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Abstract: Background/Objectives: A relevant subgroup of post-COVID-19 syndrome (PCS)
patients suffers from post-exertional malaise (PEM) and cardiovascular or neurological
symptoms, impairing daily functioning up to becoming even house- or bedbound. Recent
data suggest that PCS summarizes different subgroups, one of them being characterized
by an impaired microcirculation. Thus, the aim of the present study was to investigate
local deoxygenation, measured with non-invasive near-infrared regional spectroscopy
(NIRS), and its association with self-reported fatigue in patients with PCS compared to
controls in light exercise. Methods: 150 participants (100 PCS patients and 50 controls)
were recruited. PEM was assessed using FACIT, Chalder, and Bell scoring and Canadian
Criteria. NIRS was used to measure local oxygenation while kneading a stress ball and
during recovery. Results: PCS patients showed fatigue scores of 30 (Bell score), 20.6 (FACIT
fatigue score), and 9.914 (Chalder fatigue score). Decreased deoxygenation peaks at the
start of exercise were observed in patients with PCS, compared to controls (p = 0.0002).
Multivariate analysis identified a subgroup, showing an association between strong fatigue
and restricted oxygenation dynamics. Conclusions: NIRS could be a potential tool to assess
deoxygenation deficits even in moderate to severely impaired PCS patients using light
exercise protocols.

Keywords: Post-COVID syndrome; NIRS; oxygenation; fatigue; PEM; deoxygenation

1. Introduction
Approximately 6% of patients with acute COVID-19 have persisting post-acute seque-

lae for at least 12 weeks after acute infection, thus suffering from long COVID (LC)/post-
COVID-19-syndrome (PCS) according to the WHO [1,2]. The prevalence varies depending
on cohorts and vaccination status. More than 200 symptoms characterize PCS; the most
frequently reported are fatigue, brain fog, post-exertional malaise (PEM), cardiovascu-
lar symptoms, and neurological conditions, including cognitive dysfunction and sleep
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and sensorimotor disturbances [1,3–5]. Among PCS patients, those who are classified
as medium-severe to severely affected are largely wheelchair and housebound. Their
main symptom, PEM, restricts their daily life by experiencing symptoms at rest with
exertion-triggered exacerbations of symptoms, often after a time lag. The diversity of PCS
symptoms is likely triggered by different molecular mechanisms, arguing for different PCS
subtypes [6–10]. It is assumed that immune and autoimmune dysregulation (e.g., func-
tional autoantibodies targeting G-protein coupled receptors) [11], persisting viral reservoirs
or viral reactivation [12], abnormal blood clotting [10], and endothelial dysfunctions act
independently or interact in the complex pathogenesis of PCS.

A subgroup of patients with PCS shows a restricted capillary microcirculation, linked
to chronic fatigue (CF) [13]. It can be assumed that restricted capillary perfusion can be
induced or even induce endothelial dysfunction and impaired oxygenation (reviewed
in [14]), further limiting perfusion and mitochondrial function (reviewed in [15]). In
addition, these patients’ group yielded functional autoantibodies, targeting G-protein
coupled receptors (GPCR-fAAb) associated with the restricted microcirculation [16]. Of
interest, the neutralization of GPCR-fAAb by BC007 (Berlin Cures GmbH, Berlin, Germany)
was accompanied by an improvement in capillary microcirculation and PCS symptoms [17].
The data of a phase IIa study with BC007 in patients with PCS confirmed the improvement
of PCS symptoms after the neutralization of GPCR-fAAb [18].

Regional oxygenation and changes in hemoglobin (Hb) or myoglobin (Mb) oxygena-
tion are of interest, considering restricted capillary microcirculation. This can be measured
with near-infrared spectroscopy (NIRS), which is available in portable, relatively cost-
effective devices and widely used clinically in intensive care and anaesthesiology and
research on exercise physiology [19,20]. As only the muscle beneath the sensor is measured,
full-body exercise is not required for analysis. Therefore, it could be a safer, readily avail-
able option to investigate oxygenation abnormalities in PCS compared to cardiopulmonary
exercise testing (reviewed in [21]), avoiding triggering PEM.

The study aimed to investigate muscle (de)oxygenation during light and local exercise,
assessed using NIRS, in patients with PCS compared to controls. In addition, a multivariate
analysis was performed to explore the relationship between NIRS-derived oxygenation
metrics and self-reported fatigue.

