ORIGINAL ARTICLE

Monoallelic *CEBPA* mutations in normal karyotype acute myeloid leukemia: independent favorable prognostic factor within *NPM1* mutated patients

Annika Dufour • Friederike Schneider • Eva Hoster • Tobias Benthaus • Bianka Ksienzyk • Stephanie Schneider • Purvi M. Kakadia • Maria-Cristina Sauerland • Wolfgang E. Berdel • Thomas Büchner • Bernhard Wörmann • Jan Braess • Marion Subklewe • Wolfgang Hiddemann • Stefan K. Bohlander • Karsten Spiekermann • for the AML CG study group

Received: 5 August 2011 / Accepted: 31 January 2012 / Published online: 24 February 2012 © Springer-Verlag 2012

Abstract We and others have shown that cytogenetically normal (CN)-AML patients with biallelic *CEBPA* gene mutations (bi*CEBPA*) represent a molecularly distinct group with a favorable prognosis. Patients carrying a monoallelic *CEBPA* mutation (mo*CEBPA*), however, show no different outcome compared to patients with wildtype *CEBPA*, and these mutations are frequently associated with mutated *NPM1* or *FLT3*-ITD. So far, no molecular or clinical hallmark has been identified to prognostically distinguish mo*CEBPA* patients from patients with wildtype *CEBPA*. Therefore, we used the data of 663 CN-AML patients treated within the AMLCG 1999 trial to explore the prognostic

value of mo*CEBPA* in the context of concomitant clinical and molecular markers (mutated *NPM1*, *FLT3*-ITD). Multiple Cox regression in 515 patients adjusting for all available potential confounders revealed that the *NPM1* mutation modified the prognostic value of mo*CEBPA* with respect to overall survival (OS, p=0.017) and event-free survival (EFS, p=0.011). Mo*CEBPA* was beneficial in *NPM1* mutated patients: adjusted OS–hazard ratio (HR) 0.09, 95% confidence interval (CI) 0.01–0.63, p=0.016; EFS–HR (95% CI) 0.16 (0.04–0.65), p=0.010. In contrast, mo*CEBPA* had no prognostic impact in patients with wildtype *NPM1*: OS–HR (95% CI) 1.08 (0.59–1.97), p=0.804; EFS–HR (95% CI)

Annika Dufour and Friederike Schneider contributed equally to this manuscript.

A. Dufour (⋈) · F. Schneider · T. Benthaus · B. Ksienzyk · S. Schneider · P. M. Kakadia · M. Subklewe · W. Hiddemann · S. K. Bohlander · K. Spiekermann
Laboratory for Leukemia Diagnostics, Department of Medicine III,
University of Munich-Grosshadern,
Marchioninistr.15,
81377 Munich, Germany

W. Hiddemann · S. K. Bohlander · K. Spiekermann Clinical Cooperative Group "Leukemia", Helmholtz Center Munich for Environmental Health,

e-mail: annika.dufour@med.uni-muenchen.de

Munich, Germany

E. Hoster

Institutes for Medical Informatics, Biometry and Epidemiology, University of Munich-Grosshadern, Munich, Germany M.-C. Sauerland Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany

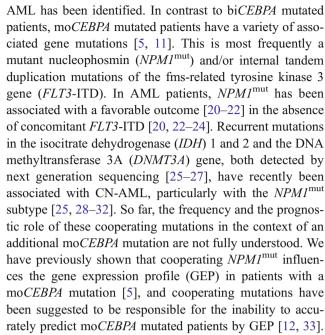
W. E. Berdel · T. Büchner Department of Medicine A, Hematology and Oncology, University of Münster, Münster, Germany

B. Wörmann

Department of Hematology and Oncology, Municipal Hospital, Braunschweig, Germany

J. Braess Department of Oncology and Hematology, Hospital "Barmherzige Brüder", Regensburg, Germany

1.12 (0.64–1.96), p=0.682. We found no prognostic effect modification for mo*CEBPA* by *FLT3*-ITD. The presence of a mo*CEBPA* mutation was shown to be associated with prolonged survival in *NPM1* mutated CN-AML patients. Confirmation of these results in larger studies will clarify whether an additional mo*CEBPA* mutation influences the risk stratification of patients with an *NPM1* mutated/*FLT3*-ITD positive genotype.


Keywords Monoallelic *CEBPA* mutations · *NPM1* mutation · Normal karyotype · Acute myeloid leukemia

Introduction

CCAAT/enhancer binding protein alpha (CEBPA) is a basic region leucine zipper (bZIP) transcription factor with a crucial role in proliferation and differentiation of myeloid cells [1–3]. *CEBPA* gene mutations occur in approximately 8–14% of patients with acute myeloid leukemia without chromosomal abnormalities (cytogenetically normal AML, CN-AML) [4–6] and can be divided into two main categories: N-terminal frameshift mutations that truncate the p42 wildtype CEBPA (wtCEBPA) protein but preserve a 30-kDa isoform with dominant negative activities on the wtCEBPA protein [7] and C-terminal in-frame mutations in *CEBPA* that disrupt the bZIP region and thereby affect dimerization and DNA binding activities of CEBPA [8, 9].

We and others have recently shown that the favorable prognostic impact originally designated to all patients with CEBPA gene mutations is restricted to those patients in whom both alleles in the CEBPA gene are disrupted (hereafter called bi*CEBPA* mutated AML) [5, 10–13]. BiCEBPA mutations are typically a combination of an N-terminal mutation on one allele and a C-terminal bZIP mutation on the other allele and result in the lack of wtCEBPA p42 expression [14, 15]. In mice, a combination of an N-terminal and C-terminal disruption of the CEBPA gene synergistically resulted in fast and efficient development of leukemia [16-18], and therefore a biallelic disruption of CEBPA has been proposed to be sufficient for leukemogenesis. By contrast, mice carrying single N-terminal or C-terminal CEBPA mutants developed leukemia with long latencies, and additional mutation events might cooperate with CEBPA single mutants in inducing leukemia [16, 17, 19].

Approximately 50% of *CEBPA* mutated patients carry one single heterozygous N-terminal or C-terminal *CEBPA* mutation (hereafter called mo*CEBPA* mutated AML) [5], in whom the expression of wtCEBPA is predicted to be retained at lower levels. Mo*CEBPA* mutated patients have a similar prognostic outcome as wt*CEBPA* patients, and so far no clinical or molecular hallmark of mo*CEBPA* mutant

Therefore, in this study, we explored the role of mo*CEBPA* in the light of concomitant molecular markers within a large series of older and younger CN-AML patients that have been homogeneously treated within the German AMLCG 1999 trial.

