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Abstract 

Background  Diabetic kidney disease (DKD) is a chronic kidney condition that arises from prolonged hyperglycaemia 
that can progress to kidney failure, severe morbidity, and mortality if left untreated. It is the major cause of chronic 
kidney disease among people who have diabetes, accounting for a significant percentage of patients with end-stage 
kidney disease who require kidney replacement therapy.

Main body  In DKD, numerous dysbalanced metabolic, haemodynamic, inflammatory signalling pathways, 
and molecular mediators interconnect, creating a feedback loop that promotes general kidney damage. Hyperglycae-
mia is the primary trigger for DKD and leads gradually to oxidative stress, inflammation, extracellular matrix deposition 
and fibrosis, glomerular hypertension, and intrarenal hypoxia. Key interconnected metabolic pathways are the hyper-
glycaemia-mediated polyol, hexosamine, protein kinase C, and advanced glycation end-products pathway hyperac-
tivity. Concurrently, hyperglycaemia-induced renin–angiotensin–aldosterone system stimulation, alters the kidney 
intraglomerular haemodynamic leading to inflammation through Toll-like receptors, Janus kinase/signal transducer 
and activator of transcription, and nuclear factor-kappa B, transforming growth factor-beta-mediated excessive extra-
cellular matrix accumulation and fibrosis. The resulting death signals trigger apoptosis and autophagy through Hippo, 
Notch, and Wnt/β-catenin pathway activation and microRNA dysregulation. These signals synergistically remodel 
the kidneys culminating in intrarenal hypoxia, podocyte dysfunction, hyperfiltration, epithelial-mesenchymal transi-
tion, and loss of kidney function. The resulting renal failure further upregulates these death pathways and mediators, 
giving rise to a vicious cycle that further worsens DKD.

Conclusion  This review provides an overview of the primary molecular mediators and signalling pathways lead-
ing to DKD; their interconnectivity at the onset and during DKD progression, the central role of transforming growth 
factor-beta via different pathways, the Hippo pathway kidney-specific response to hyperglycaemia, and how all 

*Correspondence:
Esienanwan Esien Efiong
esienanwanefiong@gmail.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13098-025-01726-4&domain=pdf


Page 2 of 18Efiong et al. Diabetology & Metabolic Syndrome          (2025) 17:192 

mediators and transduction signals result in a vicious circle that exacerbates renal failure. The review gives therapeutic 
sights to these pathways as druggable targets for DKD management. Understanding these molecular events underly-
ing the pathogenesis of DKD can bridge basic research and clinical application, facilitating the development of inno-
vative management strategies.

Keywords  Diabetic nephropathy, Signal pathways, Chronic kidney disease, End-stage kidney disease, Renin–
angiotensin–aldosterone system, Toll-like receptors, Janus kinase/signal transducer and activator of transcription, 
Nuclear factor-kappa B, Transforming growth factor-beta, Hippo signalling

Introduction
Diabetic kidney disease (DKD) is a common and severe 
microvascular complication of diabetes and is the pri-
mary cause of chronic kidney disease (CKD). Despite 
optimal glycaemic control, DKD remains a major con-
tributor to end-stage kidney disease (ESKD), placing sig-
nificant pressure on healthcare systems worldwide [1]. 
The disease accounts for 30 to 40% of patients with ESKD 
who require kidney replacement therapy [2]. People with 
DKD had a faster decline of kidney function (50% esti-
mated glomerular filtration rate decline and initiation of 
kidney replacement therapy) than those with kidney dis-
ease without diabetes [3, 4].

An expansion of kidney replacement therapy to meet 
the rising global demand is untenable, given the high 
costs and ageing population worldwide. Existing medi-
cal treatment does not reliably halt the progression of 
DKD across the patient spectrum [5]. So, the emerging 
potential and prospect of personalised care necessitate 
an in-depth understanding of the heterogeneity of patho-
physiologic mediators and therapeutic responsiveness 
observed in clinical practice [6].

Chronic hyperglycaemia affects all kidney cells, includ-
ing podocytes, tubular interstitial, endothelial, and 
mesangial cells (MC), resulting in functional and struc-
tural alterations [7]. This triggers morphological changes 
that involve capillary loss, MC proliferation, extracellular 
matrix (ECM) buildup, early glomerular hypertrophy, 
glomerular basement membrane (GBM) thickening, and 
injury to podocytes and glomerular cells [8, 9]. These 
abnormalities occur almost simultaneously [7] with the 
progression to ESKD, which is clinically characterised by 
glomerular hyperfiltration, increased albuminuria, and a 
decrease in glomerular filtration rate (GFR) [10, 11].

DKD is a complex disease with numerous intercon-
nected metabolic, pro-inflammatory, and pro-apoptotic 
pathways that impact haemodynamic abnormalities, 
glomerular hypertension, and metabolic disorders [12], 
resulting in a deleterious feedback loop and vicious cycle. 
These causal mechanisms are interwoven and influence 
gene regulation and transcription factor activation, both 
of which have a negative impact on molecular pathways 
[13].

Hyperglycaemia influences these pathways in complex 
ways. They include hyperactivity of the renin-polyol and 
hexosamine paths, protein kinase C (PKC), and forma-
tion of advanced glycation end-products (AGEs). This 
metabolic dysregulation potentiates inflammation by 
activating Toll-like receptors (TLRs), Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) 
signals, and the nuclear factor-kappa B (NF-κB) pathway. 
These pathways activate transforming growth factor-beta 
(TGF-β), which mediates fibrosis, extracellular matrix 
remodelling, apoptosis, and autophagy dysregulation via 
Hippo, Notch, Wnt/β-catenin activation, and microRNA 
dysregulation [12–16]. Altogether, these mediators pro-
mote intrarenal hypoxia, podocyte dysfunction, hyperfil-
tration, epithelial-to-mesenchymal transition (EMT), and 
finally renal failure (Table 1).

Key pathways of DKD offer numerous druggable tar-
gets for future therapeutic intervention aimed at slowing 
disease progression and preventing or delaying kidney 
failure. This review is aimed at examining the vicious 
cycle of interconnected signalling pathways and media-
tors at different phases of the disease and the central role 
of TGF-β as an upstream and downstream mediator of 
DKD via multiple pathways. The goal is to improve tai-
lored patient care and outcomes.

The activation of deleterious glucose metabolism 
in DKD
Polyol pathway hyperactivity
The polyol pathway diverts excess glucose metabolism, 
leading to sorbitol and fructose accumulation. This raises 
oxidative stress (OS) and weakens antioxidant defences, 
contributing to DKD. This process entails two enzymes, 
aldose reductase and sorbitol dehydrogenase that reduce 
intracellular nicotinamide adenine dinucleotide phos-
phate hydrogenase (NADPH) and increase reactive oxy-
gen species (ROS) production [17].

Urinary excretion of sorbitol reflects the degree of 
polyol pathway activation [17]. DKD activates glucose-
dependent cellular stress mechanisms, such as the pol-
yol pathway [18]. This pathway plays a crucial role in 
the development of DKD by generating osmotic stress 
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and hyperglycaemic OS in renal tissue. Under homeo-
static conditions, cellular glucose is oxidised mainly 
into glucose-6-phosphate, which enters glycolysis 
to produce energy in the form of adenosine triphos-
phate [19]. Aldose reductase converts excess glucose 
to sorbitol, which is slowly metabolised by sorbitol 
dehydrogenase. Thus, sorbitol accumulation and its 
poor permeability across cellular membranes cause 
hyperosmotic stress within cells. This is the primary 
determinant for the development of cataracts and 
microvascular complications of diabetes (nephropathy, 
retinopathy, and neuropathy) [20].