2. Materials and Methods
2.1. Patients

A total of 150 participants were recruited at the Department of Ophthalmology, Uni-
versitätsklinikum Erlangen, Friedrich Alexander University of Erlangen-Nürnberg as part
of the disCOVer 2.0 study: 100 patients with PCS (55 female, 45 male) and 50 controls
(27 female, 23 male). Demographic data, including age, sex, positive PCR report, relevant
medical history, and PCS symptom duration, were collected from all patients. Inclu-
sion criteria for patients with PCS were persistent post-acute sequelae of COVID-19 for
at least 3 months after a polymerase chain reaction (PCR)-verified COVID-19 infection.
On the day of the investigation, participants were asked to self-report on four different
questionnaires targeting fatigue. Fulfillment of the Canadian Criteria for Myalgic En-
cephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a questionnaire facilitating the
diagnostics of ME/CFS according to the international consensus criteria [22]. The Chalder
fatigue scale, an 11-item questionnaire assessing physical and psychological fatigue with
high reliability in ME/CFS studies and occupational research, a high score expresses high
fatigue [23]. The Bell score, which has also been developed to judge the severity of chronic
fatigue syndrome, the activity that can be performed, and the frequency of symptoms [24].
The Bell score is counter-proportional to fatigue, with healthy people scoring a maximum
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of 100. Lastly, the FACIT fatigue score asks the patient to judge how applicable certain
statements are regarding their fatigue symptoms during the past 7 days. It also targets
physical- and psychological fatigue and scores counter proportionally to fatigue [25].

Several steps were taken to reduce known confounders: Baum [26] and colleagues
found that the severity of fatigue in most cases did not correlate with cardiovascular
diseases or echocardiographic findings, except in patients with significant functional im-
pairments. Additionally, the study by Thiele et al. [27] showed that fatigue was the most
common symptom 6 months after COVID-19, but it did not correlate with the variables of
lung function tests (LFT) or left ventricular ejection fraction (LVEF). Lung abnormalities
as well as cardiological issues have already been excluded in previous studies initiated by
the respective general practitioners, as well as pulmonologists and cardiologists. This has
ultimately led to these patients being referred to a POST-COVID center for further clarifica-
tion, as these findings were considered unremarkable. Moreover, these were reviewed by a
physician of the study team and those with any pathologic findings (e.g., oxygen diffusion
impairment, restrictive or obstructive lung function aberrations or heart valve prolapse
or insufficiency, abnormal contractility or abnormal ejection fractions) were excluded. All
PCS patients were also seen by a licensed internal medicine physician during the study
and their previous medical history was reviewed; those with a potential organic cause of
medium to severe fatigue other than PCS due to other immune diseases, tumors or organ
diseases like overt primary heart, lung, liver, thyroid or kidney disease were excluded.

Although measures were taken to exclude possible confounders, the origin of fatigue
for PCS on an individual basis is unknown and could include many causes, including
neurological, autonomic, muscular, cardiovascular, hematologic, or mitochondrial alter-
ations [8,9,15]. This causes the PCS group to be likely heterogeneous in its cause of fatigue,
potentially obscuring the result and may account for the high variance. All participants
signed a written informed consent form, which included giving permission to submit the
anonymized clinical data in a scientific publication, in agreement with the Declaration of
Helsinki and with permission from the ethics commission (no: 295-20-B).

2.2. NIRS

The Masimo O3® regional oximeter with Delta cHbi (Masimo Corporation, Irvine,
CA, USA) was used to measure regional muscle oxygenation of the underarm flexors.
The device uses near-infrared spectroscopy (NIRS) based on diffuse continuous wave
multidistance reflection spectroscopy. The sensors have one emitter and two detectors (i.e.,
one shallow detector and one deep detector), which allows for the selective calculation
of oxygenation in deep tissues by excluding the effects of the superficial tissue. The
parameters are calculated based on the different absorption coefficients on the basis of the
Lambert–Beer law. Recorded values are changes from the baseline of oxygenated Hb and
Mb (delta O2Hbi; scale: 1 µM from −98.0 to 99.0), deoxygenated Hb and Mb (delta HHbi;
scale: 1 µM from −98.0 to 99.0) and total change in Hb and Mb (delta cHbi; scale: 1 µM
from −98.0 to 99.0) as well as regional oxygenation (rSO2; scale: % change).

While the absorption coefficients of Hb and Mb are too similar to be distinguishable in
NIRS, it is generally assumed that the change in oxygenation and deoxygenation as well as
total change resulting from Hb changes, since Mb is located inside the muscle and does not
change concentrations [19,20,28].

Patients were seated at rest for at least 5 min before starting the investigation. The
self-adhering sensor was applied over the underarm flexors. The sensor application spot
was shaved in those with thick or dark hair. The sensor was additionally secured and
shielded from light with a dark bandage. The measurement baseline was established
according to the manufacturer’s instructions. Afterward, some time was taken to ensure
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stable measurements. Participants were then asked to vigorously knead a stress ball. As the
curve variance is already expected to be high, and oxygenation changes from the baseline
occur delayed in submaximal exercise [20,29], time was counted from the first changes from
the baseline. After 60 s of the first oxygenation changes from the baseline, the participant
was asked to suddenly stop and remain relaxed. Oxygenation changes continued to be
measured for 2 min after the exercise.

The resulting oxygenation curves recorded the rSO2 and the changes from the baseline
of hHbi, O2Hbi, and cHbi during the light exercise and early recovery. From the resulting
oxygenation curves, the area under the curve, the maximum increase overall, the maximum
decrease overall, and the time elapsed until the maximum increase or decrease were
extracted and included in multivariate analysis (see below).

