between 2011 and 2020. In addition, we evaluate 

the same task using a transformer-based model pretrained on a much larger dataset 

of over 300,000 clinical records of individuals from the UK Biobank. Our findings 

demonstrate the pretrained model’s efficacy in knowledge transfer across different 

populations, with radiographic data from preoperative cross-sectional imaging playing 

an important role in informing renal risk and treatment decisions.
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Introduction

Renal tumor treatment decisions depend on evaluating the pathologic attributes of 
the tumor and perioperative treatment outcomes, yet accurately classifying tumor 
mass risk remains challenging due to variability in morphologic patterns and the 
substantial interobserver variability among medical urologic pathologists [1,2]. The 
advancement of artificial intelligence (AI) holds promise for automating these evalua-
tions and acquiring the ability to extract features that might be subtle or even imper-
ceptible to human readers. Presently, AI methods primarily focus on renal cancer 
diagnosis, employing deep learning models as second readers to aid radiologists in 
image interpretation [3–5]. However, most models consider only pixel-value informa-
tion without informing clinical context. In practice, relevant and precise non-imaging 
data derived from clinical history and laboratory findings empower physicians to 
contextualize imaging results effectively, leading to improved diagnostic accuracy and 
more informed clinical decision-making [6].

Despite the recent progress in automatic kidney tumor diagnosis, the findings 
of studies that applied AI to recommend adjuvant treatment directly have not pre-
viously been well-established in the literature. Existing work relates to predicting 
tumor aggressiveness [7] or performing kidney segmentation [8,9] as an alternative 
method to stage kidney tumors. Both applications aim to quantify the complexity of 
renal masses radiographically for improved treatment decision-making. However, an 
objective and standardized tool to reliably aid in patient risk stratification based on 
information from multiple data modalities is still missing.

To overcome this limitation, the Kidney Clinical Notes and Imaging to Guide and 
Help Personalize Treatment and Biomarkers Discovery (abbreviated KNIGHT) 
Challenge [10] was proposed in conjunction with the 2022 IEEE International Sym-
posium on Biomedical Imaging (ISBI) [11]. In the Challenge, teams used the publicly 
available KiTS dataset [12] of computed tomography (CT) imaging of the kidneys 
and corresponding patient clinical data to develop the best AI models to predict the 
risk class of patients with renal masses. Developing such tools has important clinical 
implications for advancing patient care, as high-risk patients often require adjuvant 
treatment to prevent recurrence and improve overall survival [13]. To facilitate this, 
the Challenge categorized lower-risk and higher-risk groups and proposed a binary 
patient classification based on the need for adjuvant therapy. Notably, upon analyzing 
their performance, the winning team achieved remarkable results using solely clinical 
data, surpassing others that utilized both clinical and imaging data.

While employing diverse methodologies, with a primary focus on deep learning, 
none of the KNIGHT Challenge teams explored large pretrained models based on the 
transformer architecture [14]. Transformers are a type of deep learning architecture 
designed to process sequential data. It does so by using the self-attention mechanism 
to weigh the importance of each input element relative to others in a sequence. This 
allows transformers to capture long-range dependencies and contextual relationships 
more effectively. Transformer-based architectures have demonstrated remarkable 
efficacy in handling electronic health records for disease predictions [15–17]. Their 
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effectiveness lies in their ability to transfer knowledge obtained from extensive datasets to smaller target datasets through 
a pretraining process. The knowledge gained during the pretraining phase is then leveraged to finetune the model for the 
downstream tasks. In scenarios where data from a few hundred patients are available, such as in the KiTS data, pretraining 
has the potential to yield substantial performance advantages. Thus, we explored a few-shot learning scenario, where only a 
small amount of downstream task data is available for finetuning the models. Specifically, few-shot learning focuses on lever-
aging knowledge gained from other tasks to effectively generalize and perform well on new, downstream predictive tasks.

Building on these insights, this paper aims at (1) summarizing the main outcomes of the KNIGHT Challenge, (2) per-
forming an ablation study with the KiTS clinical data to investigate clinical markers predictive of renal cancer risk and (3) 
evaluating the effectiveness of a transformer-based model to outperform the winning team and to transfer knowledge from 
a much larger dataset, the UK Biobank, to the KiTS dataset through its pretraining process. We analyze the performance 
of the pretrained model in a few-shot learning setting, i.e., when few labeled data are available for finetuning.

We found that although imaging data plays a role in predicting outcomes, using clinical history and visual features 
extracted from radiological images, such as tumor size from preoperative CT scans, may suffice to achieve comparable 
outcome predictions. While the pretrained model did not surpass the KNIGHT winning model, mainly due to the absence 
of pretraining with radiological tumor size, we highlight the broader potential of pretrained models to learn robust repre-
sentations and transfer knowledge from one dataset to another. Finally, we introduce the AI systems developed in the 
Challenge as benchmark models, facilitating fair comparisons with future studies that pursue addressing similar tasks 
using different methods or datasets.

Materials and methods

This retrospective study was approved by the institutional review board from the University of Minnesota - Twin Cities 
(protocol code 1611M00821). The KiTS dataset was collected and maintained over several years (S1 Appendix). This 
research has also been conducted using the UK Biobank Resource under Application Number 95318. Data for the cur-
rent analysis was downloaded on July 1st, 2021. This study was covered by the generic ethical approval for UK Biobank 
studies from the National Research Ethics Service Committee North West–Haydock (approval letter dated 29th June 
2021, Ref 21/NW/0157), and all study procedures were performed following the World Medical Association Declaration of 
Helsinki ethical principles for medical research.

The KNIGHT baseline model is available at https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse_examples/
imaging/classification/knight.

KiTS data collection

The cohort was composed of individuals who underwent partial or radical nephrectomy between 2011 and 2020 to excise 
a renal tumor at either Fairview University of Minnesota Medical Center or Cleveland Clinic in Ohio, USA (Fig 1A). Data 
collection was conducted in three distinct phases throughout nine years (S1 Fig). A single combined flowchart with the 
eligibility criteria is exemplified in Fig 1B. We included 403 patients with preoperative abdominal CT imaging in the late- 
arterial phase and available clinical information. Patients who underwent nephrectomy for transplant purposes were 
excluded. Risk classification labels deduced from postoperative pathology results were benign, low-risk, intermediate-risk, 
high-risk, and very high-risk (Fig 2). To improve statistical power and ensure reliable predictions in the Challenge, these 
risk classes were grouped into two larger categories based on the follow-up treatment: lower-risk classes such as benign, 
low-risk, and intermediate-risk are not candidates for adjuvant therapy, whereas the higher-risk classes high-risk and very 
high-risk are. In the KNIGHT Challenge, participants were given data from 300 patients (mean age, 58 years ± 15), which 
were divided into training and validation according to their criteria (Table 1). The test set used for evaluation consisted of 
another 103 patients selected with similar criteria (mean age, 63 years ± 12). S1 Appendix describes the clinical data in 
detail, including a description of features and missing values (S1 Table).

https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse_examples/imaging/classification/knight
https://github.com/BiomedSciAI/fuse-med-ml/tree/master/fuse_examples/imaging/classification/knight
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Assessment of KNIGHT Challenge models performance

In the KNIGHT Challenge, several participants trained models using diverse methodologies with a primary focus on deep 
learning (Table 2) and submitted a continuous score representing the degree to which patients belong to the adjuvant 
therapy eligibility class. During submission, they could compare their results to a benchmark model developed by IBM 
Research built upon the FuseMedML [18] framework.