Elevated polyol pathway flux activates the mitogen-
activated protein kinase (MAPK), transcription factors 
activator protein-1 (AP-1), PKC, and cyclic adenosine 
monophosphate response element binding protein 
signalling pathways. This results in the upregulation 
of molecules such as TGF-β, other cytokines, and 
fibronectin that are associated with the thickening of 
GBM and ECM deposition in the mesangium [20, 21] 
(Fig.  1). The inactivation of these mediators results 
in improved kidney function. For instance, [22, 23] 
showed that by inhibiting the activity of PKCβ, the 
β isoform of PKC resulted in improved glomerular 
endothelial function in insulin-resistant and diabetic 
conditions.

Hexosamine pathway, AGEs, and the renin–angiotensin–
aldosterone system (RAAS) hyperactivity
Hyperglycaemia induces aberrant hexosamine path-
way fluxes, which contribute to diabetes complications 
by increasing the fructose-6-phosphate concentration 
and directing it to the hexosamine biosynthetic path-
way [12, 24]. Under physiological conditions, hexoki-
nase converts glucose to glucose-6-phosphate, which 
is then converted to fructose-6-phosphate by phos-
phoglucoisomerase. Phosphofructokinase catalyses 
the conversion of fructose-6-phosphate to fructose-
1,6-bisphosphate. In hyperglycaemia, however, most 
of the fructose-6-phosphate is converted into glu-
cosamine-6-phosphate via the enzymatic activity of 
fructose-6-phosphate aminotransferase, which is then 
metabolised into various aminohexose derivatives, 
such as uridine diphosphate N-acetylglucosamine, 
a precursor for glycosaminoglycans, proteoglycans, 
glycoproteins, and other amino sugars [7]. The over-
expression of fructose-6-phosphate aminotransferase 
leads to increased gene transcription of fibronectin, 
plasminogen activator inhibitor-1, and TGF-β in glo-
merular MCs, leading to expansion and thickness of 
the GBM [18]. The end-products of the hexosamine 
pathway phosphorylate transcription factors at serine 
and threonine residues, leading to overexpression of 
TGF-β involved in DKD [18, 25].

Table 1  Key signalling pathways and mediators involved in fibrosis and kidney damage in diabetes

Toll-like receptors (TLRs), Janus kinase/signal transducer and activator of transcription (JAK/-STAT), and nuclear factor-kappa B (NF-κB), transforming growth 
factor-beta (TGF-β), interleukin-1 beta (IL-1β), tumour necrosis factor alpha (TNF-α), inhibitory kappa B protein (IκB), extracellular matrix (ECM), interleukin 6 (IL-6), 
interferon-γ (IFN-γ), Suppressor of Mothers Against Decapentaplegic (Smad), connective tissue growth factor (CTGF), renin–angiotensin–aldosterone system (RAAS), 
angiotensin II (Ang II), endothelin-1 (ET-1), yes-associated protein (YAP), transcriptional coactivator with PDZ binding motif (TAZ), TEA domain (TEAD), reactive oxygen 
species (ROS), glutamine: fructose-6-phosphate-amidotransferase (GFAT), advances glycaetion end-products (AGEs), receptor for advance glycation end products 
(RAGE), adenosine monophosphate-activated protein kinase (AMPK), sirtuin-1 (Sirt1), mammalian target of rapamycin (mTOR), phosphoinositide-3-kinase (PI3K), 
protein kinase B (AKT), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF)

Signals Pathways Mediators Effect on fibrosis and inflammation

Hyperglycaemia RAAS Ang II, ET-1, TGF-β Promotes fibrosis via oxidative stress, ECM production

Metabolic Dysregulation Polyol Pathway Aldose reductase, Sorbitol Increases ROS, inflammation, fibrosis

Hexosamine Pathway GFAT, UDP-GlcNAc Leads to ECM overproduction, stress signaling

AGEs RAGE, ROS, NF-κB Promotes inflammation, oxidative stress, fibrosis

AMPK AMPK, SIRT1, mTOR Energy homeostasis, anti-fibrotic effects

Inflammation PI3K/AKT PI3K, AKT, mTOR Regulates cell survival, inflammation, fibrosis

TLRs NF-κB, JAK/STAT, IL-1β, TNF-α Activates immune response, cytokine release, chronic inflam-
mation

NF-κB TNF-α, IL-1β, IκB kinase Promotes inflammation, fibroblast activation, ECM accumulation

JAK/STAT​ STAT3, IL-6, IFN-γ Cytokine signalling, myofibroblast proliferation

Pro-fibrotic TGF-β/Smad Smad2/3, CTGF, α-SMA Myofibroblast activation, ECM deposition

Wnt/β-catenin β-catenin Drives fibroblast proliferation, EMT, ECM deposition

Notch Signaling Notch1-4, Hes1, Jagged Fibroblast activation, EMT, tubulointerstitial fibrosis

Hippo YAP/TAZ, TEAD Myofibroblast proliferation, ECM production

Hypoxia & Fibrosis Feedback Intrarenal Hypoxia HIF-1α, VEGF Promotes fibrosis through inflammation and oxidative stress
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Long-term exposure to a hyperglycaemic condi-
tion increases the risk of AGEs and glycosylation in 
the kidneys. Prolonged circulating AGEs interact with 
their receptor, RAGE, causing OS and activating sev-
eral pathways, including p38, Ras-mediated extracel-
lular signal-regulated kinase (ERK)1/2, stress-activated 
PKC-Jun N-terminal kinase, MAPK/ERK, and JAK/
STAT. This interaction induces endoplasmic reticu-
lum stress, inflammation, and fibrosis, all of which 
accelerate renal pathology [7]. The synthesis of AGEs 
is irreversible, and the pathways they stimulate lead 
to sustained activation of transcription factors like 
hypoxia-inducible factor-1α (HIF-1α), AP-1, NF-κB, 
and STAT3 [12]. These cellular perturbations trigger a 
chain reaction of proinflammatory cytokines, includ-
ing interleukin-6 (IL-6) and tumour necrosis factor 
alpha (TNF-α) [5], and activate several overlapping 
fibrotic pathways [16].

AGEs activate the RAAS, leading to increased glo-
merular filtration pressure and TGF-β expression [26] 
which accelerates the course of DKD [27, 28]. The 
RAAS alters kidney haemodynamics by raising OS and 
activating proinflammatory pathways. These processes 
result in glomerular enlargement, which indicates ini-
tiation of the profibrotic process at the onset of DKD 
[12].

Adenosine monophosphate (AMP)‑activated protein 
kinase (AMPK) hyperactivity
The AMPK signalling pathway is a unique therapeu-
tic target due to its ability to reprogram metabolism at 
both cellular and systemic levels [29]. AMPK is a cellular 
energy sensor [30] with aberrant expression in many dis-
eases, such as diabetes, cardiovascular disease, and cer-
tain cancers [24]. AMPK mediates the harmonization of 
various anabolic processes, and its signalling regulation is 
vital for modulating cell homeostasis [31]. A study in an 
insulin-resistant animal model found that AMPK activa-
tion enhanced lipid and glucose homeostasis [32].

Metabolic stress can trigger AMPK signalling by 
increasing AMP and reducing ATP levels. This pathway is 
activated under stressful conditions involving low energy 
[31], leading to an elevated cytosolic AMP-to-ATP ratio. 
When activated, AMPK counteracts the energy deficit by 
stimulating catabolic pathways that generate ATP (gly-
colysis and fatty acid oxidation) and suppresses anabolic 
pathways (triglyceride, fatty acid, transcription, choles-
terol, and protein synthesis) that deplete ATP [29].