2.3. Statistical Analysis

In the dataset, the time at which the maximum baseline-adjusted hHbi value occurred
during exercise was identified. These per-subject peak times were then modeled using linear
regression, with the experimental group, age, and gender entered as covariates. Model
summaries were generated to assess overall group effects, and estimated marginal means
(LS means) for each group were computed and compared pairwise. Group differences in
peak timing were visualized using boxplots, and the LS means (with standard errors and
confidence intervals) were displayed as bar graphs. LS means (or least-squares means)
are the mod-el-predicted average responses for each factor level, adjusted for the other
covariates. They represent what the group means would be if all groups had identical
distributions of age and gender, allowing fair comparison even in unbalanced designs.

A similar procedure was applied to the absolute peak heights of the baseline-adjusted
hHbi values. A Gaussian family generalized linear model was fitted with the same covari-
ates. Estimated marginal means for peak height by group were extracted and visualized
with error bars to illustrate adjusted differences in maximum response magnitude.

To examine the full-time course of hHbi, the normality of residuals was first assessed
at each time point using Shapiro–Wilk tests.

To analyze how hHbi, cHbi, and O2Hbi evolved over time and to compare patterns
between the two groups, we utilized a generalized additive model (GAM). Unlike standard
linear models, GAMs provide the flexibility to model complex, non-linear relationships
between predictors and the outcome, making them highly effective for uncovering subtle
or irregular trends over time.

We focused on the change from the baseline as our outcome measure, fitting separate
smooth functions for each group to track their progress throughout the observation pe-
riod. This strategy enabled us to identify and contrast the distinctive patterns of change
exhibited by each group. Each model included a smooth function of time stratified by
group, along with group, age (or standardized age), and gender as parametric terms, and
was estimated under a Gaussian family with restricted maximum likelihood. Model diag-
nostics and summaries were inspected, and the fitted smooths were plotted to illustrate
group-specific trajectories.

For a clearer interpretation, we produced graphical representations of each group’s
smoothed outcome trajectory, complete with 95% confidence intervals to reflect the uncer-
tainty around the estimates. Additionally, we calculated the pointwise difference between
the groups’ smoothed curves. Regions where the interval did not include zero were flagged
(marked these intervals in red on the plot) as indicating statistically significant divergence
between groups. The difference curve, overlaid with a shaded ribbon indicating significant
intervals, provided a clear depiction of the times at which the groups’ hHbi responses
departed significantly from one another.
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To examine the associations between two sets of variables, a canonical correlation
analysis (CCA) was conducted. The first block, labeled as self-reported fatigue variables
(Canadian Criteria for ME/CFS yes/no, increased fatigue self-assessment yes/no, Bell
score, Chalder fatigue scale, FACIT fatigue scale), and the second block, labeled as mea-
surement variables (including for each variable (rSO2, cHbi, O2Hbi and hHbi) the positive
and negative areas under the curve, maximum and minimum measurement, the time of
these respective measurements and the overall range), were used for the analysis. All
variables were first checked for proper formatting and converted to numeric if necessary.
Observations with missing values in either block were removed via complete-case analysis.
Next, both blocks were standardized to ensure comparability by centering (mean = 0)
and scaling (standard deviation = 1). To visualize the results of the canonical correlation
analysis, we plotted the subject scores and variable loadings for each block in a common 2D
space. First, we determined shared axis limits by combining the CCA1/CCA2 scores and
scaled loadings from both the physiological-measurement and self-report blocks. Finally,
we extracted the first canonical variate’s loadings for each block and displayed them as
horizontal bar plots, ordering the variables by loading magnitude.

All B_delta_cHbi time series were first plotted to display individual trajectories and
overlaid with the group mean curve accompanied by a pointwise 95% confidence band; the
median trajectory was also inspected for comparison. The overall time window (0–238 s)
was then divided into three a priori segments based on the direction change in the mean
curve pattern (0–100 s, 100–150 s, and 150–238 s), and for each subject, a separate linear
regression of B_delta_cHbi on time was fitted within each segment as well as across the full
curve. These per-subject slopes—both stage-wise and full curve—were compared between
control and PCS using Welch’s two-sample t-tests. All analyses and plots were produced
in RStudio (version 2023.09.1 Build 494, ©2009–2023 Posit Software, PBC) using stats and
base graphics functions. The following packages were applied: for data rearrangement
and extraction: Tidyverse package [30], particularly dplyr; for visualization of graphs:
ggplot2 [30] and patchwork [31]; mcgv [32] was used for GAM and GLM modeling; for LS
means calculation and comparison of groups after GAM and GLM modeling: emmeans
package [33]; and for CCA, vegan [34] and ggvegan [35] packages were used.