Methods

Patients

In this analysis we included diagnostic bone marrow or peripheral blood samples from adult AML patients with a normal karyotype who have been enrolled in the German AML cooperative group (AMLCG) 1999 multicenter treatment trial. Patients with a complete molecular status of CEBPA, NPM1 and FLT3-ITD (n=663) were selected out of a total of 802 patients. A subset of these patients (n=467) have also been investigated in a previous publication with a different objective [5]. Available clinical characteristics were age, sex, de novo versus secondary AML, ECOG performance status, French-American-British (FAB) subtypes M1 and M2 versus all other FAB subtypes, white blood cell and platelet counts, the amount of bone marrow blasts, hemoglobin and LDH levels. All patients received intensive induction therapy with thioguanine, cytarabine and daunorubicine (TAD) as standard therapy or high-dose cytarabine and mitoxantrone (HAM) in the experimental arm followed by one course of HAM and consolidation therapy. In patients with an age of ≥60 years, a second induction was only administered in case of an inadequate response to initial intensive induction treatment. Details of the trial protocols have been published elsewhere [34]. The

Table 1 Description of monoallelic CEBPA mutations and concurrent prognostic mutations

Pt#	Age (years)/sex	Nucleotide change (protein change)	Description of mutation	Predicted effect	Other gene mutations ^a
1	43/F	c.19dupT (p.Tyr7Leufs*101)	Frameshift duplication before TAD1	Stop before 2nd start site	NPM1 ^{mut} , FLT3-TKD, DNMT3A ^{mut} (c.2644 C > T; p.Arg882Cys)
2	50/F	c.20dupA (p.Tyr7stop)	Nonsense duplication before TAD1	Stop before TAD1	<i>NPM1</i> ^{mut} , <i>DNMT3A</i> ^{mut} (c.2645 G > A; p.Arg882His)
3	67/F	c.68dupC (p.His24Alafs*84)	Frameshift duplication before TAD1	Stop before 2nd start site	
4	66/F	c.68dupC (p.His24Alafs*84)	Frameshift duplication before TAD1	Stop before 2nd start site	b
5	71/M	c.68dupC (p.His24Alafs*84)	Frameshift duplication before TAD1	Stop before 2nd start site	NPMI ^{mut} , FLT3-ITD
6	69/F	c.68dupC (p.His24Alafs*84)	Frameshift duplication before TAD1	Stop before 2nd start site	NPMI ^{mut} , FLT3-ITD
7	66/M	c.68dupC (p.His24Alafs*84)	Frameshift duplication before TAD1	Stop before 2nd start site	<i>IDH2</i> ^{mut} (c.419 G > A; p.Arg140Gln
8	78/M	c.85_91dup (p.Phe31Cysfs*79)	Frameshift duplication before TAD1	Stop before 2nd start site	FLT3-ITD
9	18/F	c.178_179insT (p.Thr60Ilefs*48)	Frameshift insertion before TAD1	Stop before 2nd start site	
10	75/F	c.197_200dup (p.Ile68Leufs*41)	Frameshift duplication before TAD1	Stop before 2nd start site	NPMI ^{mut} , FLT3-TKD
11	30/F	c.199dupT (p.Tyr67Leufs*41)	Frameshift duplication before TAD1	Stop before 2nd start site	NPM1 ^{mut} , FLT3-ITD
12	64/M	c.245_248dup (p.Gln83Hisfs*26)	Frameshift duplication in TAD1	Stop before 2nd start site	FLT3-ITD
13	63/F	c.281_282insGCCGC (p.Val95Profs*67)	Frameshift insertion in TAD1	Stop in TAD2	
14	67/F	c.288_295dup (p.Gly99Alafs*64)	Frameshift duplication before 2nd start site	Stop in TAD2	NPMI ^{mut} , FLT3-ITD
15	48/F	c.332_339del (p.Ala111Glyfs*56)	Frameshift deletion before 2nd start site	Stop in TAD2	FLT3-ITD
16	64/F	c.333_343del (p.Pro112Argfs*54)	Frameshift deletion before 2nd start site	Stop in TAD2	b
17	68/M	c.335_338del (p.Pro112Argfs*47)	Frameshift deletion before 2nd start site	Stop in TAD2	
18	56/F	c.338dupC (p.Gly116Argfs*54)	Frameshift duplication before 2nd start site	Stop in TAD2	$NPM1^{\text{mut}}$, $FLT3$ -ITD, $DNMT3A^{\text{mut}}$ (c.1741 T > C; p.Trp581Arg)
19	53/F	c.350delG (p.Gly117Alafs*43)	Frameshift deletion before 2nd start site	Stop in TAD2	NPM1 ^{mut} , DNMT3A ^{mut} (c.2645 G > A; p.Arg882His)
20	69/M	c.515_516insCAGC (p.Gln172Hisfs*150)	Frameshift insertion in TAD2	Stop in LZD	DNMT3A ^{mut} (c.2645 G > A; p.Arg882His), IDH2 ^{mut} (c.419 G > A; p.Arg140Gln)
21	55/M	c.531_532insG (p.Leu178Alafs*143)	Frameshift insertion in TAD2	Stop in LZD	
22	69/F	c.692_713del (p.Pro231Argfs*80)	Frameshift deletion between TAD2 and BR	Stop in LZD	$NPM1^{\text{mut}}$, $FLT3$ -ITD, $DNMT3A^{\text{mut}}$ (c.2204A > G; p.Tyr735Cys)
23	66/F	c.922_923ins24bp ^c (p.Val308delins9)		Disruption of LZD	b
24	70/M	c.927_928dup (p.Thr310Argfs*9)	Frameshift duplication in LZD	Stop in LZD	MLL-PTD ^b
25	47/F	c.934_936dup (p.Gln312dup)	In-frame duplication in LZD	Disruption of LZD	FLT3-TKD, FLT3-ITD
26	46/F	c.950_951insGTC	In-frame insertion in LZD	Disruption of LZD	NPM1 ^{mut} , FLT3-ITD
27	47/F	(p.Leu317_Thr318insSer) c.1027delC (p.Arg343Alafs*79)	Frameshift deletion in LZD	Disruption of LZD	NPM1 ^{mut} , FLT3-TKD, IDH1 ^{mut}
28	78/F	c.1065_1066insGCC (p.Gly355_Asn356insAla)	In-frame insertion after LZD	Elongated protein	(c.394 C > T; p.Arg132Cys)

Nucleotide numbering for CEBPA is according to Genbank Accession No. NM_004364.2, for DNMT3A according to NM_175629.1, for IDH1 according to NM_005896.2 and for IDH2 according to NM_002168.2

Pt# patient number, F female, M male, TAD transactivation domain, LZD leucine zipper domain; BR basic region, $NPM1^{mut}$ mutations in the NPM1 gene, FLT3-ITD internal tandem duplication of the FLT3 gene, FLT3-IKD tyrosine kinase domain mutations, MLL-PTD partial tandem duplications of the MLL gene, $DNMT3A^{mut}$ mutations in the DNMT3A gene, $IDH1/2^{mut}$ mutations in the IDH1/2 genes

^a Includes mutations in the NPM1 gene, FLT3-ITD, FLT3-TKD, MLL-PTD and mutations in the DNMT3A, IDH1 and IDH2 genes

^b For patient #4, 16, 23 and 24, no DNMT3A and IDH1/2 status could be determined due to insufficient sample material

^c cgcgacaaggccaagcagcgcaac

Table 2 Patient demographics and survival according to the number of mutated alleles in the CEBPA gene