Fig 1.  Patient journey and data collection. (A) An abdominal CT scan must have happened within 80 days before nephrectomy. Follow-up treatment 
decisions and risk categorization were derived from postoperative pathology results. (B) Flowchart with selection criteria for the study sample of 403 
individuals at either Fairview University of Minnesota Medical Center or Cleveland Clinic in Ohio, USA. PACS = Picture Archiving and Communication 
System.

https://doi.org/10.1371/journal.pone.0323240.g001

Fig 2.  Example of CT images for each risk category with information regarding the finding size. Radiographic findings (tumors or benign) are 
indicated with arrows. (A) Benign: Image of a 44-year-old woman showing a 2.4 cm angiomyolipoma. (B) Low risk: Image of a 50-year-old man showing 
a 2.2 cm papillary renal cell carcinoma (RCC). (C) Intermediate risk: Image of a 49-year-old man showing a 2.4 cm clear cell RCC. (D) High risk: Image 
of a 74-year-old man showing a 4.5 cm papillary RCC. (E) Very high risk: Image of a 68-year-old man showing a 10.6 cm clear cell RCC.

https://doi.org/10.1371/journal.pone.0323240.g002

https://doi.org/10.1371/journal.pone.0323240.g001
https://doi.org/10.1371/journal.pone.0323240.g002
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In total, four teams outperformed the benchmark. We normalized their scores by rescaling in the range [0,1]. Given 
that ensemble models could generate more accurate predictions than individual classifiers in previous clinical applications 
[22], we explored the robustness of an ensemble model based on the average predictions of the benchmark and the four 
models, aiming to evaluate whether combining multiple predictions could enhance reliability and better reflect real-world 
clinical scenarios.

Table 1.  Patient characteristics of training and validation (development) and test sets of KiTS dataset.

Development set
(training and validation)

Test set

Number of patients 300 103

Number of women 120 (40.0) 36 (35.0)

Age at nephrectomy (year)* 58 ± 15 63 ± 12

Most recent body mass index (kg/m2)* 30.9 ± 6.7 31.4 ± 8.0

Preoperative eGFR (mL/min/1.73m2) * 68.8 ± 13.4 67.3 ± 15.5

Smoking history 163 (54.3) 58 (56.3)

Myocardial infarction history 13 (4.3) 7 (6.8)

Outcome/Risk group

Adjuvant therapy candidacy 87 (29.0) 28 (27.2)

Benign 25 (8.3) 6 (5.8)

Low risk 134 (44.7) 47 (45.6)

Intermediate risk 54 (18.0) 21 (20.4)

High risk 41 (13.7) 10 (9.7)

Very high risk 46 (15.3) 18 (17.5)

Note: Data in parenthesis represent percentages.

*Data represent mean ± standard deviation.

eGFR = estimated glomerular filtration rate.

https://doi.org/10.1371/journal.pone.0323240.t001

Table 2.  The methodology proposed by the IBM Research benchmark model and the four best teams that exceeded the benchmark 
performance.

Team Used imaging 
data

Used clinical 
data

Used imaging 
segmentation

Model description

1st place: Amilcare Gentili, 
University of California San 
Diego

✗ ✓ ✗ Ensemble of different models with AutoGluon autoML1 using a 
subset of clinical data.

2nd place: Daniel Lang et al., 
Helmholtz Center Munich

✓ ✓ ✓ A 2D U-Net was trained for segmentation. Two patches (left and 
right kidneys) are fed into convolutional networks, deep features 
are concatenated with subset of clinical features [19].

3rd place: Suman Chaudhary 
et al., Taiyuan University of 
Technology

✗ ✓ ✗ Classification model based on deep tabular data learning architec-
ture (TabNet) using clinical data only [20].

4th place: Varsha Satish et al., 
Indian Institute of Technology 
Bombay

✓ ✓ ✓ An attention-based deep learning framework that fuses both the 
clinical and CT imaging features [21].

Challenge benchmark model: 
IBM Research

✓ ✓ ✗ CT imaging is input to a 3D ResNet-18 and clinical data is fed into a 
multilayer perceptron (MLP). Both output representations are con-
catenated and fed into another MLP that learns the outcome [10].

1 https://auto.gluon.ai/

https://doi.org/10.1371/journal.pone.0323240.t002

https://doi.org/10.1371/journal.pone.0323240.t001
https://auto.gluon.ai/
https://doi.org/10.1371/journal.pone.0323240.t002
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Clinical feature ablation study

We performed an ablation study with the KiTS data to determine the feature sets that predominantly influence kidney tumor 
treatment recommendations. To this end, we trained a logistic regression for adjuvant therapy prediction based only on 
the patient’s preoperative clinical features (see details on the training in S2 Appendix). We chose a logistic regression as 
a baseline for all experiments in this study, as our goal was not to outperform the Challenge’s models but to quantify the 
contribution of individual features to the prediction. We randomly split the development set into training (80%) and validation 
(20%) sets and assessed the predictive power of the baseline on the test set. We grouped the KiTS clinical features into 
five groups (Table 3) and compared the performance of the classifier trained with all features versus individual feature sets. 
Finally, we analyzed local explanations in the validation set using SHapley Additive exPlanations (SHAP) [23] due to its 
capacity to provide reliable local explanations and its solid theory foundations derived from axioms of game theory [24].

Transformer-based model

Given that none of the KNIGHT Challenge teams explored transformer-based methods, we investigated whether this 
architecture would provide comparable outcome prediction performance to that of the winning team. We used BERT [25], 
a transformer-based deep learning model designed for natural language processing tasks, as the encoder to learn patient 
representations from the UK Biobank (UKB) population. The UKB is a large-scale prospective study that recruited approx-
imately half a million individuals aged 40–69 years from the general population of the United Kingdom between 2006 and 
2010. Detailed information on the study recruitment and clinical information collection can be found in [26]. We used the 
data from the first visit of the individuals to the assessment centers, which included questionnaires, family history of major 
diseases, sociodemographic status, early life exposures, physical measures, and results from blood, urine, and saliva 
assays. We split the UKB cohort into training, validation, and test sets in a ratio of 60:20:20 (S3 Table) and performed 
hyperparameter optimization to find the best network parameters based on the total pretraining loss in the validation set. 
The parameters tuned were the learning rate, masking probability, token dimension, neural network depth, number of 
heads, and the multilayer perceptron dimension. The preprocessing steps used to transform the raw UKB data to the final 
processed data and a detailed description of the losses can be found in S3 Appendix.