3. Results
3.1. Demographics and Self-Reported Fatigue

The mean age of the PCS group was 44.26 ± 12.55, and 55% were female. The mean
age of the control group was 42.64 ± 16.93, with 54% female. Of the 100 patients with
PCS, 82% reported suffering from subjective fatigue symptoms on binary screening, and
83% met the Canadian Criteria for ME/CFS. Time since initial positive COVID-19 -PCR
averaged 964 ± 275 days in the PCS cohort. Three self-report questionnaires quantifying
CF and its impact on daily life were given to all patients, whether they fulfilled the above
questions or not. The Bell score, which categorizes activity and activity-associated symptom
severity, is scaled from 100 for those fully active without fatigue to 0 for those bedbound
by severe symptoms and requiring assistance in all tasks of daily life. Our PCS cohort
scored a median of 30 (95% CI 30–40), categorized as suffering from moderate to severe
symptoms most of the time but capable of doing about 2 h of activity a day, including tasks
that require leaving the house several times a week. The controls had a median Bell score of
100 (95% CI 100–100). FACIT fatigue score is also counter-proportional to fatigue severity,
with a high score of 52 for high activity and no subjective tiredness. The mean PCS FACIT
score was 20.38 (SD 10.1), while the mean score of the controls was 47.84 (SD 5.05). The
Chalder fatigue scale scores are proportional to fatigue severity, with a high score of 11.
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PCS scored a mean score of 9.964 (SD 2.038), while controls scored a mean of 0.618 (SD
1.670). Demographics and the contrast of fatigue scores are summarized in Table 1.

Table 1. Demographic data of participants and questionnaire scores.

Variable PCS Control

Age 44.28 (19–78; SD 12.55) 42.64 (22–68; SD 16.93)
Sex 55% female 54% female

Time from positive PCR test to investigation (days) 909 (126–1565) N/A 1

Canadian Criteria 83% fulfillment 0% fulfillment
Median Bell score 30 (95% CI 30–40) 100 (95% CI 100)

FACIT fatigue score 20.38 (SD 10.1) 47.84 (SD 5.05)
Chalder fatigue scale 9.964 (SD 2.038) 0.618 (SD 1.670)

1 Control group constituted of people who either never had COVID-19 or who had fully recovered from COVID-19.

3.2. Oxygenation Changes

Muscle oxygenation (rSO2, cHBi, O2Hbi, and hHbi) traces were generated for each
participant over the exercise-plus-recovery period. Figure 1 shows a representative
deoxygenation–reoxygenation curve from a PCS subject, but there was a high variance in
curve amplitude and shape across both groups.

Figure 1. Exemplary output curve of an individual with PCS. There was unfavorable high individual
variance in amplitude and curve morphology.

The timing and height of the deoxygenation peak during exercise (hHbiex), which can
indicate oxygen extraction efficiency, were analyzed. The highest point of each deoxygena-
tion curve was found along with its respective time point per subject. A Gaussian family
generalized linear model was used to calculate differences while age and sex were set as
covariates, and the least square (LS) means for sex and group were calculated. PCS patients
had earlier but lower hHbi peaks during exercise (p = 0.0015, p = 0.0002, respectively;
Table 2, Figure 2).

To account for high variability in the data and the absence of standard normalization
references such as maximal effort or incremental exercise, we applied a series of generalized
additive models (GAMs) to examine time-based trends across groups (control vs. PCS).

Smoothed curves were fitted separately for each group to visualize changes over time
in delta O2Hb, delta cHb, delta HHb, and regional oxygen saturation (rSO2%). These trends
are presented in Figure 3. The accompanying difference plots show the estimated difference
between group-specific smooths over time, with shaded areas representing 95% confidence
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intervals. Red shading indicates time intervals where the difference between groups was
statistically significant, suggesting divergent physiological responses over time.

Table 2. Estimated coefficients, standard errors, t-values, and p-values from the GLM models of Time
point and peak of deoxygenated hemo-and myoglobin baseline change (hHbi) during exercise, as a
function of the intercept, PCS group, female sex, and age.

Variable

Time of Peak
hHbiex

Estimate Std. Error T Value Pr(>|t|)

Intercept 27.67810 1.22680 22.561 <2 × 10−16

Group PCS 2.27568 0.71980 −3.162 0.00158
Age 0.12032 0.68123 2.695 0.00706

Sex Female 1.83608 0.68123 2.695 0.00706

Peak hHbiex value

Intercept 1.83154 0.14899 12.293 <2 × 10−16

Group PCS −0.32504 0.08742 −3.718 0.000203
Age 0.01890 0.00293 6.450 1.23 × 10−10

Sex Female −0.29506 0.08273 −3.566 0.000366

   
 

(a)  (b)  (c) 

Figure 2. Changes in deoxygenation during exercise. (a) The timing of the peak in hHbiex during the
period of exercise. Patients with PCS had significantly earlier peaks (LS means 31.6 s ± 0.416. df 4496,
Cl 30.8 to 32.4) compared to controls (LS means 33.9 s ± 0.588 df 4496, Cl 32.7 to 35.0), p = 0.0015 (**).
(b) Peak deoxygenation values during exercise were significantly lower in PCS patients (LS means
2.19 ± 0.0506, df 4496, Cl 2.09 to 2.28), than in controls (LS means 2.51 ± 0.0714, 4496, Cl 2.37 to 2.65),
p = 0.0002 (**). (c) Generalized additive model (GAM) illustrating the trends of change in hHbi during
exercise per group. In the top left shows the difference in value as pairwise comparisons of these
GAM trend values per time point. The shaded confidence intervals are colored red, where pairwise
comparisons yielded a significant difference.