Characteristic	Number	wt <i>CEBPA</i> [No. (%)]	mo <i>CEBPA</i> [No. (%)]	p ^a across wt <i>CEBPA/</i> mo <i>CEBPA</i>	bi <i>CEBPA</i> [No. (%)]	p ^b across wt <i>CEBPA/</i> mo <i>CEBPA/</i> bi <i>CEBPA</i>
No. of patients	663	604 (91)	28 (4)		31 (5)	
Age (years)	663					
Median		60	65		61	0.541
Range		17-85	18-78		28-83	
Sex	663					
Female		298 (49)	20 (71)	0.022	16 (52)	0.073
FAB type (<i>n</i>)	652	594	28		30	
M0		22 (4)	0 (0)	0.208	1 (32)	0.021
M1		135 (23)	9 (32)		8 (27)	
M2		201 (34)	14 (50)		19 (63)	
M4		143 (24)	4 (14)		1 (3)	
M5		68 (11)	0 (0)		0 (0)	
M6		25 (4)	1 (4)		1 (3)	
FAB M1/M2 (n)		336 (57)	23 (82)	0.007	27 (90)	< 0.001
Type of disease	663	220 (27)	25 (62)	0.007	= 7 (30)	0.001
De novo AML	003	505 (84)	23 (82)		30 (97)	0.258
AML from MDS		80 (13)	5 (18)		1 (37)	0.230
Therapy-related AML		19 (3)	0 (0)		0 (0)	
Hemoglobin (n)	653	594	28		31	
	033	92	89	0.792	102	0.011
Median (g/L) Range (g/L)		42–164	68–132	0.792	80–125	0.011
White cell count (n)	656	597	28		31	
Median ($\times 10^9/L$)	030	18	32			0.170
Range (×10 ⁹ /L)					21	0.178
= : :	(5)	0.1–798	1.7–192		0.9–203	
Platelet count (n)	656	597	28	0.007	31	0.027
Median ($\times 10^9/L$) Range ($\times 10^9/L$)		59	53	0.897	38	0.037
= :	607	5–643	5–367		6–176	
Bone marrow blasts (n)	627	568	28		31	0.722
Median (%)		80	85		77	0.722
Range (%)	5.40	20–100	20–97		20–100	
LDH (n)	648	589	28		30	
Median (U/L)		421	426		429	0.887
Range (U/L)		102–14332	152–2666		205–2510	
NPM1	663					
Wildtype		274 (45)	16 (57)	0.229	31 (100)	< 0.001
Mutant		330 (55)	12 (43)		0	
FLT3-ITD	663					
Negative		424 (70)	17 (61)	0.285	28 (90)	0.027
Positive		180 (30)	11 (39)		3 (10)	
NPM1/FLT3-ITD	663			0.647		< 0.001
Wildtype/negative		223 (37)	12 (43)		28 (90)	
Wildtype/positive		51 (8)	4 (14)		3 (10)	
Mutant/negative		201 (33)	5 (18)		0	
Mutant/positive		129 (21)	7 (25)		0	
FLT3-TKD (n)	595	539	27		29	
Negative		504 (94)	22 (81)	0.081	29 (100)	0.069
Positive		35 (7)	4 (15)		0	
MLL-PTD (n)	631	575	28		28	

Table 2 (continued)

Characteristic	Number	wt <i>CEBPA</i> [No. (%)]	mo <i>CEBPA</i> [No. (%)]	p ^a across wt <i>CEBPA/</i> mo <i>CEBPA</i>	bi <i>CEBPA</i> [No. (%)]	p ^b across wt <i>CEBPA/</i> mo <i>CEBPA/</i> bi <i>CEBPA</i>
Negative		527 (92)	27 (96)		28(100)	0.197
Positive		48 (8)	1 (4)		0	
Complete remission	663					
No. of patients		400	17		24	
Rate (%)		66	61		77	0.350
OS	663					
Median follow-up time (months)		63	72		53	0.682
Median (months)		19.6	22.8	0.408	Not reached	0.007
Events		339	16		11	
EFS	661	602	28		31	
Median (months)		8.1	6.5	0.554	33.8	0.053
Events		464	19		17	
Allogeneic stem cell transplant (n)	662	111/603 (18)	6 (21)		6 (19)	0.463
Induction cycles (n)	660	601	28		31	
1		221 (37)	10 (36)		10 (32)	0.875
2		380 (63)	18 (64)		21 (68)	
Double induction regimen, ITT	663					
TAD-HAM		311 (52)	13 (46)		14 (45)	0.699
HAM-HAM		293 (49)	15 (54)		17 (55)	
Cumulative dose of cytarabine (mg)	663					
Median		29400	23900		30870	0.318

CN-AML karyotypically normal acute myeloid leukemia, wtCEBPA patients with wildtype CEBPA, moCEBPA patients with monoallelic CEBPA mutation, biCEBPA patients with biallelic CEBPA mutations, AML acute myeloid leukemia, MDS myelodysplastic syndrome, LDH lactate dehydrogenase, FAB French-American-British, NPM1 nucleophosmin, FLT3-ITD internal tandem duplication of the FLT3 gene, FLT3-TKD tyrosine kinase domain mutations, MLL-PTD partial tandem duplication of the MLL gene, OS overall survival, EFS event-free survival, ITT intention to treat, TAD 6-thioguanine, cytarabine and daunorubicin, HAM high-dose cytarabine and mitoxantrone

study protocols were approved by the ethics committees of the participating centers, and all patients provided written informed consent.

Molecular analyses

CEBPA mutational screening was performed by multiplex PCR-based fragment length analysis and confirmation sequencing as previously described [35]. Patients with two different mutations were categorized as biCEBPA. In 20 of the biCEBPA patients, cloning analysis was performed and revealed that the distribution of the mutations was biallelic [5]. Patients with single heterozygous mutations as determined by sequencing analysis were categorized as moCEBPA. Within our patient cohort, we did not identify patients with homozygous mutations or patients with more than two mutations in CEBPA.

Patients were further characterized at the molecular level with regards to NPM1 mutations [22, 36], FLT3-ITD [37], point mutations in the FLT3 gene at codons D835 and I836 (FLT3-TKD) [38], and partial tandem duplications within the MLL gene (MLL-PTD) [39] as described. These analyses were performed on complementary DNA as described [35]. Furthermore, genomic DNA was obtained with the QIamp DNA Mini Kit (Qiagen, Hilden, Germany) of all moCEBPA patients in order to screen for IDH1, IDH2 and DNMT3A mutations. Mutation analysis of codon 132 of the IDH1 gene and codon 140 and 172 of the IDH2 gene was performed by bidirectional sequencing using primers spanning the mutation hotspots as previously described [40]. Due to limited sample availability, we confined DNMT3A mutation screening to exons 15-23 in which most mutations have been detected in AML so far [25, 41]. Exon-spanning primers were designed, and amplicons were scanned by LightCycler High Resolution

^a Pairwise comparisons between mo*CEBPA* and wt*CEBPA* applying the Mann–Whitney U test or χ^2 -test/ Fisher's exact test. p values are given in case comparison between the three subgroups had a p value<0.100

^b Differences between wt*CEBPA*, mo*CEBPA* and bi*CEBPA* were calculated using the Kruskal–Wallis test or χ^2 -test/Fisher's exact test

Table 3 Comparison of patient demographics and survival in N-terminally versus C-terminally located mo*CEBPA* mutations

Characteristic	Number	N-terminal mutation [No. (%)]	C-terminal mutation [No. (%)]	p^{a}
No. of	28	19 (68)	9 (32)	
patients	20			
Age (years)	28	64		0.554
Median		64	66 46–78	0.554
Range	20	18–78	46-78	
Sex	28	12 ((0)	7 (77)	1 000
Female	20	13 (68)	7 (77)	1.000
Type of disease	28			
De novo		17 (89)	6 (67)	0.290
AML				
Secondary AML		2 (11)	3 (33)	
Hemoglobin	28			
(n)				
Median		99	84	0.061
(g/L) Range (g/L)		72–131	68–112	
White cell	28	72 131	00 112	
count (n)	20			
Median		44	31	0.363
(×10 ⁹ /L) Range		1.8-128.9	1.7–192	
(×10 ⁹ /L)		1.6-126.9	1.7-192	
Platelet count	28			
(n)		52	£ 1	0.721
Median $(\times 10^9/L)$		53	51	0.731
Range		10-223	5-367	
$(\times 10^{9}/L)$				
Bone marrow blasts (n)	27	18		
Median (%)		82.5	85	0.896
Range (%)		40–95	20-97	
LDH (n)	28			
Median		423	428	0.417
(U/L)				
Range (U/L)		152–1331	186–2666	
NPM1	28			
Wildtype		10 (53)	6 (67)	0.687
Mutant		9 (47)	3 (33)	
<i>FLT3</i> -ITD	28			
Negative		11 (58)	6 (67)	1.000
Positive		8 (42)	3 (33)	
FLT3-TKD	28	17	9	
(n) Negative		15 (88)	7 (78)	0.591
Positive		2 (12)	2 (22)	0.071
MLL-PTD (n)	27	18	9	
Negative		18 (100)	8 (89)	0.333
Positive		0	1 (11)	0.000
DNMT3A(n)	24	18	6	
Wildtype		14	4	0.618