Semi-supervised pretraining in the UK Biobank data.  Two essential components of the BERT pretraining process 
include the masked language model (MLM) and next-sentence prediction. In MLM, a portion of words in a text are 
randomly replaced with a [MASK] token, and the objective is to predict the original tokens that have been masked. Next 

Table 3.  Feature sets for clinical ablation study.

Group 1
Demographics

Age at nephrectomy, gender.

Group 2
Social determinants of health

Chewing tobacco use, alcohol level, smoking level, smoking history, alcohol consumption.

Group 3
Comorbidities

Myocardial infarction, congestive heart failure, peripheral vascular disease, cerebrovascular disease, demen-
tia, chronic obstructive pulmonary disease, connective tissue disease, peptic ulcer disease, uncomplicated 
diabetes mellitus, diabetes mellitus with end organ damage, chronic kidney disease, hemiplegia from stroke, 
leukemia, malignant lymphoma, localized solid tumor, metastatic solid tumor, mild liver disease, moderate to 
severe liver disease, AIDS.

Group 4
Clinical measurements

Preoperative estimated glomerular filtration rate (eGFR) value (ml/min), body mass index (kg/m2), body mass 
index category, days before nephrectomy at which eGFR was measured.

Group 5
Visual features

Radiographic size, R.E.N.A.L. nephrometry score*.

*The R.E.N.A.L. nephrometry score was provided to us by the KNIGHT competition organizers solely for the purpose of the clinical ablation study and 
was not used in the competition. The only radiographic feature utilized by the competition teams was the tumor size.

https://doi.org/10.1371/journal.pone.0323240.t003

https://doi.org/10.1371/journal.pone.0323240.t003
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sentence prediction involves determining the likelihood of one sentence following another in a given text. In our study, we 
used MLM to randomly mask 12% of the input tokens of the model and computed the cross-entropy loss over the masked 
tokens. In addition, we performed a binary classification task to learn the relationship between the clinical features and 
multiple clinical outcomes. We defined 16 outcomes corresponding to the different clinical conditions in the Charlson 
Comorbidity Index [27], with a positive outcome being the new diagnosis of the specific condition within a 2-year follow-up 
period (S4 Table). We employed the macro AUC (area under the receiver operating characteristic curve) as our evaluation 
metric, aggregating the average of individual AUCs for each clinical condition (S3 Fig).

Finetuning for adjuvant treatment prediction in the KiTS dataset.  Following the pretraining process, the model 
is fine-tuned for adjuvant therapy prediction in the KiTS dataset. To adapt the pretrained model on the UKB data to the 
adjuvant prediction task on the KiTS dataset, we ensured feature compatibility by identifying the intersection of features 
between the datasets. All clinical features from the KiTS could be mapped to the same or similar features in the UKB (S5 
Table), except the radiographic size and the R.E.N.A.L score, which were not used during pretraining. In addition, the 
estimated glomerular filtration rate (eGFR) value was estimated for all individuals in the UKB population using the CKD-
EPI 2021 creatinine equation [28].

When finetuning, we froze the backbone parameters of the pretrained model and updated only the weights of the last 
linear layer. Following recent studies [29,30] we assessed the performance of the model in a few-shot learning scenario, 
varying the finetuning training set from two labeled patients up to the entire training set of 300 patients. To make the clas-
sification decision, we used the CLS token output as a global representation of the data that aggregates the information 
obtained during pretraining.

Statistical analysis

The estimation of the univariate association between feature distributions and treatment outcome was done with Fisher’s 
exact test for categorical features and Student’s t-test for continuous features. We corrected multiple hypotheses using the 
false discovery rate (FDR) correction (P < .05 indicated statistical significance). The logistic regression model’s hyperpa-
rameters were tuned with a five-fold cross-validation on the development dataset via a randomized grid search. Sensitivity 
and specificity were calculated by defining an optimal operating point using Youden’s J statistic [31] in the validation set 
and then applied to the test set. For univariate analysis and the classifier, we used the Python SciPy library (version 1.7.3; 
https://scipy.org) and scikit-learn library (version 1.0.2; https://scikit-learn.org), respectively.

To compare the Challenge models’ performances, we used the AUC with 95% DeLong confidence intervals (CI) [32]. In 
the bootstrap evaluation, CIs were calculated with 1,000 empirical bootstrap replicates of the models’ predictions.

Results

Demographic and clinical characteristics of the study patients

Among the 1,185 patients who underwent a nephrectomy between January 2011 and December 2020, we excluded 188 
individuals who had a renal mass diagnosis but underwent a nephrectomy for reasons unrelated to renal malignancy (e.g., 
due to the presence of calculi or retroperitoneal masses found in non-functioning kidneys) (Fig 1B). Next, the remaining 
997 patients’ charts were manually reviewed to ensure that CT scans showed the full kidneys and a series in the cortico-
medullary phase. Finally, 403 qualifying patients were randomly ordered and assigned into development (300 patients) 
and test sets (103 patients).

To understand the disparities between lower and higher-risk patients, we performed a univariate analysis between can-
didate and non-candidate patients for adjuvant therapy (Table 4). The size of the tumor reported in the radiologic report 
(radiographical size) was larger in the group of patients that needed adjuvant therapy (P < 0.001), and the presence of 
metastatic solid tumors was also more frequent in this group (P < 0.001). The distribution of established risk factors from 

https://scipy.org
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the literature differed significantly. For instance, older patients were associated with more aggressive tumors than younger 
ones (mean age 62.7 years vs. 58.6 in the candidate and non-candidates groups, respectively, P = 0.013). Interestingly, 
body mass index was negatively associated with tumor risk (29.6 kg/m2 ± 6.2 vs. 31.6 kg/m2 ± 7.3 in candidate and non- 
candidates groups, respectively, P = 0.02). On the other hand, tobacco smoking and alcohol consumption did not show a 
significant association with patients’ treatment outcomes.

AI models performance evaluation

The evaluation of the best models’ performance in terms of the AUC with DeLong CI is shown in Fig 3A. The winning team 
achieved an AUC of 0.84 (95% CI: 0.76, 0.92) in the task of adjuvant therapy prediction, whereas the ensemble aver-
age model achieved an AUC of 0.85 (95% CI: 0.78, 0.92). Although we found no evidence of a difference between them 
(P = 0.847), the bootstrapping evaluation (Fig 3B) indicates that averaging the probabilities resulted in marginally narrower 
CIs. We analyzed the models’ calibration curves by examining the relationship between the predictions and the ground truth 
labels on the test set (S4 Fig, S4 Appendix). To quantify this relationship, we computed the Brier score [33] which measures 
the mean squared difference between the predicted probability and the actual outcome. The average model’s predictions 
resulted in a lower Brier score compared to other teams, indicating its robustness and well-calibrated probabilities.