Alterations of these cellular events in diabetes and 
the downregulation of AMPK activity are crucial in the 
pathogenesis of diabetic-related complications [29]. 
AMPK is an upstream mediator of nuclear factor eryth-
roid 2-related factor 2 that enhances the antioxidant 
defence system [31, 33]. Mitophagy AMPK/mammalian 
target of rapamycin pathway inhibition leads to damage 

Fig. 1  Contribution of chronic hyperglycaemia to increased polyol pathway flux and diabetic kidney disease progression. Increased polyol 
pathway nux increases oxidative stress, activates the mitogcn-activatcd protein kinase (MAPK), rapidly accelerates fibrosareoma (Raf ), mitogcn
activated protein kinase (MEK), extracellular signal-regulated kinases I and 2 (ERKl/2), and transcription factors activator protein-I (AP-I). Increased 
oxidative stress increases intracellular fructose, causes diacylglycerol (DAG) accumulation, protein kinase C (PKC)/nicotinamide adenine dinuclcotidc 
phosphate (NADPH) oxidasc activation, and increased reactive oxygen species (ROS). ROS further activates adcnyl cyclase through a series 
of reactions that culminates in increased transforming growth factor-beta (TGF-β). AP-I and PKC activation also results in high expression 
of TGF-β. All of which results in extracellular matrix (ECM) accumulation. glomcrular basement membrane (GHM) thickening. and ultimately DKD 
development
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of renal tubules when glucose levels are high for a short 
time. Therefore, activation of AMPK or mammalian tar-
get of rapamycin could halt kidney damage [34].

Phosphatidylinositol‑3‑kinase (PI3K) hyperactivity
The lipid kinase PI3K plays an upstream role in the PI3K/
AKT signalling pathway by modulating NF-kB. The PI3K 
enzyme phosphorylates protein kinase B (PKB and AKT), 
which regulates cell growth, proliferation, and protein 
synthesis [35]. AGEs activate PI3K/AKT, which enhances 
NF-κB and exacerbates inflammation [36]. The PI3K/
Akt signalling pathway regulates DKD development. For 
instance, in diabetic renal tubular cells, the pathway acti-
vation regulates EMT, cell growth, and lipid metabolism 
[37]. DKD and many diseases show aberrant activation of 
the pathway [35].

Activation of this pathway may mitigate inflammation 
in DKD. So, alternative strategies, such as activation of 
the PI3K/AKT signalling pathway and subsequent inhi-
bition of the NF-kB-mediated inflammatory response 
[38], may safeguard against kidney damage after diabetic 
onset.

Potentiation of renal inflammation
Renal fibrosis is the primary determinant of renal 
pathology, and inflammation plays a pivotal role in ini-
tiating this process. Inflammation triggers the continual 
release of inflammatory cytokines, which triggers signal 

transduction events that stimulate myofibroblast activ-
ity, excess EMT deposition, and renal fibrosis, eventually 
leading to ESKD [39] (Fig. 2). Under inflammatory con-
ditions, proximal tubular epithelial cells undergo pheno-
typic changes following EMT buildup. This results in the 
epithelial-mesenchymal and endothelial-mesenchymal 
transitions and subsequently fibroblasts and pericytes 
stimulation [2, 24].

Activation of inflammation through TLRs
Inflammatory chemokines promote proinflammatory 
processes and leukocyte recruitment to damaged tissues. 
Chronic exposure to diabetes substrates causes renal cell 
damage in DKD. This results in cell death and the release 
of damage-associated molecular patterns (DAMPs), such 
as ROS, phosphoglyceric acid, and free fatty acid, into 
the extracellular space [40, 41], thereby promoting fibro-
genesis, inflammation, and renal pathology [42]. TLRs 
and RAGE are pattern recognition receptors that detect 
DAMP signals [41]. TLRs recognise pathogen-associated 
molecular patterns (PAMPs) and DAMPs, which aid in 
innate immune responses against injury and infection 
[43].

TLRs are transmembrane proteins that convey anti-
gen recognition information from the exterior into the 
cell, playing a vital role in immune responses. TLR-
mediated innate immune system stimulation has a role 
in the pathogenesis of insulin resistance, diabetes, and 

Fig. 2  Mechanisms underpinning inflammatory processes related to fibrosis in DKD. Hyperglycaemia induces an inflammatory response 
in the kidneys through the recruitment of immune cells and release of inflammatory cytokines and chemokines, These mediators drive the process 
of fibrosis with the release of TGF-β, resulting in epithelial/endothelial cell transition and activation of fibroblasts/pericytes. This process leads 
to the formation of mesenchymal cells, myofibroblasts, excess extracellular matrix accumulation, and, ultimately, fibrosis of the kidney
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atherosclerosis [40]. TLR pathway activation worsens 
inflammation and, as a result, accelerates the course of 
DKD.

TLRs represent a family of germline-encoded recep-
tors that facilitate the development of inflammatory 
and immunological responses. They are expressed on 
diverse cell types, including antigen-presenting and kid-
ney intrinsic cells. Among the eleven TLRs, only TLR4 is 
extensively expressed in intrinsic renal cells. TLR4 upreg-
ulates inflammatory kidney diseases (tubulointerstitial 
nephritis and glomerulonephritis), renal ischemia–reper-
fusion injury, and DKD [44].

The innate immune response is triggered by the rec-
ognition of TLR ligands, which in turn stimulates TLR 
signalling. This signal initiates M1 macrophage polari-
sation and infiltration, mediates NF-kB transcription, 
and triggers an inflammatory cascade with the release 
of proinflammatory cytokines and chemokines. Almost 
all TLRs (except TLR-3) use myeloid differentiation pri-
mary response 88 [45] as a general adapter protein when 
activating NF-kB. The stimulatory effects of the innate 
immune system on TLRs are associated with the patho-
physiological process of DKD [38].

Vasoconstriction through endothelin‑1 (ET‑1)
The vasoconstrictor ET-1 [46, 47] monitors vascular 
function. It was first identified as a downstream factor 
of TGF-β in a focal segmental glomerulosclerosis model, 
where it induced albuminuria via mitochondrial ROS in 
glomerular endothelial cells [48]. In experimental DKD, 
an elevated serum level of ET-1 was associated with 
increased urinary levels of N-acetyl glucosamine and 
albumin, which caused diabetic lesions. The impairment 
of glomerular endothelial mitochondria was associated 
with high expression of the glomerular ET-1 receptor and 
increased circulating ET-1 [7].

Hyperglycaemia prompts the kidneys to release nitric 
oxide and vascular endothelial growth factor, resulting 
in the dilation of the afferent glomerular arterioles and 
release of ET-1 and angiotensin II (Ang II). Together, 
ET-1 and Ang II contract the efferent arterioles, result-
ing in increased blood pressure and the onset of DKD 
[49]. In diabetes, the endothelium-dependent vasodilata-
tion is partially decreased due to a metabolic switch that 
favours ET-1 signals over the vasodilating effects of nitric 
oxide [9]. This induces endothelial and NF-kB–mediated 
cytokines (IL-6 and TNF-α) to promote an inflammatory 
response [5]. Their overexpression disrupts endothelium-
dependent regulation in diabetes, and activation of this 
pathway compromises endothelium function (e.g., hyper-
filtration) in the renal vascular system.

The signals, pathway, mediators, and their effect on 
kidney failure is presented in Table 1.