This modeling approach reveals group-dependent differences in hemodynamic be-
havior throughout the observation period, even in the absence of traditional normalization
procedures (Figure 3).
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(a)  (b) 

   
(c)  (d) 

   
(e)  (f) 

   
(g)  (h) 

Figure 3. GAM of the overall curves of hHbi, O2Hbi, cHbi, and rSO2, respectively: (a,c,e,g) Change
from the baseline plotted over time for each group. (b,d,f,h) Graphed difference between the two
curves. The shaded area shows the 95% confidence interval and is colored red where there is a
significant difference.
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CHbi measures the change of total Hb in the investigated tissue. As Mb is localized
in the muscle, this is a heavy predictor for hematocrit. Although there is evidence that
hematocrit can change somewhat independently of blood flow during exercise, large
positive changes in cHbi suggest capillary recruitment and blood flow changes. Therefore,
an independent-samples t-test was conducted to compare the overall cHbi-time slopes of
patients with PCS and controls (Figure 4). There was a statistically significant difference
between both two groups (p = 0.034, [95% CI: –0.0225, –0.00087]). On average, the control
group exhibited a steeper full curve slope (M = 0.03324) than the PCS group (M = 0.02153),
indicating that, across the entire time series, hematocrit (as reflected by B_delta_cHbi)
increased more rapidly in controls than in PCS. This suggests that the condition defining
the PCS group is associated with a measurable slowing of the overall response profile and
may hint at perfusion differences.

 
(a)  (b) 

Figure 4. Curves for slope calculation: The mean and median curves of cHbi with 95% CI are shown
per group, gray curves show individuals (a); Average curves (mean of each group per time point of
cHbi) are plotted together, and the overall slope was calculated. Controls exhibited a steeper slope on
average p = 0.034 (b).

3.3. Multivariate Association Between Self-Reported Fatigue Scores and Masimo-Derived
Oxygenation Metrics

Canonical correlation analysis (CCA) was used to uncover the multivariate relation-
ship between five self-report fatigue scales (Canadian Criteria, fatigue symptoms, Bell
score, Chalder fatigue, FACIT fatigue) and 28 Masimo-derived oxygenation metrics. The
analysis revealed a significant association between the two variable datasets, with the first
pair of canonical variates yielding a canonical correlation of rc = 0.71, as determined by
permutation testing (p < 0.001). This result indicates a strong latent relationship between
subjective fatigue assessments and objective physiological responses. To enhance inter-
pretability, a CCA biplot was generated to visualize the first two canonical dimensions
(Figure 5). In this graph, the x-axis and y-axis represent the first and second canonical
variates, respectively. Arrows denote the canonical loadings, which correspond to the
correlations between the original variables and their associated canonical variates. These
are plotted in a shared two-dimensional space to facilitate joint interpretation. Red vectors
represent questionnaire-based fatigue scores, while blue vectors represent physiological
measures. The distance and direction of each vector from the origin indicate the magnitude
and direction of its contribution to the canonical dimensions.
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Figure 5. Canonical correlation analysis (CCA) biplot visualizes both (1) the participant scores in the
space of the first two canonical variates (CCA1 and CCA2) and (2) the variable loadings (arrows)
for each measure. Red points and arrows correspond to the self-reported fatigue scales; blue points
and arrows correspond to the oxygenation metrics. Red points show each participant’s CCA1–
CCA2 coordinates derived from the five fatigue scale variables, while blue points show the same
participants’ coordinates derived from the set of physiological measurements. Red arrows depict
how each self-report scale “loads” onto the two canonical axes: arrow length reflects the strength of
that variable’s contribution, and arrow direction indicates whether it aligns with CCA1, CCA2, or
both. Blue arrows similarly illustrate the loadings of the oxygen measurement variables within the
same canonical space; arrows pointing in similar directions are positively correlated, whereas those
pointing in roughly opposite directions are negatively correlated.

3.3.1. First Canonical Dimension

The first canonical dimension (horizontal axis) biplot explains the largest proportion of
the shared variance. On this axis, max_O2HBi (maximum oxygenated Hb), cHBi_posAUC
(positive deoxygenated Hb in area under the curve), and CanCrit (Canadian Criteria) have
the highest positive loadings, suggesting that individuals with the strong endorsement of
Canadian diagnostic fatigue criteria tend to show elevated muscle oxygenation responses.
In contrast, negative loadings on this axis, particularly from FatigueSx (self-reported fatigue
symptom) and FacitF (FACIT fatigue), imply that individuals reporting higher levels of
general fatigue tend to exhibit attenuated oxygenated Hb responses.