Feature importance analysis

When using all clinical features, the logistic regression achieved an AUC of 0.76 (95% CI: 0.68, 0.92) in the task of adju-
vant therapy prediction in the test set (Fig 4A). When using only feature groups 1, 2, 3, 4, or 5, the AUCs were 0.54 (95% 
CI: 0.53, 0.81), 0.43 (95% CI: 0.31, 0.60), 0.60 (95% CI: 0.50, 0.78), 0.61 (95% CI: 0.35, 0.66) and 0.78 (95% CI: 0.68, 
0.93), respectively. The model with all features significantly outperformed all models with individual feature groups 1, 2, 3, 
and 4 (P = 0.001, P = 0.000, P = 0.028, and P = 0.038, respectively), but the improvement was not significant for the model 
using only visual features (group 5, P = 0.672). Similar results were encountered for the validation set (S2 Fig).

Table 4.  The relationship between patient demographics and medical history and adjuvant therapy candidacy (high- and very high-risk 
patients) in the KNIGHT dataset.

No. (%) of patients Adjuvant
therapy

No adjuvant therapy p-value (FDR corrected)

Total population 403 115 [51, 64]* 287 [31, 181, 75]† –

Age at nephrectomy (years) 400 (99.3) 62.7 ± 12.7 58.6 ± 13.4 .013

History of myocardial infarction 20 (5.0) 4 (3.5) 16 (5.6) .635

History of non-renal localized solid tumor 61 (15.1) 17 (14.8) 44 (15.3) 1.000

History of uncomplicated diabetes mellitus 81 (20.1) 25 (21.7) 56 (19.4) 0.802

History of congestive heart failure 16 (4.0) 5 (4.3) 11 (3.8) 0.847

Radiographic size 399 (99.0) 7.6 ± 3.8 3.9 ± 2.2 < 0.001

Preoperative eGFR value (ml/min) 241 (59.8) 67.5 ± 13.1 69.7 ± 14.5 0.372

Body mass index (kg/m2) 402 (99.8) 29.6 ± 6.2 31.6 ± 7.3 0.020

Number of women 156 (38.7) 35 (30.4) 121 (42.0) 0.072

Alcohol consumption 232 (57.6) 68 (59.1) 164 (56.9) 0.847

History of chronic obstructive pulmonary disease 15 (3.7) 5 (4.3) 10 (3.5) 0.847

Has smoking history 221 (54.8) 68 (59.1) 153 (53.1) 0.359

Note: Data in parenthesis are percentages. Continuous variables are reported as mean ± standard deviation.

*Numbers in square brackets represent the total number of high-risk and very high-risk patients.
†Numbers in square brackets represent the total number of benign, low-risk, and intermediate-risk patients.

The risk labels sum up to 402 patients as one patient has an unknown risk.

https://doi.org/10.1371/journal.pone.0323240.t004

https://doi.org/10.1371/journal.pone.0323240.t004
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To measure the ability of logistic regression to discriminate between lower and higher-risk patients, we computed their 
sensitivity and specificity (S2 Table). On average, the logistic regression trained with all clinical features correctly classified 
19 out of 28 patients (67%) who needed adjuvant treatment at the cost of misclassifying 30 out of 74 (41%) non-candidate 
patients for therapy. When trained with only feature group 5, the model identified 14 out of 37 (51%) eligible patients and 
66 out of 74 (89%) non-eligible patients, respectively.

The feature importance analysis showed that the most contributing feature was radiographic size, i.e., the size of the 
tumor documented in the radiology report (Fig 4B). Patients with large tumor sizes were more likely to need adjuvant 
therapy after surgical management. Common risk factors (age, gender, body mass index, smoking) are also critical in 

Fig 3.  Model performance on the task of adjuvant therapy prediction on the test set. (A) Receiver operating characteristic curve (AUC) of the best 
performing models, average, and benchmark. (B) Bootstrapping evaluation of estimated AUCs obtained with 1,000 bootstrap replicates.

https://doi.org/10.1371/journal.pone.0323240.g003

Fig 4.  Ablation study results of logistic regression on the adjuvant therapy candidacy prediction task. (A) Area under the receiver operating 
characteristic curves (AUCs) on the test set. Using solely visual features (group 5) produced comparable results to the full set of features (P = 0.671). (B) 
Clinical feature contribution analysis. The features listed in the y-axis are ranked according to their mean absolute impact on the prediction of adjuvant 
treatment, the top one being the highest contributor to the prediction.

https://doi.org/10.1371/journal.pone.0323240.g004

https://doi.org/10.1371/journal.pone.0323240.g003
https://doi.org/10.1371/journal.pone.0323240.g004
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predicting follow-up treatment: women and non-smokers were less likely to need therapy, whereas older patients and indi-
viduals with lower body mass index values tended to have more aggressive tumors. Similarly, patients with lower preoper-
ative estimated glomerular filtration rate values exhibited more aggressive tumor characteristics.

Pretrained model evaluation

To evaluate the performance of the pretrained model, we compared it to a logistic regression baseline on the raw KiTS 
data. To allow a fair comparison, we only included the 34 features that could be mapped to the UKB dataset (S5 Table).

Pretraining hyperparameters were optimized to the following final values: max learning rate, 1 × 10–4; learning sched-
uler, cosine with warmup; optimizer, AdamW with weight decay 0.01; warmup epochs, 5; batch size, 16. Tensorboard 
was used for experimentation tracking, and the model was pretrained for 60 epochs. We finetuned the pretrained model 
on randomly selected subsets of increasing size from the KiTS training set. This process results in varying amounts of 
data available for the models to learn from, going as low as 2 labeled patients up to the entire finetuning training set of 
300 patients. Equal class sampling was used to address class imbalance during training, except for the full data where 
there are only 87 positive training labels. We repeated this process with 20 different random seeds resulting in 20 different 
AUCs for each training set size. Fig 5 shows the performance curves (average and standard deviation of AUCs) of the 
experiments. The pretrained model significantly outperformed the baseline on the test set (P < 0.001, paired t-test, light 
blue versus dark blue bars), achieving an AUC of 0.62 (95% DeLong CI: 0.50, 0.74) when using the full dataset for train-
ing, whereas the baseline achieved 0.53 (95% DeLong CI: 0.40, 0.67). While the fine-tuned model demonstrated superior 
performance, likely due to the patient representation learned during pretraining, its performance remained relatively con-
stant as train data size increased, akin to the behavior of the baseline model.