Transforming growth factor‑β1 (TGF‑β1) as central 
hub in DKD
Hyperglycaemia stimulates the transcription of TGF-β1 
in different renal cells by upregulating the expression of 
TGF-β genes, TGF-proteins, and/or TGF-β receptors 
[50], hence promoting TGF-β1 production [51]. TGF-β is 
a multifunctional profibrogenic cytokine that essentially 
causes inflammation and fibrosis at high concentrations 
[52]. Nearly all intracellular signalling pathways associ-
ated with kidney dysfunction enhance renal TGF-β activ-
ity as an intermediary step [50]. This makes TGF-β1 one 
of the key mediators in the pathogenesis of DKD, a pro-
cess that may be linked to a putative glucose-responsive 
element in the promoter region of the TGF-β1 gene.

High glucose enhances TGF-β1 activity by upregulating 
thrombospondin 1, which activates latent TGF-βs and 
increases the expression of TGF-β receptor 2 (TGF-βR2) 
in the murine MC, independent of TGF-β-1 induc-
tion [53–55] (Fig.  3). This validates the involvement of 
hyperglycaemia in the stimulation of TGF-β signalling 
throughout the progression of DKD.

Fibrosis is an uncontrolled tissue repair process that 
occurs after an injury or inflammation; however, in dis-
eases like DKD, fibrosis eventually leads to organ fail-
ure [14, 15]. Renal fibrosis is a major pathophysiological 
characteristic of DKD. TGF-β1 mediates renal fibro-
sis by promoting ECM deposition, glomerulosclerosis, 
and interstitial fibrosis [4, 56]. In a high-glucose milieu, 
TGF-β1 initiates a downstream signalling cascade that 
culminates in the loss of adhesion proteins and connex-
ins, facilitating the buildup of ECM on the cell surface 
or intercellularly—a primary factor in the progression of 
renal fibrosis [57].

TGF-β1 exacerbates ECM degradation, enhances 
crosslinking between collagen and elastin fibres, and 
induces proximal tubular and endothelial cell dediffer-
entiation [58]. Growth differentiation factor, an inflam-
matory and stress-induced cytokine also known as 
macrophage inhibitory cytokine or placental TGF-β1, 
belongs to the TGF-β superfamily. Its elevated levels act 
as a predictive indicator of disease deterioration. Growth 
differentiation factor-15 exerts a suppressive effect on 
inflammatory responses and offers protection against 
DKD by curbing the activation of NF-κB, thereby making 
it a potential therapeutic target for nephropathy in dia-
betes [59]. Taken together, inhibiting TGF-β signalling is 
a promising potential therapeutic strategy for DKD [60].

The crosstalk of Smad and TGF‑β
TGF-β1 activates the Smad signalling pathway by phos-
phorylating Smad2 and Smad3. The pathway plays a 
crucial role in ECM accumulation and renal fibrosis 
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development [61–63]. The product (phospho-Smad2/3) 
then binds to Smad4 forming hetero-oligomeric com-
plexes [64]. These complexes translocate to the nucleus, 
where they bind to Smad-binding elements (SBEs) or 
Smad-containing complexes, modulating the tran-
scription factors of genes encoding collagen, Smad7, 
fibronectin, and α-smooth muscle actin, all of which are 
implicated in kidney fibrosis (Fig. 3).

Furthermore, AGEs (glycated proteins, lipids, and 
nucleic acids) [65] induce rapid phosphorylation of 
Smad2 and Smad3 within 30  min through the RAGE-
mediated ERK/p38-MAPK signalling crosstalk in tubular 
epithelial cells and MCs through a TGF-β-independent 
pathway (Fig. 3). AGEs enhance TGF-β synthesis, induc-
ing the canonical TGF-β pathway that activates down-
stream Smad signalling in a TGF-β-dependent manner. 
Ang II causes deterioration of DKD by inducing the long-
term activation of Smad2/3 in a TGF-β-dependent way 
[66, 67].

Correlation analysis reveals that renal and plasma lev-
els of TGF-β1 are associated with the severity of renal 
dysfunction in patients with DKD. Because TGF-β1 is an 
upstream mediator of DKD via Smad signalling, inhibit-
ing TGF-β1/Smad signalling can improve kidney func-
tion and slow the progression of DKD [53–55].

The crosstalk of Ang II and TGF‑β
Hyperglycaemia and insulin resistance increase Ang 
II expression causing ROS production [68] and TGF-β 

signalling activation [61, 62, 69] (Fig.  3). Hyperactiva-
tion of Ang II results in proteinuria, increased glomerular 
capillary pressure/permeability, promotion of inflam-
mation, and macrophage infiltration. This sequence of 
responses culminates in the production of inflamma-
tory and profibrotic cytokines, leading to further ECM 
remodelling [70] (Fig. 4).

Ang II triggers apoptosis and injury to podocytes [71] 
and stimulates the expression of vascular endothelial 
growth factor, leading to increased collagen deposition 
in the basement membrane [70]. It is involved in hyper-
tension-induced fibrogenic mechanisms and is the major 
effector of RAAS. High Ang II levels enhances RAAS 
activity, creating increased mechanical stress on glomer-
ular structures, which causes severe vascular, glomerular, 
and tubulointerstitial injuries by inducing hypertension 
and hyperfiltration along with the release of TGF-β1 
through the angiotensin type 1 receptor [24].

TGF-β1 is essential for Ang II to activate fibroblasts 
and induce fibrosis. For individuals with CKD, block-
ing TGF-β1 signalling may mitigate kidney injury and 
enhance therapeutic efficacy [60–62]. Delaying the initia-
tion and progression of DKD involves managing hyper-
tension, mainly by using RAAS-blocking agents such 
as angiotensin-converting enzyme inhibitors or Ang II 
receptor blockers [72–75]. The angiotensin-converting 
enzyme inhibitor promotes sodium and water excretion 
by aldosterone inhibition and causes vasodilation of renal 
arterioles, whereas Ang II receptor blockers promote 

Fig. 3  Activation of transforming growth factor 1 (TGF-β1) signalling in the development of DKD. Hyperglycaemia results in increased advanced 
glycation end products (AGEs) which bind to its receptor (RAGE), resulting in ROS generation in kidney cells. It also upregulates the transcription 
of the TGF-β1 gene, giving rise to TGF-β1 production. TGF-β1 interacts with key inflammatory and fibrotic pathways, including extracellular signal 
regulated kinase (ERK), p38, and the Smad cascade, to drive fibrotic gene transcription in the nucleus, promoting mesangial expansion and fibrosis. 
Hyperglycaemia further activates angiotensin II (Angil), which engages the Janus kinase-signal transducer and activator of transcription (JAK/STAT) 
pathway, further promoting epithelial-mesenchymal transition (EMT) formation and ultimately fibrosis. The mechanistic target of rapamycin (mTOR) 
and nuclear factor-kappa B (NF-κB) promotes ECM deposition as well through the non-Smad pathway
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sodium and water excretion by binding to angiotensin 
receptors [76].

The crosstalk of JAK/STAT and TGF‑β
The JAK/STAT signal transducer pathway is another 
vital signalling cascade involved in the development of 
DKD through the TGF-β up- and downstream signals 
[14, 15, 80, 77–79]. JAK/STAT signalling upregulates 
TGF-β expression and Smad-independent TGF-β path-
ways, hence exacerbating fibrosis (Fig.  3). The pathway 
is exaggerated when TGF-β triggers cytokines like IL-6, 
which further activate the JAK/STAT pathway, amplify-
ing inflammation and fibrosis [14, 15]. The pathway con-
sists of four JAK and seven STAT family members. It is 
an essential intracellular signalling pathway of cytokines 
and other stimulants that regulate gene expression, cell 
activation, proliferation, differentiation, EMT, and fibro-
sis in DKD. Early stages of DKD are characterised by 
an increase in JAK messenger ribonucleic acid (mRNA) 
transcripts, while advanced stages exhibit downregula-
tion [38]. The activation of JAK/STAT signalling facili-
tates Ang II-mediated MC proliferation and enhances 
TGF-β production, which worsens excessive ECM secre-
tion and aggravates the pathophysiology of DKD [81].