3.3.2. Second Canonical Dimension

The second canonical dimension (vertical axis) captures a distinct orthogonal pat-
tern of variation, which appears to reflect temporal and depth-related characteristics of
desaturation. It is driven positively by min_rSO2 (minimum tissue oxygen saturation)
and t_max_cHBi (time to the highest total Hb change from the baseline) and negatively
influenced by ChalderF score (Chalder Fatigue). The second dimension differentiates indi-
viduals based on the dynamics of their oxygenation profiles: those with deeper desaturation
versus those whose fatigue is more dominantly expressed using the Chalder scale.

3.3.3. Canonical Correlation Analysis Biplot

The biplot quadrants (Figure 5) offer additional insight into the variation across
participants. Individuals located in the upper-right quadrant are characterized by high
Canadian Criteria scores and prominent oxygenated hemoglobin excursions, suggesting a
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physiology-linked fatigue phenotype. Conversely, those in the lower-left quadrant report
greater general fatigue severity (as indicated by FatigueSx and FacitF) alongside blunted
oxygenation responses, revealing two distinct fatigue physiology phenotypes.

Although the biplot enables an intuitive visualization of the joint structure between
fatigue and physiological domains, the relevance of each variable is inferred from the
relative magnitude and direction of its canonical loading. No explicit threshold was applied;
instead, variables represented by vectors farther from the origin are interpreted as exerting
greater influence on the corresponding canonical dimension. To complement the biplot,
two bar plots were created to provide a clearer depiction of the variable contributions.
Figure 6 presents the canonical loadings of the five self-reported fatigue scales on Canonical
Variate 1 (CV1), ordered from most negative to most positive, providing a clearer view of
each scale’s contribution to the latent dimension. Scales with positive loadings (CanCrit,
ChalderF, BellScore) increase as CV1 rises, whereas those with negative loadings (FatigueSx,
FacitF) decrease. The length of each bar denotes the magnitude of the Pearson correlation
between that scale and CV1, highlighting which questionnaires contribute most strongly to
the latent fatigue dimension. The Canadian Criteria scale (CanCrit) loads most strongly in
the positive direction, closely followed by the Chalder fatigue scale (ChalderF), indicating
that higher scores on these instruments are associated with increases along the primary
multivariate axis. The traditional Bell score sits near zero, contributing only marginally,
whereas the fatigue symptoms index (FatigueSx) and particularly the FACIT fatigue scale
(FacitF) load negatively, signifying that greater self-reported fatigue on those measures
corresponds to decreases in the canonical dimension.

Figure 6. Bar plot of the first-variate canonical loadings for the five self-reported fatigue scales.
Each bar shows the Pearson correlation between a questionnaire scale and Canonical Variate 1: its
length indicates the strength of that scale’s contribution, and its direction (rightwards = positive,
leftwards = negative) indicates whether the scale increases or decreases as the canonical score rises.

Figure 7 provides a complementary view, showing the Masimo physiological mea-
surements’ loadings on CV1, revealing which oxygenation metrics most closely track the
fatigue scales. Maximum oxygenated Hb (max_O2HBi) shows the highest positive loading,
with its time-to-peak (t_max_O2HBi) and the positive area under the curve for total Hb
(cHBi_posAUC) also loading strongly positive. In contrast, variables such as minimum
deoxygenated Hb (min_hHBi), its time to minimum (t_min_hHBi), and the range of hHBi
(rng_hHBi) load negatively, indicating that deeper or earlier drops in Hb saturation oppose
the multivariate pattern defined by the fatigue scales.
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Figure 7. Bar plot of the first-variate canonical loadings for the Masimo physiological measurements.
Each bar represents the Pearson correlation between a measurement variable and Canonical Variate 1:
its length indicates how strongly that metric contributes to the shared fatigue–physiology dimension
and its direction (bars extending right = positive loadings; bars extending left = negative loadings)
shows whether the variable rises or falls as the canonical score increases. The variable names are
explained in the abbreviations table.

4. Discussion
PCS is a post-viral disorder, summarizing several subgroups. One of them is char-

acterized by its clinical major symptom, PEM [3]. It is hypothesized that a restricted
microcirculation, accompanied by ischemia-reperfusion, might induce or maintain PEM.
Recent data yielded evidence that a subgroup of patients with PCS showed an impaired
capillary microcirculation mapped on the retina by OCT-angiography [13,16]. It assumed
that a special autoimmune phenomenon characterized by functional autoantibodies target-
ing G-protein coupled receptors (GPCR-fAAb), accompanied by ischemia, triggers clinical
PCS symptoms. This hypothesis was substantiated first by a successful healing attempt
with Rovunaptabin (BC007) [17] and, afterward, a clinical phase IIa study [18], showing
an improvement of fatigue after neutralization of GPCR-fAAb. As PCS diagnosis lacks
objective biomarkers to date, the aim is to establish novel biomarkers for the visualization of
oxygenation deficiencies. Thus, the aim was to investigate the (de)oxygenation of patients
with PCS compared with controls during and after light exercise.