We then assessed the performance of the baseline model when incorporating all KiTS clinical features, including the 
patients’ tumor size (light green bars, Fig 5). While this model exhibited a substantial improvement in the average AUC, it 
also displayed greater variability compared to the baseline model with fewer features. We then trained a logistic regres-
sion model on two features: the output score of the finetuned model and the tumor size (dark green bars). This model 
obtained the largest AUC (0.81 ± 0.007) with only 12 training examples, and this performance remained stable as the 
training set size increased. Given our findings from the clinical ablation study indicating that radiographical size was the 
best predictor of tumor risk, we evaluated the baseline solely based on tumor size (as depicted by the pink bars in Fig 5). 
As expected, tumor size on its own is an excellent predictor, matching the performance of the baseline model using pre-
dictions from the pretrained model.

Fig 5.  Plots of predictive performance given by the area under the receiver operating curve (AUC) against finetuning training set size on a log 
scale. Models that did not include tumor size are represented with a †. The finetuned model (light blue bars) outperforms the baseline (dark blue) for all 
training set sizes, showing that self-supervised pretraining proves to be key in few-shot learning. When adding the tumor size as a feature in the models 
(light and dark green, and pink bars), performance significantly increases. Ultimately, size alone (pink bar) stood out as the most valuable radiologic 
feature that can be effectively applied without deep learning models.

https://doi.org/10.1371/journal.pone.0323240.g005

https://doi.org/10.1371/journal.pone.0323240.g005
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While the AUC is a threshold-independent metric that captures the model’s overall discriminatory ability, we also 
assessed sensitivity, specificity, and accuracy using a decision threshold of 0.5. These evaluations were conducted on 
the pretrained model after finetuning with the full training set of 300 patients. The confusion matrix in Fig 6 illustrates the 
model’s classification performance on the test set. The model correctly identified 91.9% (68/74) of non-aggressive renal 
cancers that did not require adjuvant therapy, and 53.6% (15/28) of aggressive cases, demonstrating strong specificity 
and reliable identification of high-risk patients. Additionally, the model achieved a precision of 71.4% (15/21) and an accu-
racy of 81.4%, highlighting the model’s effectiveness in prioritizing patients who may benefit of adjuvant therapy.

Discussion

In this study, we investigated clinical markers that contributed to the prediction of renal cancer prognosis. We were moti-
vated by the promising results achieved at the KNIGHT Challenge, where participants developed AI models that recom-
mend treatment planning and performed risk assessments of patients with renal masses. The winning KNIGHT algorithm 
predicted patients’ adjuvant therapy eligibility with an AUC of 0.84 (95% CI: 0.76, 0.92). Interestingly, it used only patient 
medical history and the tumor’s size measured in preoperative CT scans, but not imaging data. Although we found no evi-
dence of a difference between the winner and an ensemble average model (AUC = 0.85 [95% CI: 0.78, 0.92], P = 0.847), 
the ensemble model showed marginally better-calibrated probabilities.

In the univariate analysis, we found that older patients tended to belong to higher-risk groups who could benefit from 
adjuvant treatment. Age is a well-established risk factor for the development of renal cancer [34], but the relationship 
between age at diagnosis and adjuvant therapy use in the literature is controversial. While some studies state that kidney 
tumor aggressiveness increases with age, ultimately leading to poor overall survival in older patients [35], other studies 
show evidence that younger age is associated with unfavorable tumor histological features and an increased number 
of metastatic sites [36]. Similarly, excessive body weight also represents a strong risk factor for the incidence of renal 
cell carcinomas [37–39], but multiple studies have demonstrated better prognosis and overall survival in kidney cancer 
patients with elevated body mass index [40]. The so-called “obesity paradox” refers to the positive link between increased 

Fig 6.  Confusion matrix of the finetuned model representing predicted classification of high-risk cases. Each tile displays the percentage and 
fraction of patients with lower- and higher-risk renal masses (labels 0 and 1, respectively), stratified by the model’s predictions. The values illustrate the 
model’s capability to distinguish patients who may require adjuvant therapy. Overall, the model achieved a sensitivity of 53.6%, specificity of 91.9%, and 
accuracy of 81.4%.

https://doi.org/10.1371/journal.pone.0323240.g006

https://doi.org/10.1371/journal.pone.0323240.g006
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body mass index and improved cancer outcomes. Interestingly, we observed this phenomenon in the clinical feature con-
tribution analysis, where patients with high body mass index values tended not to need additional treatment.

Many few-shot classification algorithms have reported improved performance over the state-of-the-art in several clinical 
applications [29,30,41]. Their strong performance, however, heavily relies on initially pretraining a network with abundant 
unlabeled instances with diverse clinical variability. In our study, the pretrained model outperformed the logistic regression 
baseline on the adjuvant therapy prediction task, even with a limited number of fine-tuning samples. The model’s ability to 
derive patient representations from the UK Biobank dataset and apply them to predict novel unseen classes in the KiTS 
dataset shows that it learned useful medical knowledge that can be leveraged to solve downstream population-specific 
tasks, often characterized by small patient cohorts. After incorporating tumor size in the prediction models, we observed 
a significant increase in performance, ultimately achieving the largest AUC from all models. This reaffirms that tumor size 
stands as a valuable radiologic feature that can be effectively applied without the use of deep learning models. It is known 
that tumor size is a well-established and grounded predictor of several postoperative outcomes within kidney cancer 
management [42]. However, even when using tumor size as a standalone feature, the learning curve reaches a plateau in 
performance already at 12 training samples, suggesting that the models might not achieve performance improvement with 
larger training sets. These findings motivate the collection of other medical modalities, such as molecular data generated 
by next-generation sequencing techniques or pathological imaging, to enhance diagnostic and prognostic capabilities in 
renal cancer and link molecular differences between patients to different clinical outcomes. Integrating multimodal modal-
ities is a promising direction for characterizing tumor heterogeneity and informing effective treatment decisions within 
oncology [43].

Our study had limitations. The test set used for evaluation was relatively small, containing 103 patients. While the 
dataset is reflective of a diverse patient population commonly encountered in clinical practice, the limited sample size in 
certain risk groups can affect the generalizability of the results. Social determinants of health such as tobacco and alcohol 
level consumption were self-reported and thus could be noisy variables. As a retrospective cohort from two institutions, 
it remains uncertain how effectively the models described here would generalize to medical records from other external 
sites. Model generalizability is often affected by differences in medical equipment and variations in patient populations 
across institutions. Such differences have been investigated in previous studies [44,45] and exploring their impact in our 
model’s performance is an important direction for future work.