The JAK/STAT pathway is important in differ-
ent renal cell types, where it transduces diverse sig-
nals from extracellular ligands, including cytokines, 
chemokines, growth factors, and hormones [74]. The 

JAK/STAT pathway is a key contributor to the initia-
tion and advancement of DKD, promoting the exces-
sive proliferation and development of glomerular MCs, 
which ultimately results in renal failure in diabetes [57, 
77, 82].

The JAK/STAT cascade is an intracellular signalling 
mechanism associated with cytokines, serving as a cru-
cial mediator between paracrine signals and nuclear 
receptors. The mechanism is activated by cytokines 
and diabetic factors relevant to DKD pathogenesis. The 
upregulation of JAK/STAT occurs in the glomerular cells 
of patients with early DKD. The tubulointerstitial expres-
sion of various JAK and STAT isoforms increases with 
disease progression and exhibits an inverse correlation 
with the estimated GFR [83]. Increasing the activity of 
phosphorylated STAT3 or STAT3 can promote the pro-
liferation of renal interstitial fibroblasts and advancement 
of renal fibrosis [82].

The stimulation of the JAK/STAT pathway is a sig-
nificant mechanism by which hyperglycaemia induces 
kidney injury. For instance, JAK/STAT signalling in glo-
merular MCs promotes excessive renal cell proliferation 
and enhances the synthesis of TGF-β1, collagen IV, and 
fibronectin, all of which contribute to glomerulosclero-
sis in DKD [14, 15, 84, 85]. Gene and protein expression 
studies of kidney biopsies obtained from patients diag-
nosed with early or advanced stages of the disease have 
shown increased activation and expression of JAK/STAT. 

Fig. 4  Hyperactivation of Ang II and renal extracellular matrix modelling. Chronic hyperglycaemia activates angiotensin II (Angll), which results 
in proteinuria, inflammation, macrophage infiltration, elevated glomerular capillary pressure and permeability. All these processes release 
inflammatory and profibrotic cytokines leading to extracellular matrix remodelling
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Abnormal JAK/STAT signal functions as an upstream 
regulator of TGF-β1 signalling [58].

Elevated ROS levels resulting from hyperglycaemia 
activate JAK2, resulting in an increased expression of 
TGF-β1. Additional stimuli that activate TGF-β1 include 
mechanical stretch, AGEs, and thrombospondin-1 [60, 
64, 86]. Additionally, interleukin-like kinase, Smad2/3 
complex, PKC, p38-MAPK, and Wnt/beta-catenin sig-
nalling are among the downstream targets that mediate 
profibrogenic effects of TGF-β1 [58].

Gene expression and activity of JAK1 and JAK2 are 
linked with the advancement of CKD in diabetes. In 
patients with DKD, increased mRNA expression of vari-
ous JAK/STAT components in the glomerular and tubu-
lointerstitial compartments was adversely linked with the 
estimated GFR [74]. The negative modulation of JAK/
STAT can inhibit hyperglycaemia-induced renal damage, 
consequently enhancing renal function, decreasing renal 
inflammation and fibrotic lesions, and reducing the pro-
gression of DKD [14, 15, 77].

Both inhibitors of JAK (baricitinib, tofacitinib, and 
ruxolitinib) [11, 14, 15] and TGF-β (neutralizing anti-
TGF-β1 antibodies such as fresolimumab and IgG4κ 
monoclonal antibody and TGF-β receptor kinase inhibi-
tors like galunisertib and vactosertib) mitigate inflamma-
tion in DKD [87–89]. The concurrent inhibition of JAK/
STAT and TGF-β/Smad may therefore yield synergistic 
advantages in mitigating fibrosis and inflammation in 
DKD.

The crosstalk of NF‑κB and TGF‑β
The NF-κB pathway is an important mechanism impli-
cated in the pathology of the kidneys [74]. It is the prin-
cipal transcription factor essential for inflammatory 
processes in the diabetic kidney [36, 90, 91], and is the 
first step towards promoting TGF-β1 transcription. In 
diabetic state, TNF-α and IL-6 enhance IκBα phospho-
rylation, which is then degraded by the proteasome to 
release p65/p50 (NF-κB heterodimers) into the nucleus 
for TGF-β1 transcription and amplified stimulation of 
TGF-β1 expression [92]. NF-κB itself and the inflamma-
tory cytokines it induces (e.g., IL-1β, TNF-α, and mono-
cyte chemoattractant protein-1) can further enhance 
TGF-β synthesis and signalling, upregulating TGF-β 
expression and establishing a positive feedback loop that 
sustains fibrosis and inflammation. The activation of 
NF-κB in kidney cells induces the production of TNF-α 
and IL-1β, which in turn enhances NF-κB through the 
positive feedback loop. NF-κB then translocate into the 
nucleus, to promote genes transcription involved in 
immune response, inflammation, and fibrosis [39, 53–55, 
93].

NF-κB tightly interacts with inhibitory proteins, IκB 
and IκB kinase, which are upstream modulatory elements 
in the transduction cascade of NF-κB signals. Upon acti-
vation of NF-κB by upstream signals such as hypergly-
caemia, AGEs, inflammatory cytokines, albuminuria/
proteinuria, Ang II, OS, and mechanical stress [74, 83], it 
dissociates from its inhibitor IκB proteins and is translo-
cated into the nucleus [36]. This promotes the transcrip-
tion of proinflammatory factors, including TNF-α, IL-1β, 
IL-6, and monocyte chemoattractant protein-1 [38, 83]. 
IL-6 causes GBM thickening, growth, proliferation, and 
activity of MC, ECM accumulation, and glomeruloscle-
rosis. TNF-α promotes sodium reabsorption through 
the activation of epithelial sodium channel in renal dis-
tal tubule, stimulate release of TGF-β, and causes renal 
hypertrophy. It also causes cell death via autocrine and 
direct mechanisms, which alters permeability of the renal 
endothelial cells. TNF-α increases albumin permeability 
by causing dysfunction of the glomerular capillary wall 
barrier function [94]. Monocyte chemoattractant pro-
tein-9 enhance EMT and the deposition of ECM through 
direct activation of myofibroblasts [95].

NF-κB activation induces the expression of additional 
target genes, namely inducible nitric oxide synthase and 
intercellular adhesion molecule 1. These genes enhance 
inflammation, induce excessive fibronectin synthesis, and 
facilitate ECM accumulation, ultimately advancing the 
progression of DKD [32]. Elevated expression of recep-
tor activator of NF-κB (RANK) in the podocytes of indi-
viduals with DKD contributes to podocyte damage. The 
mucin domain-3 and T cell immunoglobulin domain are 
also involved in processes that damage the podocytes, 
thus acting as essential regulators of inflammatory pro-
cesses in DKD [96].

Connective tissue growth factor (CTGF), TGF‑β1, and cell 
death
Connective tissue growth factor (CTGF) also known as 
CCN2 is a downstream component in DKD pathophysi-
ology associated with structural renal transitions in the 
early and late phases of the condition [18]. It is a profi-
brotic cytokine secreted by renal cells in response to 
hyperglycaemia. CTGF facilitates extracellular matrix 
synthesis, cellular migration, and interstitial matrix depo-
sition via EMT in people with diabetes [12, 97].