Analysis of our extensive cohort revealed that even light exercise elicits differences
in oxygenation responses and local hematocrit in patients with PCS compared to controls.
These differences appeared to become more pronounced during recovery after short exercise
and resulted in a lower rSO2 trend by the end of observation in PCS. Some of these
differences, most strongly the peak of O2Hbi, were associated with self-reported fatigue
questionnaires, further supporting the link between fatigue and oxygenation deficiencies
and mitochondrial and endothelial dysfunction.

NIRS is clinically used to assess oxygenation in patients in intensive care or during
cardiac surgeries, as it non-invasively and continuously measures the oxygenation state
of hemoglobin within tissues and the regional oxygen saturation [36,37]. In devices that
support two detectors per sensor, deep tissues can be selectively monitored according to the
modified Lambert–Beer Law. Thus, the depth of investigation is tied to the detector spacing,
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which can lead to difficulty in assessing patients with very low or very high BMI [19].
Correct sensor placement and secure adherence are necessary for stable measurements.
Furthermore, the absorption spectra of Hb and Mb overlap, so the variables reflect the
oxygenation state of both. In healthy individuals, however, Mb oxygenation is assumed
to remain at the same levels during exercise, so changes from the baseline oxygenation
are expected to reflect only hemoglobin oxygenation [19]. The most studied variable in
literature is rSO2, as only newer generation devices can differentiate between changes in
O2Hb, hHb, and cHb [38].

Previous investigations used incremental or maximal exercise [29,39], fractions of the
maximum voluntary contractions [40], or vascular occlusion [7] to measure muscle oxygen
consumption. Implementation of light exercise avoids triggering PEM. As the clinical
need for diagnosis and follow-up of patients with PCS and PEM is high and PEM worsens
abnormal muscle findings [4], implementation of a protocol, which even wheelchair-bound
PCS patients were able to follow, would be recommended.

In healthy individuals, during exercise, rSO2 decreases as an acute response to heavy
exercise. At high aerobic exercise rates, microvascular blood flow plateaus and dissociates
from arterial blood flow; in addition, the muscle oxygen extraction exponentially decreases
after sudden cessation of the exercise [20]. At rest, fractional O2 extraction is said to be
~25% and increases to ~75% during maximal exercise [20].

HHb increases sharply at the start of exercise and can be used as a semiquantitative
estimation of the difference between oxygen concentration in arteries and veins [20]. This
overshoot is increased in chronic heart failure and peripheral artery disease, leading
to impaired O2 diffusion due to decreased microvascular oxygen partial pressure [41].
In myopathies like mitochondrial myopathy or McArdle disease, this hHb overshoot
and hHb max are reduced, suggesting excess blood flow for the same work rate, key
pathological mechanisms of these diseases [42]. In the present cohort of patients with
PCS and PEM, a decreased hHbi max was observed, suggesting impaired muscle oxygen
extraction (Figure 2). It could be hypothesized that this might be due to endothelial or
mitochondrial dysfunction.

Muscle oxygen extraction follows an exponential decrease during recovery after
exercise. This reoxygenation has been postulated to be a tool for the evaluation of func-
tional oxidative performance, as it correlates well with creatine phosphate recovery, a
molecule classically used in physiology for the evaluation of skeletal muscle oxidative
metabolism [43]. This exponential increase of O2Hbi is likely reflected in our data as a
trend. In controls, this steepness was greater in the O2Hbi curve, and the amplitude at
the end of observation was higher, potentially suggesting impaired oxidative metabolism
during recovery within the PCS cohort. Slowed reoxygenation kinetics but no oxygena-
tion differences during exercise have also been observed in Friedreich’s ataxia [44] and
Fibromyalgia [45]. Friedreich’s ataxia is a genetic disease characterized by mitochondrial
damage with early symptoms of fatigue, spasticity, and muscle weakness. Fibromyalgia is
characterized by increased muscle pain, fatigue, decreased exercise tolerance, loss of con-
centration, and small fiber neuropathy. These findings were also observed in our patients
with PCS, further suggesting a link between impaired reoxygenation and PEM [4].

The multifaceted nature of self-reported fatigue is challenging as there is a lack of
objective diagnostic tools for visualization and quantification. Fatigue is reported to be
involved in diverse disorders (e.g., cancer) with known and partially unknown pathol-
ogy. PEM, as one feature of fatigue, is typically characterized by delayed fatigue and
characterizes a subgroup of patients with PCS and ME/CFS.

In addition, mental fatigue is one symptom of ‘brain fog’, which is associated with
immune-mediated disorders (e.g., systemic lupus erythematosus [46]). Considering this
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aspect, functional NIRS (fNIRS) could potentially be a viable option to measure mental
fatigue in patients with PCS. The use of fNIRS to measure fatigue has been reviewed by Yan
et al. [47]. Previously, most studies measured changes from the baseline during fatiguing
tasks. As PCS patients complain of chronic brain fog and are likely to have perfusion
alterations, it is unclear if simply measuring changes from the baseline would yield results.
Currently, most fNIRS devices are custom-built and incorporate EEG. EEG and the use of a
frequency domain NIRS emitter, capable of detecting the absolute tissue concentration of
hemoglobin, would help find a potential baseline and differences as well.