Given these findings, there exist several future directions worth pursuing. The true utility of our system is in aiding the 
physician in treatment decisions for renal tumors, and this requires studies that include such a deployment. While we only 
predicted higher-risk patients that could benefit from adjuvant treatment, it would be interesting to include in the future 
other postoperative outcomes such as non-clear cell subtype, survival, recurrence, hospitalization, or readmission. In 
addition, the pretraining data contained clinical information available from a fixed time point representing the first visit of 
individuals in the UK Biobank to the assessment centers. Another direction would be incorporating clinical records from 
other visits and exploring the longitudinal nature of electronic health records. Finally, integrating additional molecular 
markers could further enhance the AI model’s utility in diagnosis and monitoring of renal tumors. Previous studies have 
demonstrated that cell-free DNA, circulating tumor DNA, as well as molecular signatures from mRNA, miRNA and proteins 
provide additional prognostic value in identifying key drivers of aggressive kidney cancers [46,47].

Conclusion

In summary, the KNIGHT Challenge results support that AI can guide the clinical treatment of kidney tumor patients and 
aid in discovering new markers. While radiological work primarily focuses on distinguishing malignant from benign tumors, 
the competition focused on predicting the need for adjuvant treatment after nephrectomy. AI’s potential in healthcare has 
expanded beyond radiologist-assistive roles [48], with applications such as predicting histopathologic results of breast 
lesions [44] and breast cancer recurrence after neoadjuvant chemotherapy [49]. Recent studies on AI’s novel tasks 
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highlight new opportunities in medicine, particularly through the success of large pre-trained models (foundation models) 
in clinical applications. Looking ahead, we propose exploring the integration of these AI technologies and multi-modal 
healthcare data to enhance predictions of renal cancer outcomes and advance clinical cancer research.

Supporting information

S1 File.   S1 Fig. The date span of the data used for the KNIGHT Challenge. S2 Fig. Ablation study results of adjuvant 
therapy candidacy prediction on the validation set. S3 Fig. Future diagnosis prediction performance in the validation set 
as a function of training epochs. S4 Fig. Calibration curves on the test set. The average model showed the smallest Brier 
score. S1 Table. Percentage of missing values in the dataset. S2 Table. Sensitivity and specificity of logistic regression 
in the test set at Youden’s J-Score operating point selected on the validation set. S3 Table. Data split of the pretrain-
ing cohort. S4 Table. Mapping of CCSR codes to 16 Charlson clinical conditions. S1 Appendix. The KiTS database. S2 
Appendix. Clinical feature ablation study. S3 Appendix. Pretraining of BERT-based model for clinical records. S4 Appen-
dix. Evaluation of top winners of KNIGHT Challenge.
(ZIP)

Acknowledgments

We acknowledge the contribution of the KNIGHT Challenge organizers and participants.

Author contributions

Conceptualization: Nour Abdallah, Efrat Hexter, Michal Rosen-Zvi, Christopher Weight.

Data curation: Vesna Barros, Michal Ozery-Flato, Avihu Dekel, Nicholas Heller, Simona Rabinovici-Cohen, Alex Golts, 
Amilcare Gentili, Suman Chaudhary, Varsha Satish, Itai Guez, Ella Barkan.

Formal analysis: Vesna Barros, Michal Ozery-Flato, Avihu Dekel, Simona Rabinovici-Cohen, Alex Golts, Amilcare Gentili, 
Daniel Lang, Suman Chaudhary, Varsha Satish, Ella Barkan.

Funding acquisition: Vesna Barros.

Investigation: Vesna Barros, Nour Abdallah, Nicholas Heller, Alex Golts, Amilcare Gentili, Daniel Lang, Suman 
Chaudhary, Varsha Satish, Ivan Eggel, Itai Guez.

Methodology: Nour Abdallah, Avihu Dekel, Nicholas Heller, Alex Golts, Amilcare Gentili, Suman Chaudhary, Varsha 
Satish, Ivan Eggel, Itai Guez, Michal Rosen-Zvi.

Project administration: Nicholas Heller, Simona Rabinovici-Cohen, Resha Tejpaul, Ivan Eggel, Henning Müller, Efrat 
Hexter, Michal Rosen-Zvi, Christopher Weight.

Resources: Moshiko Raboh, Nicholas Heller, Alex Golts, Resha Tejpaul, Ivan Eggel, Henning Müller, Christopher Weight.

Software: Avihu Dekel, Moshiko Raboh, Nicholas Heller, Simona Rabinovici-Cohen, Alex Golts, Daniel Lang, Ivan Eggel, 
Itai Guez, Henning Müller.

Supervision: Ivan Eggel, Henning Müller, Efrat Hexter, Michal Rosen-Zvi, Christopher Weight.

Validation: Vesna Barros, Michal Ozery-Flato, Moshiko Raboh.

Visualization: Vesna Barros, Michal Ozery-Flato.

Writing – original draft: Vesna Barros.

Writing – review & editing: Vesna Barros, Nour Abdallah, Michal Ozery-Flato, Moshiko Raboh, Nicholas Heller, Simona 
Rabinovici-Cohen, Alex Golts, Amilcare Gentili, Daniel Lang, Resha Tejpaul, Ivan Eggel, Ella Barkan, Henning Müller, 
Efrat Hexter, Michal Rosen-Zvi, Christopher Weight.

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0323240.s001


PLOS One | https://doi.org/10.1371/journal.pone.0323240  May 30, 2025 14 / 15

References
	 1.	 Ward RD, Tanaka H, Campbell SC, Remer EM. 2017 AUA renal mass and localized renal cancer guidelines: imaging implications. Radiographics. 

2018;38(7):2021–33. https://doi.org/10.1148/rg.2018180127 PMID: 30339517

	 2.	 Campbell S, Uzzo RG, Allaf ME, Bass EB, Cadeddu JA, Chang A, et al. Renal mass and localized renal cancer: AUA guideline. J Urol. 
2017;198(3):520–9. https://doi.org/10.1016/j.juro.2017.04.100 PMID: 28479239

	 3.	 Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography. npj Precision Oncol [Internet]. [cited 2024 
Jun 2]. Available from: https://www.nature.com/articles/s41698-021-00195-y

	 4.	 Zhou L, Zhang Z, Chen Y-C, Zhao Z-Y, Yin X-D, Jiang H-B. A deep learning-based radiomics model for differentiating benign and malignant renal 
tumors. Transl Oncol. 2019;12(2):292–300. https://doi.org/10.1016/j.tranon.2018.10.012 PMID: 30448734

	 5.	 Mahmud S, Abbas TO, Mushtak A, Prithula J, Chowdhury MEH. Kidney cancer diagnosis and surgery selection by machine learning from CT scans 
combined with clinical metadata. Cancers (Basel). 2023;15(12):3189. https://doi.org/10.3390/cancers15123189 PMID: 37370799

	 6.	 Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a system-
atic review and implementation guidelines. Npj Digit Med. 2020;3(1):1–9.