Table 3 (continued)

Characteristic	Number	N-terminal mutation [No. (%)]	C-terminal mutation [No. (%)]	p^{a}
Mutant		4	2	
IDH1 R132 (n)	24	18	6	
Wildtype		18	5	0.250
Mutant		0	1	
IDH2 R140 (n)	24	18	6	
Wildtype		17	5	0.446
Mutant		1	1	
Complete remission				
No. of patients		12	5	0.507
Rate (%)		36.2	55.6	
OS	28			
Median (months)		24.3	22.8	0.646
Events		10	6	
EFS	28			
Median (months)		6.5	21.4	0.796
Events		13	6	

Abbreviations: *moCEBPA* patients with monoallelic *CEBPA* mutation, *AML* acute myeloid leukemia, *LDH* lactate dehydrogenase, *FAB* French–American–British, *NPM1* nucleophosmin, *FLT3-ITD* internal tandem duplication of the *FLT3* gene, *FLT3-TKD* tyrosine kinase domain mutations, *MLL-PTD* partial tandem duplication of the *MLL* gene, *OS* overall survival, *EFS* event-free survival

 $^{\rm a}$ Pairwise comparisons were calculated using the Mann–Whitney U test or χ^2 -test/Fisher's exact test

Melting master (Roche Diagnostics, Penzberg, Germany) following the manufacturer's instructions. Differences in the fluorescence of the high resolution melting profile in comparison to wildtype genes in HL-60 cells were confirmed by bidirectional DNA sequencing.

Statistical analyses

Outcome variables were overall survival (OS) and eventfree survival (EFS). OS was calculated from randomization to death from any cause or to the latest follow-up date. EFS was defined as the period from the start of therapy until lack of a complete remission (CR), relapse after CR or death without relapse. Independent prognostic factors were examined by multivariable Cox regression including all available clinical characteristics and molecular markers. All survival analyses were performed with and without censoring time to event at the date of allogeneic transplantation, if performed. To explore modifying effects, the interaction terms between *NPM1*^{mut} and *FLT3*-ITD,

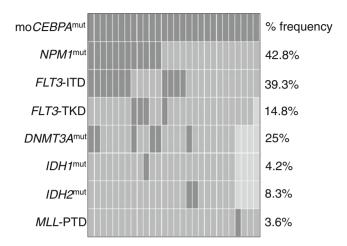


Fig. 1 Frequency and distribution of concurrent mutations in moCEBPA mutated patients. Each box in a column represents one patient and in rows the genotypes NPMI^{mut}, FLT3-ITD, FLT3-TKD, DNMT3A^{mut}, IDH1^{mut}, IDH2^{mut} or MLL-PTD (dark grey), wildtype (grey) and missing values (light grey). Abbreviations: moCEBPA monoallelic CEBPA mutation, NPMI^{mut} mutations in the nucleophosmin gene, FLT3-ITD internal tandem duplications in the FLT3 gene, FLT3-TKD tyrosine kinase mutations in the FLT3 gene, MLL-PTD partial tandem duplications in the MLL gene, DNMT3A^{mut} mutations in the DNA methyltransferase 3A gene, IDH1/2^{mut} mutations in the IDH1/2 genes

NPM1^{mut} and moCEBPA, FLT3-ITD and moCEBPA, and FLT3-ITD and biCEBPA were included in the models. The interaction term between NPM1^{mut} and biCEBPA could not be included, since no biCEBPA patient carried an NPM1 mutation. For moCEPBA patients [5] and NPM1^{mut} patients [22, 42], a higher frequency of female sex has previously been reported. Therefore, we tested whether female sex prognostically modified the outcome of patients with a moCEBPA, NPM1^{mut}, FLT3-ITD or biCEBPA. Non-significant interaction terms were eliminated backwards. In case of significant interactions, stratified hazard ratios were reported.

Survival curves were calculated according to the Kaplan–Meier method and compared with the log rank test. For comparisons of different categoric parameters in two, respectively, three subgroups were performed using the χ^2 -test. For continuous variables, we used the Mann–Whitney U test for the comparison between two different groups and the Kruskal–Wallis test for the comparison between the three *CEBPA* subgroups. All tests were two-tailed, and p-values<0.05 were considered statistically significant.

Statistical computations were performed using SPSS software, version 16.0 (SPSS, Chicago, IL) and the R 2.7.2 software package (R Foundation for Statistical Computing, Vienna, Austria).

Results

CEBPA mutation status

We had a complete molecular status of 663 CN-AML patients with a median age of 60 years (range 17–85 years). Survival parameters did not significantly differ between selected and unselected patients ("Appendix"). *CEBPA* gene mutations were detected in 59 patient samples (8.7%). Thirty-one patients (4.7%) had bi*CEBPA* mutations among which most patients had a combination of an N-terminal frameshift mutation and a C-terminal mutation in the bZIP domain of CEBPA (28/31). Twenty-eight patients (4.1%) carried mo*CEBPA* mutations which were predominantly N-terminal frameshift mutations (19/28) (Pts #1–19, Table 1). Nine of 28 mo*CEBPA* patients had in-frame and frameshift mutations affecting the C-terminus of CEBPA (Pts #20–28, Table 1).

The clinical and molecular characteristics of the study cohort according to the number of mutated alleles in the *CEBPA* gene are shown in Table 2. The percentage of patients that received allogeneic bone marrow transplantation or treatment regimens was not significantly different in the three subgroups (Table 2).

Characterization of moCEBPA mutated patients

Different leukemogenic capacities and molecular mechanisms have been suggested between *CEBPA* mutations located either in the N-terminus or in the C-terminus of the *CEBPA* gene [16, 17]. However, no significant differences in outcome were observed when comparing the 19 patients with N-terminally located mo*CEBPA* mutations with the nine patients containing C-terminal *CEBPA* mutations (Table 3). Also, several clinical parameters and the frequency of concomitant molecular mutations were not significantly different between patients with N-terminally or C-terminally located mo*CEBPA* mutations (Table 3).

Therefore, for subsequent analysis, the location of the mo*CEBPA* mutations was not further taken into consideration.

The only significant clinical difference of mo*CEBPA* mutated patients in comparison to patients with wt*CEBPA* was a higher percentage of female patients and, as in all *CEBPA* mutated patients, a higher percentage of FAB M1 or M2 (Table 2). Clinical outcome parameters and the frequency of additional *NPM1*^{mut}, *FLT3*-ITD or MLL-PTD were statistically not different when compared to patients with wt*CEBPA* (Table 2).

In addition, we determined the mutation status for *IDH1*, *IDH2* and *DNMT3A* genes in 24 out of 28 mo*CEBPA* patients of which we had sufficient material left. One mo*CEBPA* patient had an *IDH1* R132C mutation (1/24, 4.2%), two patients had *IDH2* R140Q mutations (8.3%)

and six patients had missense mutations in the *DNMT3A* gene (25%). A more detailed description of these mutations is given in Table 1.