A previous study investigating muscle tissue oxygenation of the vastus lateralis in
patients with PCS was previously performed, but it did not show significance compared
to controls [48]. Yet, the cohort size was lower (36 PCS, 11 controls), and measurements
were conducted every 30 s during standing and walking (6 min walking test) and after
exercise [48].

In addition, previous data offer that quantification of tissue oxygenation might be best
reflected in the slopes of the oxygenation curves after vascular occlusion [7].

Interindividual variability is known to be high in NIRS measurements, largely due
to two factors: the limitation in applying the modified Lambert–Beer law is that each
individual’s optical scatter value is not known and is likely subject to alteration with
changes in blood flow. Further on, the relative contribution of arterial, venous, and capillary
hemoglobin to the measurement depends on the placement of the sensor on the individual
and reactive hyperemia during exercise [19].

In response to exercise perfusion, the total Hb concentration of the affected area is
increased, which is associated with an increase in total Hb (i.e., cHbi). Local hematocrit can
even change independently of blood flow during exercise, which is a phenomenon that is
not fully elucidated. As the data of the present study showed an increase of cHbi in controls
compared to patients with PCS, this could potentially reflect a slower capillary recruitment.
It can be hypothesized that this might be a consequence of microclot load, altered physical
blood cell characteristics, or endothelial dysfunction. Consequently, the impaired oxygen
uptake of the muscles might be mediated by defects in the cellular respiration of skeletal
muscle, reduced diffusion across the vascular wall, or a combination of these factors.

In summary, the data of the present study show that NIRS might be a potentially viable
tool to assess vascular dysregulation after exertion in patients with PCS. Further clinical
studies are necessary, investigating different light exercise durations and their long-term
recovery effects.

5. Conclusions
PCS is a challenging disorder, as the diagnosis lacks objective biomarkers up to

date. As the data of the present study offered that the subgroup of patients with PCS
and PEM showed impaired deoxygenation after light exercise, these data support the
hypothesis of ischemia as a pathogenetic factor in PEM. Visualization and quantification
of this restricted deoxygenation might offer a diagnostic tool in this subgroup of patients
with PCS, showing PEM as a major clinical symptom. In addition, this test setup might be
useful for bedbound patients.
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Abbreviations
The following abbreviations are used in this manuscript:

PCS Post-COVID-Syndrome
PEM Post-exertional malaise
NIRS Near-infrared regional spectroscopy
LC Long COVID
CF Chronic fatigue
GPCR-fAAb Functional autoantibodies targeting G-protein coupled receptors
Hb Hemoglobin
Mb Myoglobin
PCR Polymerase chain reaction
ME/CFS Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
LFT Lung function test
LVEF Left ventricular ejection fraction
Delta O2Hbi Change in oxygenated hemoglobin/myoglobin
Delta hHbi Change in deoxygenated hemoglobin/myoglobin
Delta cHbi Total change in hemoglobin/myoglobin
rSO2 Regional oxygen saturation
GAM Generalized additive model
CCA Canonical Correlation Analysis
AUC Area under the curves
rSO2_posAUC Positive area under the curve of regional oxygen saturation
rSO2_negAUC Negative area under the curve of regional oxygen saturation
t_min_rSO2 Time to minimum rSO2 during observation
t_max_rSO2 Time to maximum rSO2 during observation
max_rSO2 Maximum rSO2 value during observation
min_rSO2 Minimum rSO2 value during observation
Rng_rSO2 Range of rSO2 values across all time points
cHbi_posAUC Positive area under the curve of total change in cHbi
cHbi_negAUC Negative area under the curve of total change in cHbi
t_min_cHbi Time to minimum cHbi during observation
t_max_cHbi Time to maximum cHbi during observation
max_cHbi Maximum cHbi value during observation
min_cHbi Minimum cHbi value during observation
rng_cHbi Range of cHbi values across all time points
O2Hbi_posAUC Positive area under the curve of total change in O2Hbi
O2Hbi_negAUC Negative area under the curve of total change in O2Hbi
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t_min_O2Hbi Time to minimum O2Hbi during observation
t_max_O2Hbi Time to maximum O2Hbi during observation
max_O2Hbi Maximum O2Hbi value during observation
min_O2Hbi Minimum O2Hbi value during observation
rng_O2Hbi Range of O2Hbi values across all time points
hHbi_posAUC Positive area under the curve of total change in hHbi
hHbi_negAUC Negative area under the curve of total change in hHbi
t_min_hHbi Time to minimum hHbi during observation
t_max_hHbi Time to maximum hHbi during observation
max_hHbi Maximum hHbi value during observation
min_hHbi Minimum hHbi value during observation
rng_hHbi Range of hHbi values across all time points
hHbiex Deoxygenated hemo/myoglobin during exercise
LS means Least square means
CV1 Canonical variate 1
CanCrit Canadian Criteria for ME/CFS
FacitF FACIT fatigue score
FatigueSx Self-reported fatigue symptom
ChalderF Chalder fatigue scale
fNIRS Functional near-infrared regional spectroscopy
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