	 7.	 Bektas C, Kocak B, Yardimci A, Turkcanoglu M, Yucetas U, Koca S. Clear cell renal cell carcinoma: machine learning-based quantitative computed 
tomography texture analysis for prediction of fuhrman nuclear grade. Eur Radiol. 2019;29(3):1153–63.

	 8.	 Heller N, Isensee F, Maier-Hein K, Hou X, Xie C, Li F. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imag-
ing: results of the kits19 challenge. Med Image Anal. 2021;67:101821.

	 9.	 Golts A, Khapun D, Shats D, Shoshan Y, Gilboa-Solomon F. An ensemble of 3D U-Net based models for segmentation of kidney and masses in 
CT scans. In: Heller N, Isensee F, Trofimova D, Tejpaul R, Papanikolopoulos N, Weight C, editors. Kidney and kidney tumor segmentation. Cham: 
Springer International Publishing; 2022. p. 103–15.

	10.	 IBM Research Haifa. KNIGHT Challenge [Internet]. Available from: https://research.ibm.com/haifa/Workshops/KNIGHT

	11.	 IEEE International Symposium on Biomedical Imaging 2022 [Internet]. Available from: https://biomedicalimaging.org/2022

	12.	 Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, et al. The KiTS19 Challenge data: 300 kidney tumor cases with 
clinical context, CT semantic segmentations, and surgical outcomes [Internet]. arXiv; 2020 [cited 2024 Jun 2]. Available from: http://arxiv.org/
abs/1904.00445

	13.	 Gul A, Rini BI. Adjuvant therapy in renal cell carcinoma. Cancer. 2019;125(17):2935–44. https://doi.org/10.1002/cncr.32144 PMID: 31225907

	14.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in neural information processing 
systems [Internet]. Curran Associates, Inc.; 2017 [cited 2024 Jun 2]. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

	15.	 Li Y, Rao S, Solares J, Hassaine A, Ramakrishnan R, Canoy D. Behrt: transformer for electronic health records. Sci Rep. 2020;10(1):7155.

	16.	 Pang C, Jiang X, Kalluri KS, Spotnitz M, Chen R, Perotte A, et al. CEHR-BERT: incorporating temporal information from structured EHR data to 
improve prediction tasks [Internet]. arXiv; 2021 [cited 2024 Jun 2]. Available from: http://arxiv.org/abs/2111.08585

	17.	 Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-bert: pretrained contextualized embeddings on large-scale structured electronic health records for 
disease prediction. NPJ Digit Med. 2021;4(1):1–13.

	18.	 Golts A, Raboh M, Shoshan Y, Polaczek S, Rabinovici-Cohen S, Hexter E. FuseMedML: a framework for accelerated discovery in machine learn-
ing based biomedicine. JOSS. 2023;8(81):4943. https://doi.org/10.21105/joss.04943

	19.	 Lang DM, Peeken JC, Combs SE, Wilkens JJ, Bartzsch S. Risk score classification of renal masses on CT imaging data using a convolutional 
neural network. In: 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC) [Internet]; 2022 [cited 2024 Jun 2]. p. 1–4. 
Available from: https://ieeexplore.ieee.org/abstract/document/9854698

	20.	 Chaudhary S, Yang W, Qiang Y. Deep learning-based methods for directing the management of renal cancer using CT scan and clinical informa-
tion. In: 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC) [Internet]; 2022 [cited 2024 Jun 2]. p. 1–4. Available from: 
https://ieeexplore.ieee.org/abstract/document/9854722

	21.	 S V, Nasser SA, Bala G, Kurian NC, Sethi A. Multi-modal information fusion for classification of kidney abnormalities. In: 2022 IEEE International 
Symposium on Biomedical Imaging Challenges (ISBIC) [Internet]; 2022 [cited 2024 Jun 2]. p. 1–4. Available from: https://ieeexplore.ieee.org/
abstract/document/9854644

	22.	 Altmann A, Rosen-Zvi M, Prosperi M, Aharoni E, Neuvirth H, Schülter E, et al. Comparison of classifier fusion methods for predicting response to 
anti HIV-1 therapy. PLoS One. 2008;3(10):e3470. https://doi.org/10.1371/journal.pone.0003470 PMID: 18941628

	23.	 Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Advances in neural information processing systems [Internet]. 
Curran Associates, Inc.; 2017 [cited 2024 Jun 2]. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d-
76c43dfd28b67767-Abstract.html

	24.	 Malinverno L, Barros V, Ghisoni F, Visonà G, Kern R, Nickel PJ, et al. A historical perspective of biomedical explainable AI research. Patterns (N Y). 
2023;4(9):100830. https://doi.org/10.1016/j.patter.2023.100830 PMID: 37720333

https://doi.org/10.1148/rg.2018180127
http://www.ncbi.nlm.nih.gov/pubmed/30339517
https://doi.org/10.1016/j.juro.2017.04.100
http://www.ncbi.nlm.nih.gov/pubmed/28479239
https://www.nature.com/articles/s41698-021-00195-y
https://doi.org/10.1016/j.tranon.2018.10.012
http://www.ncbi.nlm.nih.gov/pubmed/30448734
https://doi.org/10.3390/cancers15123189
http://www.ncbi.nlm.nih.gov/pubmed/37370799
https://research.ibm.com/haifa/Workshops/KNIGHT
https://biomedicalimaging.org/2022
http://arxiv.org/abs/1904.00445
http://arxiv.org/abs/1904.00445
https://doi.org/10.1002/cncr.32144
http://www.ncbi.nlm.nih.gov/pubmed/31225907
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2111.08585
https://doi.org/10.21105/joss.04943
https://ieeexplore.ieee.org/abstract/document/9854698
https://ieeexplore.ieee.org/abstract/document/9854722
https://ieeexplore.ieee.org/abstract/document/9854644
https://ieeexplore.ieee.org/abstract/document/9854644
https://doi.org/10.1371/journal.pone.0003470
http://www.ncbi.nlm.nih.gov/pubmed/18941628
https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1016/j.patter.2023.100830
http://www.ncbi.nlm.nih.gov/pubmed/37720333


PLOS One | https://doi.org/10.1371/journal.pone.0323240  May 30, 2025 15 / 15

	25.	 Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding [Internet]. arXiv; 2019 
[cited 2024 Jun 2]. Available from: http://arxiv.org/abs/1810.04805

	26.	 Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range 
of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779 PMID: 25826379

	27.	 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and vali-
dation. J Chronic Dis. 1987;40(5):373–83.

	28.	 Inker L, Eneanya N, Coresh J, Tighiouart H, Wang D, Sang Y. New creatinine- and cystatin c–based equations to estimate gfr without race. N Engl 
J Med. 2021;385(19):1737–49.