Activation of Smad2/3 raises the expression of certain 
profibrotic genes, such as CTGF, which are targets of 
TGF-β and promote the shift from autophagy to senes-
cence [89]. Elevated renal tubular epithelial cell senes-
cence caused by hyperglycaemia is a significant biological 
occurrence preceding renal interstitial damage in DKD 
[98, 99]. Cellular senescence and senescence-associated 
secretory phenotype are involved in the pathogenesis 
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of CKD. CKD in turn facilitates the progression of cell 
senescence and the secretion of senescence-associated 
secretory phenotype.  The p16 protein (cell cycle inhibi-
tor) and senescence-associated β-galactosidase were 
observed to be highly upregulated in the glomeruli, inter-
stitium, and tubules of various kidney diseases including 
DKD. The participation of senescence markers in diabetic 
kidney tissues was confirmed in different experimental 
models [100].

CTGF production can also be stimulated by increased 
concentrations of AGEs in renal cells in diabetes [101]. 
CTGF, as a downstream effector of TGF-β, interacts with 
TGF-β to promote fibrosis in DKD [60].

The CTGF gene plays an important role in cell prolif-
eration and is a direct target of Yes-associated protein 
(YAP). It regulates cell growth, proliferation, and apop-
tosis, hence playing an essential function in tissue regen-
eration, organ enlargement, tumorigenesis, and cancer 
development. Research findings observed upregulation of 
CTGF, TEA domain (TEAD), and YAP in glomerular cell 
nuclei of patients with DKD [102]. An increased TGF-β/
CTGF signalling correlates with DKD advancement via 
the downregulation of miR-26a [103].

Cellular death sentence characterised by apoptosis 
and autophagy dysregulation
Hippo signalling, the dual‑edged sword pathway
The Hippo pathway is a key regulator of apoptosis, 
fibrosis, and inflammation in DKD. Dysregulation of 
its components, especially MST1/2 and YAP/TAZ, 
contributes to renal cell injury and progressive kid-
ney damage. The Hippo pathway is an evolutionarily 
highly conserved protein kinase cascade [102, 104]. It 
consists of three interdependent modules: an upstream 
regulatory module (KIBRA and merlin/NF2) [105, 
106], a core kinase module [mammalian Ste20-like ser-
ine/threonine kinases 1/2 (MST1/2) and large tumour 
suppressor 1/2 serine/threonine protein kinases 
(LATS1/2)], and a downstream transcription module 
[Salvador homology (SAV) and monopolar spindle-
one-binder protein– Mps-one binder 1 (MOB1)]. The 
activation of the pathway results in LATS1-mediated 
phosphorylation of the transcriptional coactivators 
YAP and transcriptional co-activator with PDZ-binding 
motif (TAZ), which are the downstream effectors. This 
culminates in the inactivation of YAP/TAZ by proteas-
ome-mediated degradation and/or cytoplasmic seques-
tration. On the other hand, Hippo pathway inhibition 
leads to decreased serine phosphorylation of MST1 and 
LATS1, activates YAP, resulting in the nuclear translo-
cation and accumulation of YAP/TAZ. This facilitates 
downstream target gene expression as a transcriptional 
co-activator via interaction with transcription factors, 

such as members of the TEAD family. This favours the 
expression of target genes such as cell cycle protein E 
(cyclin E) [35, 107], epithelial-interstitial induced trans-
formation of renal tubular epithelial cells, which in 
turn, overproduce and secrete large quantities of ECM, 
including type IV collagen and laminin. These pro-
cesses ultimately result in renal fibrosis, nephron loss, 
and chronic kidney failure [107, 108] (Fig. 5).

The transcriptional regulators YAP and TAZ, which 
are also called WW Domain-Containing Transcrip-
tion Regulator 1 (WWTR1), are the primary effectors 
of the pathway [108]. They modulate cell growth, prolif-
eration, and apoptosis by controlling the expression of 
downstream genes such as cell cyclin E [20, 102], which 
highly influence organ size, tissue regeneration, embryo 
development, and tumour development [35, 104]. Hippo 
upstream MST1 kinase is a pivotal regulator of β-cell 
death and dysfunction in diabetes [109]. It is also a key 
mediator in fibrosis development and growth of fibrosis 
in tissues [107].

Hippo pathway is linked to renal fibrosis, DKD, and 
other kidney diseases [102]. Renal fibrosis is the com-
mon pathway that culminates in ESKD and is a major 
biomarker of renal insufficiency. In diabetic conditions 
and DKD, when there is alteration in the biomechanical 
properties of tissues, the YAP/TAZ sensor gets activated, 
causing the release of proinflammatory and profibrogenic 
signals, further exacerbating renal inflammation [35].

Under diabetogenic conditions, significant overexpres-
sion and autophosphorylation of MST1 in response to 
various chronic diabetes stimuli have been demonstrated 
in  vitro and in  vivo. Complete restoration of β-cell via-
bility following the suppression of MST1 activation was 
achieved by the triple kinase (Her2/EGFR/MST1) inhibi-
tor neratinib [110]. A review reported that pre-diabetes 
and diabetes stimulated MST1, resulting in its signifi-
cant autophosphorylation, activation of programmed cell 
death, and apoptosis [111].

Conversely, glucose induced MST1 inactivation in renal 
tubular cells, results in YAP activation, its translocation 
into the nucleus, and EMT of renal tubular epithelial 
cells, resulting in renal fibrosis and chronic renal failure 
[107] (Fig. 5). In vitro findings demonstrated inactivation 
of the Hippo pathway in MCs cultured in high glucose, 
leading to increased proliferation of glomerular MCs. The 
study revealed that reduced phosphorylation of MST1 
and LATS1 enhanced the feedback loop, subsequently 
increasing the expression of downstream genes such as 
cyclin E [104]. Additional studies showed increased MC 
proliferation following decreased phosphorylation of 
MST1 and LATS1 and increased PI3K/Akt activation in 
diabetic mice and high glucose-treated MCs [35]. Human 
MCs exposed to high  glucose milieu  exhibited reduced 
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phosphorylation of LATS1, which correlated with dimin-
ished phosphorylation of its target YAP [112].

In induced acute kidney injury, the inactivation of 
SAV1 in renal tubule cells leads to the progression of 
renal interstitial fibrosis. Deletion of SAV1 in tubular 
epithelial cells specifically enhanced the presence of 
myofibroblastic EMT-like cells and exacerbated tubu-
lointerstitial fibrosis [108]. Inhibition of Hippo signal-
ling in glomerular MCs occurs during the initial phases 
of nephropathy in diabetes; with enhanced proliferation 
of glomerular MCs and accumulation of ECM in diabetic 
rats [20]. MST1 downregulation occurred in a glucose- 
and time-dependent manner with the attendant meta-
bolic consequences in type 1 and 2 diabetes [102]. This 
may point to the acute and chronic expression of Hippo 
signal in DKD. Persistent hyperglycaemia induced inhi-
bition of the Hippo kinases in the kidneys and enabled 
YAP/TAZ translocation into the nucleus, resulting even-
tually in fibrosis, a characteristic feature of DKD [113]. 
Tubule-specific MST1/2 double knockout exacerbated 
CKD progression by activating the inflammatory cascade 
[106].

The Hippo transduction pathway is a notable drugga-
ble target for managing DKD. For instance, studies show 
that the YAP inhibitor verteporfin inhibits YAP-TEAD 
interaction, consequently reducing kidney fibrosis [113]. 

Inhibition of SGLT2 reduced excessive glucose reab-
sorption and diminished the persistent hyperactivation 
of YAP/TAZ elicited by a high glucose environment. 
Dapagliflozin, a therapeutic agent, facilitates YAP/TAZ 
phosphorylation, leading to their cytoplasmic retention, 
deactivation, and destruction [5, 114]. YAP/TAZ possess 
regenerative functions, so complete inhibition may have 
unintended consequences.