The genotype and the association of the different molecular markers investigated in mo*CEBPA* patients are described in Fig. 1. In short, mo*CEBPA* mutated patients most frequently had an additional *NPM1*^{mut} (12/28: 42.8%). All of these mo*CEBPA/NPM1*^{mut} patients were further associated with at least one of the following aberrations: *FLT3*-ITD in seven cases, *FLT3*-TKD in three cases, *DNMT3A* in five cases and an *IDH1* mutation in one case. Of the 16 mo*CEBPA/NPM1*^{unmut} patients (16/28: 57.1%), four patients had a concurrent *FLT3*-ITD, one an *FLT3*-TKD, one an *MLL*-PTD, two an *IDH2* R140 mutation and one a *DNMT3A* mutation.

Prognostic value of a mo*CEBPA* mutation in 515 CN-AML patients

In a multiple Cox regression analysis in 515 complete cases adjusting for all candidate prognostic factors, we looked for different prognostic values of mo*CEBPA* according to the most frequently occurring concurrent markers *NPM1*^{mut} and *FLT3*-ITD.

Besides the known prognostic effect modification of $NPMI^{\rm mut}$ by FLT3-ITD, we found that the prognostic value of mo*CEBPA* was modified by $NPMI^{\rm mut}$ with regard to OS: HR (95% CI) 0.08 (0.01–0.64), p=0.017 and EFS: HR (95% CI) 0.14 (0.03–0.64), p=0.011 (Table 4). Stratified calculation of HR revealed that in $NPMI^{\rm unmut}$ patients,

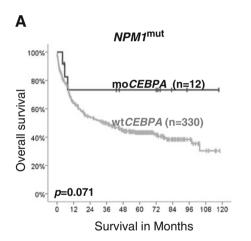
Table 4 Multiple Cox regression analysis for overall and event-free survival in 515 CN-AML patients

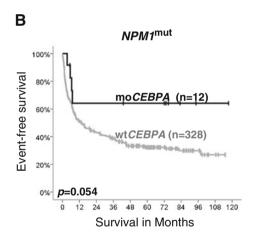
Variable	Comparison	Stratum	OS-HR (95% CI)	p	EFS-HR (95% CI)	p
mo <i>CEBPA</i>	mo vs. wt <i>CEBPA</i>	NPM1 ^{unmut}	1.08 (0.59–1.97)	0.804	1.12 (0.64–1.96)	0.682
	mo vs. wtCEBPA	NPM1 ^{mut}	0.09 (0.01-0.63)	0.016	0.16 (0.04-0.65)	0.010
NPM1 ^{mut} /moCEBPA	mut/mo vs. others	All	0.08 (0.01-0.64)	0.017	0.14 (0.03-0.64)	0.011
NPM1 ^{mut} /FLT3-ITD	mut/pos vs. others	All	1.85 (1.10–3.10)	0.020	1.94 (1.21–3.11)	0.006
NPM1 ^{mut} /female sex	mut/female vs. others	All	2.40 (1.49–3.86)	< 0.001	2.46 (1.60-3.79)	< 0.001
NPM1 ^{mut}	mut vs. wt	wtCEBPA/ FLT3-ITD ^{neg} /male	0.20 (0.13-0.31)	< 0.001	0.19 (0.13-0.28)	< 0.001
	mut vs. wt	moCEBPA/FLT3-ITD ^{neg} /male	0.02 (0.00-0.13)	< 0.001	0.03 (0.01-0.13)	< 0.001
	mut vs. wt	wtCEBPA/ FLT3-ITD ^{neg} /female	0.49 (0.32-0.75)	0.001	0.47 (0.32–0.69)	< 0.001
	mut vs. wt	moCEBPA/FLT3-ITD ^{neg} /female	0.04 (0.01-0.31)	0.002	0.07 (0.02-0.30)	< 0.001
	mut vs. wt	wtCEBPA/FLT3-ITD ^{pos} /male	0.40 (0.22-0.63)	< 0.001	0.37 (0.23-0.60)	< 0.001
	mut vs. wt	moCEBPA/FLT3-ITD ^{pos} /male	0.03 (0.00-0.25)	0.001	0.05 (0.01-0.25)	< 0.001
	mut vs. wt	wtCEBPA/FLT3-ITD ^{pos} /female	0.90 (0.55-1.46)	0.663	0.92 (0.58-1.44)	0.709
	mut vs. wt	moCEBPA/FLT3-ITD ^{pos} /female	0.07 (0.01-0.61)	0.016	0.13 (0.03-0.63)	0.011
FLT3-ITD	pos vs. neg	NPM1 ^{unmut}	0.91 (0.59–1.39)	0.647	0.78 (0.53-1.15)	0.211
	pos vs. neg	$NPMI^{\mathrm{mut}}$	1.67 (1.18–2.38)	0.004	1.51 (0.10-2.09)	0.012
Sex	Female vs. male	NPMI ^{unmut}	0.62 (0.45-0.85)	0.003	0.57 (0.43-0.77)	< 0.001
	Female vs. male	NPM1 ^{mut}	1.47 (1.04–2.09)	0.030	1.41 (1.03–1.94)	0.034
bi <i>CEBPA</i>	bi vs. wtCEBPA	All	0.24 (0.12-0.49)	< 0.001	0.33 (0.18-0.58)	< 0.001
FLT3-TKD	pos vs. neg	All	1.43 (0.91–2.25)	0.122	1.33 (0.86–2.05)	0.202
MLL-PTD	pos vs. neg	All	0.94 (0.63-1.40)	0.763	1.03 (0.71–1.49)	0.874
Age (years)	+10	All	1.41 (1.28–1.56)	< 0.001	1.21 (1.11–1.32)	< 0.001
ECOG PS	2-4 vs. 0/1	All	1.20 (0.94–1.54)	0.154	1.15 (0.91–1.44)	0.248
De novo AML	vs. non-de novo	All	0.91 (0.66-1.25)	0.555	0.99 (0.75-1.34)	0.987
FAB M1/M2	vs. others	All	1.05 (0.82–1.35)	0.682	1.12 (0.89–1.40)	0.341
WBC (×10 ⁹ /L)	10-fold	All	1.41 (1.11–1.79)	0.005	1.35 (1.08–1.68)	0.008
Platelet count (×10 ⁹ /L)	10-fold	All	0.72 (0.53-0.99)	0.043	0.78 (0.59-1.04)	0.088
Hemoglobin (g/L)	+1	All	0.99 (0.99-1.01)	0.860	1.00 (1.00-1.01)	0.438
BM blasts (%)	+1	All	1.01 (0.99–1.01)	0.126	1.01 (0.99-1.01)	0.078
LDH (U/L)	10-fold	All	1.83 (1.14–2.94)	0.012	1.64 (1.07–2.53)	0.025

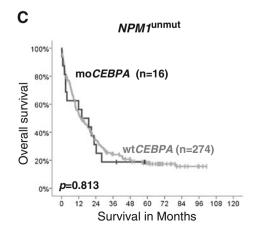
p values were calculated using the Wald test

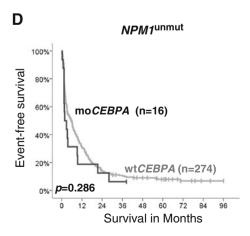
OS overall survival, EFS event-free survival, HR hazard ratio, CI confidence interval, biCEBPA biallelic CEBPA mutations, moCEBPA monoallelic CEBPA mutations, NPMI^{mut} mutations in the nucleophosmin gene, NPMI^{unmut} no mutations in the nucleophosmin gene, FLT3-ITD internal tandem duplications in the fins-like tyrosine kinase-3 gene, MLL-PTD partial tandem duplications in the MLL gene, ECOG PS ECOG performance status, FAB French-American-British, WBC white blood cell count, LDH lactate dehydrogenase

mo*CEBPA* was of no prognostic impact: OS–HR (95% CI) 1.08 (0.59–1.97), p=0.804; EFS–HR (95% CI) 1.12 (0.64–1.96), p=0.682, whereas it was beneficial in $NPMI^{\rm mut}$ patients: OS–HR (95% CI) 0.09 (0.01–0.63), p=0.016; EFS–HR (95% CI) 0.16 (0.04–0.65), p=0.010. These same results were retained in a multivariable model with censoring transplanted patients at the date of allogeneic transplantation: OS–HR (95% CI) 0.09 (0.01–0.63), p=0.016; EFS–HR (95% CI) 0.15 (0.04–0.62), p=0.009 (data not shown).