	29.	 Poulain R, Gupta M, Beheshti R. Few-shot learning with semi-supervised transformers for electronic health records.

	30.	 Wornow M, Thapa R, Steinberg E, Fries JA, Shah NH. EHRSHOT: an EHR Benchmark for few-shot evaluation of foundation models [Internet]. 
arXiv; 2023 [cited 2024 Jun 2]. Available from: http://arxiv.org/abs/2307.0202831

	31.	 Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47(4):458–72. https://doi.org/10.1002/
bimj.200410135 PMID: 16161804

	32.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a non-
parametric approach. Biometrics. 1988;44(3):837–45. https://doi.org/10.2307/2531595 PMID: 3203132

	33.	 Rufibach K. Use of brier score to assess binary predictions. J Clin Epidemiol. 2010;63(8):938–9.

	34.	 Lotan Y, Karam J, Shariat S, Gupta A, Roupret M, Bensalah K, et al. Renal-cell carcinoma risk estimates based on participants in the prostate, 
lung, colorectal, and ovarian cancer screening trial and national lung screening trial. Urol Oncol. 2016;34(4):167.e9–e16.

	35.	 Jiang T, Wu Y-P, Chen S-H, Ke Z-B, Liang Y-C, Xu N. Prognosis and clinicopathological characteristics of renal cell carcinoma: Does bilateral 
occurrence influence overall and cancer-specific survival? Transl Cancer Res. 2020;9(2):432–40. https://doi.org/10.21037/tcr.2019.11.22 PMID: 
35117388

	36.	 Bianchi M, Sun M, Jeldres C, Shariat S, Trinh Q, Briganti A. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. 
Ann Oncol. 2012;23(4):973–80.

	37.	 Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, et al. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical impli-
cations. Front Med. 2024:1–24.

	38.	 Shi X, Deng G, Wen H, Lin A, Wang H, Zhu L, et al. Role of body mass index and weight change in the risk of cancer: a systematic review and 
meta-analysis of 66 cohort studies. J Glob Health. 2024;14:04067.

	39.	 Wen H, Deng G, Shi X, Liu Z, Lin A, Cheng Q, et al. Body mass index, weight change, and cancer prognosis: a meta-analysis and systematic 
review of 73 cohort studies. ESMO Open. 2024;9(3):102241. https://doi.org/10.1016/j.esmoop.2024.102241 PMID: 38442453

	40.	 Kim LH, Doan P, He Y, Lau HM, Pleass H, Patel MI. A systematic review and meta-analysis of the significance of body mass index on kidney can-
cer outcomes. J Urol. 2021;205(2):346–55. https://doi.org/10.1097/JU.0000000000001377 PMID: 32945696

	41.	 Agrawal M, Hegselmann S, Lang H, Kim Y, Sontag D. Large language models are few-shot clinical information extractors [Internet]. arXiv; 2022 
[cited 2024 Jun 2]. Available from: http://arxiv.org/abs/2205.12689

	42.	 Frank I, Blute ML, Cheville JC, Lohse CM, Weaver AL, Zincke H. Solid renal tumors: an analysis of pathological features related to tumor size. J 
Urol. 2003;170(6 Pt 1):2217–20. https://doi.org/10.1097/01.ju.0000095475.12515.5e PMID: 14634382

	43.	 Kashyap A, Rapsomaniki MA, Barros V, Fomitcheva-Khartchenko A, Martinelli AL, Rodriguez AF, et al. Quantification of tumor heterogeneity: from 
data acquisition to metric generation. Trends Biotechnol. 2022;40(6):647–76. https://doi.org/10.1016/j.tibtech.2021.11.006 PMID: 34972597

	44.	 Barros V, Tlusty T, Barkan E, Hexter E, Gruen D, Guindy M, et al. Virtual biopsy by using artificial intelligence-based multimodal modeling of bina-
tional mammography data. Radiology. 2023;306(3):e220027. https://doi.org/10.1148/radiol.220027 PMID: 36283109

	45.	 McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screen-
ing. Nature. 2020;577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6 PMID: 31894144

	46.	 Cancer Genome Atlas Research Network Analysis working group, Creighton C, Morgan M, Gunaratne P, Wheeler D, Gibbs R, et al. Comprehen-
sive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.

	47.	 Green EA, Li R, Albiges L, Choueiri TK, Freedman M, Pal S, et al. Clinical utility of cell-free and circulating tumor DNA in kidney and bladder can-
cer: a critical review of current literature. Eur Urol Oncol. 2021;4(6):893–903. https://doi.org/10.1016/j.euo.2021.04.005 PMID: 33975782

	48.	 Chorev M, Shoshan Y, Akselrod-Ballin A, Spiro A, Naor S, Hazan A. The case of missed cancers: applying AI as a radiologist’s safety net. In: Martel 
A, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga M, Zhou S, editors. Medical image computing and computer assisted intervention – MICCAI 
2020. Cham: Springer International Publishing; 2020. p. 220–9.

	49.	 Rabinovici-Cohen S, Fernández XM, Grandal Rejo B, Hexter E, Hijano Cubelos O, Pajula J, et al. Multimodal prediction of five-year breast cancer 
recurrence in women who receive neoadjuvant chemotherapy. Cancers (Basel). 2022;14(16):3848. https://doi.org/10.3390/cancers14163848 
PMID: 36010844

http://arxiv.org/abs/1810.04805
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
http://arxiv.org/abs/2307.0202831
https://doi.org/10.1002/bimj.200410135
https://doi.org/10.1002/bimj.200410135
http://www.ncbi.nlm.nih.gov/pubmed/16161804
https://doi.org/10.2307/2531595
http://www.ncbi.nlm.nih.gov/pubmed/3203132
https://doi.org/10.21037/tcr.2019.11.22
http://www.ncbi.nlm.nih.gov/pubmed/35117388
https://doi.org/10.1016/j.esmoop.2024.102241
http://www.ncbi.nlm.nih.gov/pubmed/38442453
https://doi.org/10.1097/JU.0000000000001377
http://www.ncbi.nlm.nih.gov/pubmed/32945696
http://arxiv.org/abs/2205.12689
https://doi.org/10.1097/01.ju.0000095475.12515.5e
http://www.ncbi.nlm.nih.gov/pubmed/14634382
https://doi.org/10.1016/j.tibtech.2021.11.006
http://www.ncbi.nlm.nih.gov/pubmed/34972597
https://doi.org/10.1148/radiol.220027
http://www.ncbi.nlm.nih.gov/pubmed/36283109
https://doi.org/10.1038/s41586-019-1799-6
http://www.ncbi.nlm.nih.gov/pubmed/31894144
https://doi.org/10.1016/j.euo.2021.04.005
http://www.ncbi.nlm.nih.gov/pubmed/33975782
https://doi.org/10.3390/cancers14163848
http://www.ncbi.nlm.nih.gov/pubmed/36010844