While these findings from different experimental mod-
els align with the established role of the Hippo pathway 
in fibrotic processes, we see a Hippo pathway-unique 
kidney-specific response to chronic hyperglycaemia that 
differs from the β-cell. However, there exists a significant 
gap in the understanding of how acute versus chronic 
hyperglycaemia differentially impacts this pathway in the 
kidney. Addressing this gap, especially for novel thera-
peutic strategies in diabetes, will be of great importance.

Notch signalling
Notch signalling is associated with the progression 
of DKD [14, 15, 60, 63, 82]. Notch is a transmembrane 
receptor consisting of an intracellular domain known 
as the Notch intracellular domain and an extracellu-
lar domain. A γ-secretase cleaves the Notch intracel-
lular domain to promote free NICD translocation into 
the nucleus [115, 116]. The transduction  signal system 

Fig. 5  Hippo signalling contributes to renal fibrosis and damage in diabetic conditions. The core Hippo pathway comprises a kinase cascade 
involving MSTl/2 and LATSl/2. In diabetic conditions, when the pathway is switched on, YAP/TAZ phosphorylate, leading to YAP/TAZ inhibition, 
thus preventing their nuclear translocation and downstream gene activation. When the pathway is off, YAP/TAZ translocates to the nucleus 
to activate downstream genes involved in fibrosis. Dysregulated Hippo signalling in the diabetic kidney results in decreased MSTl/2 activity, 
which favours YAP/TAZ translocation to the nucleus, where they promote fibrosis by activating profibrotic genes such as CTGF and TGF-β1. The 
TGF-β signalling pathway via Smad 1 and 4 (Smad-dependent and non-Smad pathways) activates the translocation of the Smad 1/4/YAP/TAZ 
complex into the kidney, which upregulates fibrotic markers, leading to epithelial-mesenchymal transition (EMT) and extracellular matrix (ECMJ 
accumulation, thereby amplifying renal fibrosis
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in mammals comprises four transmembrane receptors 
“(Notch 1, 2, 3, and 4), three delta-like ligands (DLL1, 
DLL3, and DLL4), and two Jagged family ligands (JAG1 
and JAG2). Under pathological conditions, the Notch 
pathway is activated, influencing processes such as apop-
tosis, cellular proliferation, and EMT. When the ligand of 
Notch pathway binds to its receptor, Notch gets activated 
to form the Notch intracellular domain. This translocates 
to the nucleus to regulate downstream targets expression 
and ECM/EMT induction. This ultimately results in renal 
fibrogenesis in DKD [57].

The Notch signalling pathway participates in fibrosis 
mechanisms in many organs. Increased Notch 1, Jag-
ged-1, and Notch 3 expression has been observed in pul-
monary fibrosis, accompanied by increased mesenchymal 
markers and decreased epithelial biomarkers. Hypoxia-
induced EMT in renal tubular epithelial cells facilitates 
the direct targeting of Notch 1 and Jagged-1, along with 
the subsequent activation of Notch downstream signal 
[115, 116]. TGF-β induces Notch 1, which then activates 
p53 and Cdk1a and drives cell death and glomeruloscle-
rosis. The Notch 1-induced podocyte cell death entails 
the transition of podocytes from a dormant state to cell-
cycle re-entry upon stimulation by growth hormone or 
TGF-β [9]. Snail, which is one of the downstream genes 
of Notch signalling, plays a critical role in fibrosis induc-
tion. It serves as a link for EMT induction in renal tubular 
epithelial cells and activates the pathway. Upregulation 
of the Snail promoter is activated by the Notch pathway, 
and its high expression has an inverse relationship with 
E-cadherin expression with increased α-Smooth Muscle 
Actin synthesis [57].

Wnt/β‑catenin pathway activation
The Wnt signalling cascade is categorised into canoni-
cal (β-catenin-dependent) and noncanonical (β-catenin-
independent) pathways [117]. β-catenin functions as 
the primary intracellular mediator of canonical Wnt 
signalling and acts as a principal transcriptional regula-
tor controlling the expression of all RAAS genes in dis-
eased kidneys [118]. Appropriate β-catenin expression 
is important for sustaining the glomerular filtration bar-
rier and its functionality [119]. The Wnt/β-catenin signal 
transduction pathway plays a crucial role in organ devel-
opment, tissue homeostasis, and injury repair of multi-
cellular organisms [42, 120].

The Wnt/b-catenin cascade is silent in normal adults 
but is activated after kidney injury [16, 120–122]. This 
pathway contributes to the initiation and progres-
sion of chronic renal impairment by activating the 
expression of downstream cytokines that induce renal 
interstitial fibrosis [123]. The pathway is intricately con-
nected to the formation of tubulointerstitial fibrosis by 

transdifferentiation of renal tubular epithelial cells in 
DKD. Hyperglycaemia activates the pathway in renal 
tubular epithelial cells and upregulates the expression of 
the related proteins, which further increases renal tubu-
lointerstitial fibrosis and causes renal injury in patients 
with diabetes [124]. The activation of Wnt/β-catenin sig-
nals exacerbate podocyte failure in DKD [119].

MicroRNA dysregulation
MicroRNAs (miRNAs) are a class of endogenous, single-
stranded, approximately 22-nucleotide, noncoding RNA 
molecules that function as developmental regulators 
[13, 115, 116, 125]. They inhibit the expression of target 
genes through incorrect base pairing with the 3’-untrans-
lated regions of target mRNAs, resulting in translational 
repression and/or mRNA degradation [126]. They regu-
late physiological and pathological events by post tran-
scriptionally suppressing gene expression [127, 128] by 
obstructing translation or enabling the cleavage of spe-
cific target mRNAs or transcriptionally, via targeting of 
the promoter region [125]. They participate in prolif-
eration, differentiation, apoptosis, development [129], 
immunity, metabolism, oncogenesis, and viral replication 
[130].

Many miRNAs are expressed in different parts of the 
kidney, where they regulate multiple functions essential 
for sustaining normal renal physiology [131]. Numerous 
miRNAs are implicated in the tissues associated with dia-
betic complications, with the kidney possessing a higher 
concentration relative to other organs [125, 126, 131, 
132]. For instance, many miRNAs are involved in critical 
roles in the onset and progression of diabetes [103] and 
DKD [8, 125, 127] by participating in insulin resistance, 
inflammation, fibrosis, hypertrophy, endoplasmic reticu-
lum stress, autophagy, OS, and podocyte injury [133].

Five miRNAs (miR-192, miR-194, miR-204, miR-215, 
and miR-216a) are identified to be enriched in the kid-
ney relative to other organs. Additional kidney-specific 
miRNAs include miR-146a and miR-886 [131]. This indi-
cates their potential function in the kidney [126]. Other 
miRNAs found in the kidney and other organs are miR-
21, miR-200a, miR-196a/b, miR-10a/b, miR-30a-e, miR-
872, miR-130, miR-143, and let-7a-g [131]. Many more 
noncoding RNAs are participants in DKD development 
[115, 116, 128, 132, 134]. miRNAs provide a regulatory 
function in signal transduction associated with DKD 
pathology [132]. For example, miR‐192 binds to zinc fin-
ger E-box binding homebox1/2 and activates the TGF‐β 
signalling pathway, resulting in renal fibrosis and pro-
teinuria. When miR‐21 binds to phosphatase and tensin 
homolog, the AKT signalling pathway becomes overac-
tivated, leading to renal hypertrophy and fibrosis. The 
overexpression of these nephropathy‐inducing miRNAs 
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was observed in diabetic kidneys susceptible to DKD. For 
instance, miR‐181b was found to be substantially upregu-
lated in DKD [129, 135].