There was no prognostic effect modification of mo*CEBPA* by *FLT3*-ITD (OS, p=0.294; EFS, p=0.688) or for bi*CEBPA* by *FLT3*-ITD (OS, p=0.924; EFS, p=0.460).


We further tested whether the higher frequency of female sex in mo*CEBPA* patients is of prognostic importance. However, female sex did not modify the prognosis of mo*CEBPA* (OS, p=0.399), bi*CEBPA* (OS, p=0.510) or FLT3-ITD (OS, p=0.375). We, however, identified a modifying prognostic effect for $NPMI^{\rm mut}$ by female sex: OS–HR (95% CI) 2.40 (1.49–3.86), p<0.001, such that female sex was identified as an unfavorable prognostic marker within $NPMI^{\rm mut}$ patients and as a favorable prognostic marker within $NPMI^{\rm unmut}$ patients (Table 4).


Fig. 2 Kaplan-Meier analysis for overall and event-free survival investigating the prognostic impact of a moCEBPA mutation versus wtCEBPA in all $NPMI^{\text{mut}}$ patients $(\mathbf{a} + \mathbf{b})$ and in all $NPM1^{\text{unmut}}$ patients $(\mathbf{c} + \mathbf{d})$, irrespective of other prognostic markers. Abbreviations: moCEBPA monoallelic CEBPA mutation, wtCEBPA wildtype CEBPA, NPM1^{mut} mutations in the NPM1 gene, NPM1unnut no mutations in the NPM1 gene. p: log rank test for pairwise comparison


The favorable prognostic effect of *NPM1*^{mut} was therefore modified by *FLT3*-ITD, mo*CEBPA* and female sex resulting in eight strata with beneficial effect to a different extent. In all of these subgroups, a mo*CEBPA* mutation positively enhanced the effect of *NPM1*^{mut} independently of *FLT3*-ITD or sex with hazard ratios by a factor of 0.12. Other independent prognostic factors for OS and EFS were the presence of a bi*CEBPA* mutation, younger age, white blood cell count and lactate dehydrogenase levels (Table 4). There were no qualitative differences in the results with censoring time to event at the date of allogeneic transplantation (data not shown).

For graphical demonstration of the different prognostic effects of $NPMI^{\rm mut}$ according to the presence of a moCEBPA, we compared $NPMI^{\rm mut}/{\rm mo}\,CEBPA$ patients (n=12) to $NPMI^{\rm mut}/{\rm wt}\,CEBPA$ patients (n=330) irrespective of the presence of additional markers in univariate Kaplan–Meier analysis. We found a strong trend towards an additional favorable effect of a moCEBPA mutation on OS and EFS of $NPMI^{\rm mut}$ patients: median OS for mo $CEBPA/NPMI^{\rm mut}$ versus wt $CEBPA/NPMI^{\rm mut}$ was not reached versus 34.3 months, respectively, p=0.071 (Fig. 2a); median EFS was not reached versus 13.6 months, respectively, p=0.054 (Fig. 2b). The favorable trend of moCEBPA mutations on the

outcome of $NPMI^{\rm mut}$ patients was retained when censoring transplanted patients (median OS: not reached versus 40.7 months, p=0.106; median EFS: not reached versus 13.5, p=0.061). No prognostic effect of a moCEBPA was observed in $NPMI^{\rm unmut}$ patients (Fig. 2c-d).

Discussion

This is, to our knowledge, the first study investigating the prognostic value of a single monoallelic *CEBPA* mutation within homogeneously treated CN-AML patients in the context of other molecular markers. We and others have previously shown that a mo*CEBPA* mutation as a single marker had no independent prognostic impact in the unstratified cohort of CN-AML [5, 10, 11, 13].

Here we show for the first time a modification of prognostic effects for mo*CEBPA* by *NPM1*^{mut} such that mo*CEBPA* had a positive influence in *NPM1*^{mut}, but no effect in *NPM1*^{unmut} patients (Table 4, Fig. 2). A previous study in younger AML patients including patients with complex karyotypes did not find a statistically significant benefit of a single *CEBPA* mutation in *NPM1*^{mut} AML, but the authors have not investigated a prognostic effect modification of mo*CEBPA* by *NPM1*^{mut} in a multivariable analysis [10].

A cooperative favorable effect of concurrent moCEBPA/ NPM1^{mut} is somewhat surprising, as both NPM1^{mut} and CEBPA mutations have typical features of primary genetic lesions impairing hematopoietic differentiation [43]. Interestingly, ten out of 12 patients with concurrent moCEBPA and NPM1^{mut} had an additional mutation in the FLT3 gene, an additional FLT3-ITD in seven cases and an additional FLT3-TKD in three cases (Table 1). For both mutated CEBPA and NPMImut, an additional FLT3-ITD has shown to be a potential secondary event [44] important for disease progression [45, 46]. A potential pathogenetic relevance of FLT3-ITD^{pos} in CEBPA mutated AML has recently been demonstrated in a bone marrow transplantation model in which a C-terminal CEBPA mutant collaborated with an FLT3-ITD in the process of leukemogenesis [17]. A cooccurrence of NPM1 or CEBPA mutations with an FLT3-TKD has shown to be prognostically favorable [38].

In our patient cohort including patients over 60 years, we did not find a prognostic effect modification of mo*CEBPA* or bi*CEBPA* by *FLT3*-ITD. A negative prognostic influence of an *FLT3*-ITD in *CEBPA* mutant AML has previously been described in younger AML patients [12]. These discrepancies might be due to the small incidences of concurrent *FLT3*-ITD and *CEBPA* mutations. Alternatively, in *NPM1*^{mut} patients, there are indications that the prognostic impact of an additional *FLT3*-ITD might be influenced by age. Several studies including patients over the age of 60 years have shown a favorable effect of *NPM1*^{mut} irrespective of the presence or

absence of an *FLT3*-ITD [47]. We show here that a mo*CEBPA* mutation had a favorable effect in *NPM1*^{mut} patients irrespective of the presence or absence of *FLT3*-ITD (Table 4, Fig. 2a, b). In accordance to these data, a recently reported meta-analysis in CN-AML patients observed a favorable trend for all *NPM1/FLT3*-ITD genotypes in *CEBPA* single mutant patients in comparison to patients with wt*CEBPA* [12]. Further large prospective trials are required to clarify whether the favorable shift of *NPM1*^{mut}/*FLT3*-ITD^{pos} patients in the presence of a mo*CEBPA* mutation may have therapeutic implications regarding the need for transplantation recommended for *FLT3*-ITD^{pos} patients [23].