TGF-β increases miRNA-21 through the Smad3-
dependent cascade. miRNA-21 in turn induces renal 
damage by targeting Smad7. During the initial phase 
of DKD, dysregulated miRNAs mostly promote the 
expression of ECM proteins, whereas in the later phase, 
apoptosis and necrosis of tubular cells are evident [13]. 
The TGF-β/Smad3 signalling pathway regulates sev-
eral miRNAs and lncRNAs to mediate DKD. Further-
more, miRNA-196b-5p present in extracellular vesicles 
enhances fibroblast proliferation and upregulates many 
fibrotic factors [14, 15].

Various miRNAs bind directly to the 3′ untranslated 
region of the SMAD7 mRNA, causing decreased protein 
levels and promoting high TGF-β signalling activity. This 
leads to downregulation of SMAD7 protein thus, poten-
tiating TGF-β pathway resulting from reduced negative 
feedback from SMAD7. Additionally, certain miRNAs 
target and downregulate PTEN and SMAD7 involved in 
fibrosis development [136].

Intrarenal hypoxia
Endogenous ligands are significantly upregulated in 
hyperglycaemia, hypoxia, and hyperlipidaemia, which 
are pivotal to the pathophysiology of DKD [44]. Diabe-
tes and DKD induce several metabolic and haemody-
namic stressors, such as hypoxia and hyperfiltration [33, 
45]. Regardless of the aetiology of nephropathy, irrevers-
ible kidney injury progresses as CKD advances, with the 
vicious cycle of tubular interstitial hypoxia recognised as 
the final common conduit for this advancement [71].

Proximal tubule cells exposed to high glucose concen-
trations undergo increased apoptosis after ATP deple-
tion or severe hypoxia [137]. Kidney hypoxia contributes 
significantly to the advancement of DKD. In individu-
als with diabetes, hyperglycaemia increases the energy 
requirements of tubular cells due to glomerular hyperfil-
tration and the upregulation of sodium–glucose cotrans-
port. The loss of peritubular capillaries and interstitial 
fibrosis impairs oxygen delivery, resulting in an imbal-
ance between oxygen demand and supply [70]. Hypoxia is 
a critical microenvironmental factor in the development 
of tissue fibrosis. Under prolonged high glucose load of 
DKD, the oxygen consumption of kidney tissue rises, 
resulting in the formation of renal interstitial fibres due 
to chronic hypoxia, mostly mediated by HIF-1α [53–55].

Hypoxia induces EMT through HIF-α accumulation 
[115, 116]. HIF-1α functions during normal development 
and in pathological conditions linked to reduced oxygen 
availability. The kidney is susceptible to hypoxic injury 
due to an arteriovenous oxygen shunt. Hyperglycaemia 

elevates mitochondrial oxygen consumption, leading to 
cellular hypoxia and the production of ROS [138].

HIF-1α is a key transcription factor in the hypoxic 
response [71] and a regulator of cellular oxygen homeo-
stasis, which is aberrantly expressed in the serum of 
people with diabetes and kidneys of patients with DKD. 
HIF-α is strongly associated with the progression of 
interstitial renal fibrosis. It also regulates the expression 
of heme oxygenase-1, its downstream target [139].

The latent mechanism for hypoxia-induced EMT 
entails the inactivation of prolyl hydroxylases, resulting 
in the accumulation and activation of HIF-α, which sub-
sequently promotes EMT-related gene expression such 
as Snail1, Twist1, and Bmi1. Upon hypoxia stimulation, 
HIF-α activates the TGF-β/Smad and PI3K/Akt path-
ways, inducing renal and pulmonary EMT, respectively. 
The expression of Bmi1 directly and indirectly promotes 
Twist1 expression, subsequently stabilizing the E-cad-
herin repressor Snail1 [115, 116]. Altering oxygen levels 
and activating hypoxia signalling via HIF-α may serve as 
a significant initiator and regulator of EMT [138].

Conclusion
Globally, DKD is a significant healthcare condition with 
an enormous economic burden, as its prevalence rises in 
tandem with the incidence of diabetes. Many integrated 
signalling pathways modulate the metabolic perturba-
tions responsible for the disease’s pathogenesis. In this 
review, we elucidate how hyperglycaemia-induced meta-
bolic perturbation kicks off molecular dysfunction that 
results in inflammation. The review shows how molecu-
lar mediators and intracellular signals resulting from 
inflammation interact synergistically, contributing to 
irreversible pathophysiological alterations in the kidney. 
These changes include the formation of myofibroblasts, 
different collagen types, ECM buildup, and, ultimately, 
tubulointerstitial fibrosis. The role of TGF-β as an 
upstream and downstream mediator in the progression 
of DKD is highlighted. Also shown is the kidney-specific 
Hippo pathway response to hyperglycaemia, which could 
give more insight for further research and therapeutic 
intervention. The review underscores the pathways that 
underlie the progression of DKD. Understanding of this 
mechanistic insight could enable and improve therapeu-
tic interventions in managing the disease. While these 
pathways are recognised as potential drug targets for 
the disease, translating these findings into effective clini-
cal interventions remains challenging. Future research 
should explore more targeted therapies that modulate 
these pathways and mediators in a multifaceted manner 
with minimal off-target effects.

This review is limited because other kidney diseases 
were not considered. Furthermore, the review did not 
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explore the comparative effect of acute and chronic kid-
ney failure on the signal transduction pathways. Addi-
tionally, there is a need to explore if recent therapeutic 
interventions are capable of completely reversing hyper-
glycaemia-induced kidney failure.

Abbreviations
AGEs	� Advanced glycation end-products
AKT	� Protein kinase B
AMP	� Adenosine monophosphate
AMPK	� AMP-activated protein kinase
Ang II	� Angiotensin II
cAMP	� Cyclic adenosine monophosphate
CKD	� Chronic kidney disease
DAMPs	� Damage-associated molecular patterns
DLL1, DLL3, DLL4	� Delta-like ligands
DKD	� Diabetic kidney disease
ECM	� Extracellular matrix
EMT	� Epithelial-mesenchymal transition
ESKD	� End-stage kidney disease
ET-1	� Endothelin-1
ERK	� Extracellular signal-regulated kinase
GFAT	� Glutamine: fructose-6-phosphate-amidotransferase
GFR	� Glomerular filtration rate
HIF-1α	� Hypoxia-inducible factor-1α
IL	� Interleukin
JAK-2	� Janus kinase 2
JAG1 and JAG2	� Jagged family ligands
MC	� Mesangial cells
MOB1	� Monopolar spindle-one-binder protein 1
MST1/2	� Mammalian Ste20-like serine/threonine kinases 1/2
mRNA	� Messenger ribonucleic acid
NADPH	� Nicotinamide adenine dinucleotide phosphate 

hydrogenase
NF-kB	� Nuclear Factor-kappa B
OS	� Oxidative Stress
PI3K	� Phosphoinositide 3-Kinase
PI3K/Akt	� Phosphoinositide 3-Kinase/Protein Kinase B
p38-MAPK	� P38 mitogen-activated protein kinase
PAMPs	� Pathogen-associated molecular patterns
PKB	� Protein Kinase B
PKC	� Protein Kinase C
RAAS	� Renin–angiotensin–aldosterone system
RAGE	� Receptor for Advanced Glycation End-products
RANK	� Receptor activator of NF-κB
ROS	� Reactive oxygen species
Smad	� Suppressor of Mothers Against Decapentaplegic
STAT3	� Signal transducer and activator of transcription 3
TAZ	� Transcriptional coactivator with PDZ binding motif
TEAD	� TEA domain
TGF-β	� Transforming growth factor-beta
TLRs	� Toll-like receptors
TNF- α	� Tumor necrosis factor alpha
YAP	� Yes-associated protein
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