The frequency of combined *IDH1/IDH2* mutations that we detected within the subgroup of mo*CEBPA* mutations (12.5%) was similar as previously reported in *CEBPA* mutated CN-AML patients (13–17%) and less than reported in CN-AML patients (23–33%) [30]. The incidence of *DNMT3A* mutations in mo*CEBPA* patients (25%) was slightly less than that reported in CN-AML (27–34%) [25, 32, 41] but well in accordance to a recent report and comment to this report by Thol et al. who detected 21% (five of 24) of *DNMT3A* mutations in CN-AML patients with a single *CEBPA* mutation [32]. Due to the relatively low percentages of these mutations in mo*CEBPA* mutated patients, their prognostic role in this subgroup is not clear yet. Clarification will require larger patient cohorts.

A higher female prevalence was the only clinical difference in all mo*CEBPA* mutated patients as compared to wt*CEBPA* patients (Table 2) also when limited to *NPM1*^{mut} patients (data not shown). In a recent study in younger AML patients, the favorable prognostic impact of patients with *CEBPA* double mutations was predominately seen in younger and female patients [10]. However, we did not find a prognostic association of mo*CEBPA* or bi*CEBPA* with female sex.

In summary, we have shown that within NPM1^{mut} CN-AML patients, moCEBPA was associated with an independent favorable outcome, similarly as previously shown for biCEBPA mutated patients. Our results might prompt further larger analyses to clarify the clinical and therapeutic relevance of these findings.

Acknowledgements The authors would like to thank Evelyn Zellmeier and Gudrun Mellert for excellent technical assistance.

Conflict of interest The authors indicate no potential conflict of interest.

Appendix

Selection

Patients with a complete molecular status of *CEBPA*, *NPM1* and *FLT3*-ITD were selected out of a total of 802 patients. The

selected patients (n=663) had a significantly higher percentage of bone marrow blasts and leucocytes compared to non-selected patients (n=139). Other clinical parameters and the frequency of molecular markers were similar in selected versus unselected patients. OS, EFS and RFS did not significantly differ between both tested and untested groups (p=0.342, p=0.219, p=0.600, respectively) (data not shown).

List of participating centers within the AML CG 1999 study

Study coordinators: T. Büchner, W. Hiddemann, W.E. Berdel, B. Wörmann

Statisticians: A. Heinecke, M.C. Sauerland, F. Schneider, E. Hoster, M. Unterhalt

Cytogenetic and molecular genetic review: C. Haferlach, S. Schnittger, P.M. Kakadia, SK. Bohlander, A. Dufour, K. Spiekermann

Cytology review: T. Haferlach, J. Braess, K Spiekermann Contributing centers and investigators:

University Hospital, Aachen (T.H. Ittel)

Municipal Hospital Augsburg (C. Schmid, D. Oruzio)

Municipal Hospital, Bad Saarow (H. Fu)

Vinzenz-Pallotti-Hospital, Bergisch-Gladbach (S. Korsten, D. Hennesser)

Municipal Hospital Neukölln, Berlin (A. Mayr, A. Grüneisen) University Hospital Charité Mitte, Berlin (K. Possinger, J. Blau)

University Hospital Charité, Berlin (R. Arnold, B. Dörken, G. Maschmeyer)

St Hedwig Hospital, Berlin (C. Boewer, M. Derwahl, H.J. Englisch)

University Hospital Benjamin Franklin, Berlin (M. Notter, E. Thiel)

University Hospital Robert Rössle, Berlin (W.D. Ludwig, D. Schöndube)

Vivantes Klinikum, Berlin (E. Späth-Schwalbe, S. Hesse)

Vivantes Klinikum Berlin Neukölln (A. Grüneisen)

Ev. Hospital Spandau, Berlin (J. Potenberg)

Municipal Hospital, Bielefeld (A.J. Weh, A. Zumsprekel)

Knappschaft Hospital, Bochum (C. Teschendorf, M. Stechstor)

Knappschaft Hospital, Bottrop (G. Trenn)

Municipal Medical Center, Braunschweig (B. Wörmann)

Municipal Hospital, St Jürgenstrasse, Bremen (B. Hertenstein, H. Thomssen, A. Peyn)

University Hospital, Cologne (M. Hallek, P. Staib, KA Kreuzer)

Municipal Hospital, Dortmund (M. Heike, A. Niederste-Hollenberg)

St Johannes Hospital, Dortmund (H. Pielken, H. Hindahl) University Hospital, Düsseldorf (A. Wehmeyer, A. Heyll) St Johannes Hospital, Duisburg (C. Aul, C. Giagounidis) Johanniter Hospital Rheinhausen, Duisburg (W. Lange, S.E. Kuhlemann)

Municipal Hospital, Düren (M. Flasshove, J. Karow)

St Antonius Hospital, Eschweiler (R. Fuchs, F. Schlegel)

University Hospital, Frankfurt/Oder (M. Kiehl)

St Joseph-Hospital, Gelsenkirchen (G. Meckenstock, G. Giagounidis)

University Hospital, Göttingen (D. Haase, L. Trümper, F. Griesinger)

Municipal Hospital, Gütersloh (C. Gropp, R. Depenbusch)

Municipal Hospital, Hagen (H. Eimermacher, Lindemann)

Municipal Hospital Martha-Maria, Halle (W. Schütte, U. Haak)

General Hospital Altona, Hamburg (D. Braumann)

Protestant Hospital, Hamm (L. Balleisen)

District Hospital, Herford (J.G. Lange, U. Schmitz-Hubner)

Municipal Hospital, Idar-Oberstein (A. Fauser)

Municipal Hospital, Kassel (M. Wolf, B. Ritter)

Municipal Hospital, Kaiserslautern (H. Link)

University Hospital I, Kiel (U.R. Fölsch)

University Hospital II, Kiel (M. Kneba)

Municipal Hospital, Köln (A. Dormann)

Municipal Hospital, Krefeld (Th. Frieling, M. Planker)

Hospital Lippe-Lemgo, Lemgo (F. Hartmann, H. Middeke, C.Gründgens, C.Constantin)

Trinity Hospital, Lippstadt (K.-A. Jost)

University Hospital, Lübeck (Th. Wagner)

Municipal Hospital South Lübeck, Lübeck (S. Fetscher, J. Schmielau)

Municipal Hospital, Ludwigshafen (M. Uppenkamp, M. Hoffmann)

University Hospital, Mannheim (R. Hehlmann, E. Lengfelder)

St Walburga Hospital, Meschede (M. Schwonzen, H. Spangenberg)

Maria-Hilf-Hospital, Mönchengladbach (D. Graeven, D. Kohl, T. Heuer)

University Hospital Muenster (WE. Berdel)

University Hospital Innenstadt, Munich (B. Emmerich, R. Dengler, B. Schlag)

University Hospital Grosshadern, Munich (W. Hiddemann, J. Braess, K. Spiekermann, S.K. Bohlander, C. Buske)

Municipal Hospital Neuperlach, Munich (K. Nibler, D. Fleckenstein)

Municipal Hospital Harlaching, Munich (M. Hentrich, X. Schiel)

References

 Tenen DG, Hromas R, Licht JD, Zhang DE (1997) Transcription factors, normal myeloid development, and leukemia. Blood 90 (2):489–519

- Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U S A 94(2):569–574
- Zhang P, Iwasaki-Arai J, Iwasaki H, Fenyus ML, Dayaram T, Owens BM, Shigematsu H, Levantini E, Huettner CS, Lekstrom-Himes JA, Akashi K, Tenen DG (2004) Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBP alpha. Immunity 21 (6):853–863
- Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, Fey MF, Pabst T (2005) Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 11(4):1416–1424
- Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, Benthaus T, Sauerland MC, Berdel WE, Buchner T, Wormann B, Braess J, Hiddemann W, Bohlander SK, Spiekermann K (2009) Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28 (4):570–577
- Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, Tobis K, Dohner H, Dohner K (2004) CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22(4):624–633
- Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG (2001) Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat Genet 27(3):263–270
- Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH, Larsen RJ, Asou H, Miller CW, Hoelzer D, Koeffler HP (2002) Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. Blood 99(4):1332–1340
- Asou H, Gombart AF, Takeuchi S, Tanaka H, Tanioka M, Matsui H, Kimura A, Inaba T, Koeffler HP (2003) Establishment of the acute myeloid leukemia cell line Kasumi-6 from a patient with a dominant-negative mutation in the DNA-binding region of the C/ EBPalpha gene. Genes Chromosomes Cancer 36(2):167–174
- Green CL, Koo KK, Hills RK, Burnett AK, Linch DC, Gale RE (2010) Prognostic significance of CEBPA mutations in a large cohort of younger adult patients with acute myeloid leukemia: impact of double CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol 28(16):2739–2747
- Pabst T, Eyholzer M, Fos J, Mueller BU (2009) Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer 100(8):1343–1346
- 12. Taskesen E, Bullinger L, Corbacioglu A, Sanders M, Erpelinck CA, Wouters BJ, van der Poel-vandeLuytgaarde S, Damm F, Krauter J, Ganser A, Schlenk RF, Lowenberg B, Delwel R, Dohner H, Valk PJ, Dohner K (2011) Prognostic impact, concurrent genetic mutations and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117(8):2469–2475
- 13. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113(13):3088–3091
- van Waalwijk B, van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ, Berna Beverloo H,

- Tenen DG, Lowenberg B, Delwel R (2003) Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 4(1):31–40
- 15. Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC, Shen HL, Su FH, Yao M, Huang SY, Tien HF (2005) Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res 11 (4):1372–1379
- Bereshchenko O, Mancini E, Moore S, Bilbao D, Mansson R, Luc S, Grover A, Jacobsen SE, Bryder D, Nerlov C (2009) Hematopoietic stem cell expansion precedes the generation of committed myeloid leukemia-initiating cells in C/EBPalpha mutant AML. Cancer Cell 16(5):390–400
- 17. Kato N, Kitaura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K, Nakahara F, Oki T, Enomoto Y, Fukuchi Y, Nakajima H, Harada Y, Harada H, Kitamura T (2011) Two types of C/EBP {alpha} mutations play distinct but collaborative roles in leuke-mogenesis: lessons from clinical data and BMT models. Blood 117 (1):221–233
- 18. Kirstetter P, Schuster MB, Bereshchenko O, Moore S, Dvinge H, Kurz E, Theilgaard-Monch K, Mansson R, Pedersen TA, Pabst T, Schrock E, Porse BT, Jacobsen SE, Bertone P, Tenen DG, Nerlov C (2008) Modeling of C/EBPalpha mutant acute myeloid leukemia reveals a common expression signature of committed myeloid leukemia-initiating cells. Cancer Cell 13(4):299–310
- Somervaille TC, Cleary ML (2009) Preview. Mutant CEBPA: priming stem cells for myeloid leukemogenesis. Cell Stem Cell 5 (5):453–454
- Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Frohling S, Dohner H (2005) Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106(12):3740–3746
- 21. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352(3):254–266
- Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, Haferlach T, Hiddemann W, Falini B (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106 (12):3733–3739
- Schlenk RF, Dohner K, Krauter J, Frohling S, Corbacioglu A, Bullinger L, Habdank M, Spath D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Dohner H (2008) Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358(18):1909–1918
- 24. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Lowenberg B, Valk PJ (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106 (12):3747–3754
- 25. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010)

- DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363 (25):2424-2433
- Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, DiPersio JF, Wilson RK, Ley TJ (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361 (11):1058–1066
- 27. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43 (4):309-315
- 28. Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A, van Putten WJ, Rijneveld AW, Lowenberg B, Valk PJ (2010) Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 116 (12):2122-2126
- Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE (2010) The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 116 (15):2779-2782
- 30. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28 (14):2348-2355
- 31. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K, Horst HA, Germing U, Dohner H, Dohner K (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28 (22):3636-3643
- 32. Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M, Yun H, Gohring G, Schlegelberger B, Hoelzer D, Lubbert M, Kanz L, Fiedler W, Kirchner H, Heil G, Krauter J, Ganser A, Heuser M (2010) Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 29 (21):2889-2896
- Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S, Lowenberg B, Delwel R, Valk PJ (2009) Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 94(1):131–134
- 34. Buchner T, Berdel WE, Schoch C, Haferlach T, Serve HL, Kienast J, Schnittger S, Kern W, Tchinda J, Reichle A, Lengfelder E, Staib P, Ludwig WD, Aul C, Eimermacher H, Balleisen L, Sauerland MC, Heinecke A, Wormann B, Hiddemann W (2006) Double induction containing either two courses or one course of high-dose cytarabine plus mitoxantrone and postremission therapy by either autologous stem-cell transplantation or by prolonged maintenance for acute myeloid leukemia. J Clin Oncol 24(16):2480–2489
- Benthaus T, Schneider F, Mellert G, Zellmeier E, Schneider S, Kakadia PM, Hiddemann W, Bohlander SK, Feuring-Buske M, Braess J, Spiekermann K, Dufour A (2008) Rapid and sensitive

- screening for CEBPA mutations in acute myeloid leukaemia. Br J Haematol 143(2):230–239
- Papadaki C, Dufour A, Seibl M, Schneider S, Bohlander SK, Zellmeier E, Mellert G, Hiddemann W, Spiekermann K (2009) Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: clonal evolution is a limiting factor. Br J Haematol 144(4):517–523
- 37. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T, Haferlach T, Hiddemann W (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100(1):59–66
- Bacher U, Haferlach C, Kern W, Haferlach T, Schnittger S (2008) Prognostic relevance of FLT3-TKD mutations in AML: the combination matters—an analysis of 3082 patients. Blood 111(5):2527–2537
- Schnittger S, Kinkelin U, Schoch C, Heinecke A, Haase D, Haferlach T, Buchner T, Wormann B, Hiddemann W, Griesinger F (2000) Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia 14(5):796–804
- Felsberg J, Wolter M, Seul H, Friedensdorf B, Goppert M, Sabel MC, Reifenberger G (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119 (4):501-507
- Markova J, Michkova P, Burckova K, Brezinova J, Michalova K, Dohnalova A, Maaloufova JS, Soukup P, Vitek A, Cetkovsky P, Schwarz J (2010) Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur J Haematol 88 (2):128-135
- Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, Ehninger G (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107(10):4011–4020
- 43. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115 (3):453-474
- 44. Gale RE, Green C, Allen C, Mead AJ, Burnett AK, Hills RK, Linch DC (2008) The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia. Blood 111(5):2776–2784
- 45. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98(6):1752–1759
- 46. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN, Kuo MC, Lai CL, Hsu HC (2002) Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 100(7):2387–2392
- 47. Andersson A, Johansson B, Lassen C, Mitelman F, Billstrom R, Fioretos T (2004) Clinical impact of internal tandem duplications and activating point mutations in FLT3 in acute myeloid leukemia in elderly patients. Eur J Haematol 72(5):307–313

