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Abstract

Background Hereditary spastic paraplegias (HSPs) comprise a group of genetic movement disorders characterized
by progressive spasticity and weakness of the lower limbs leading to gait deficits. Instrumented gait measures are
applied to quantify gait patterns in HSP objectively. However, there is no consensus on the most relevant HSP-specific
digital outcome measures for future clinical studies.

Aim This systematic review aims to summarize outcome measures of instrumented gait analysis in HSP patients,
focusing on both traditional motion capture (MOCAP) and inertial sensor systems.

Methods Following PRISMA-2020 guidelines, a comprehensive literature search was conducted in PubMed, Scopus,
and Web of Science to identify studies using instrumented gait analysis in HSP. Data on participant characteristics,
measurement systems, outcome measures, results, and risk of bias were systematically extracted.

Results In total, 38 studies published between 2004 and 2024, including 29 observational studies and 9 interven-
tional studies, met the inclusion criteria. Various gait parameters were used, including spatio-temporal, kinematic,
kinetic, and electromyography (EMG) parameters. Walking speed and range-of-motion (ROM) knee were identified

as important parameters for differentiating HSP patients from healthy controls, but these parameters are more general
rather than disease-specific. Foot lift, ROM foot, and gait variability are promising, more disease-specific parameters,
as they reflect disease severity and increased balance deficits. However, a deeper understanding of all gait parameter
categories is necessary, particularly for the upper body. Few studies explored sub-cohorts that exhibit different HSP
gait characteristics.

Conclusion While MOCAP provides valuable data in controlled hospital environments, there is a need for validated
mobile sensor systems capturing the gait patterns of HSP patients in real-life without supervision. Future research
must focus on better longitudinal multicenter studies with larger sample sizes to establish robust digital outcomes
and monitor disease progression and therapeutic response in HSP.
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Introduction

Hereditary spastic paraplegias (HSPs) are a hetero-
geneous group of rare genetic movement disorders
with less than 10 cases per 100.000 individuals [1].
They are mainly characterized by progressive spastic-
ity and weakness of the lower limbs, often resulting in
progressively aggravating gait deficits [2, 3]. HSPs are
clinically divided into two forms: a pure and a compli-
cated form. The complicated HSPs are characterized by
additional neurological or non-neurological symptoms
(e.g., dementia, muscle atrophy, ataxia) [1, 4]. More
than 90 genetic types of HSP have been described [1].
The age of onset varies from infancy to late adulthood
with a balanced gender distribution. To date, treatment
of HSP is limited to symptomatic treatment, including
medications (e.g., botulinum toxin injections), orthot-
ics (e.g., ankle—foot orthoses or electrical stimulation),
and physical therapy [1].

The most commonly used scale to measure disease
severity and progression is the Spastic Paraplegia Rating
Scale (SPRS) [5, 6]. Functional gait tests (e.g., 10 m walk-
ing test, 2 min walk test) [6] provide semi-quantitative
outcome measures to assess gait functions. They are
inexpensive and easy-to-apply. The outcome measures of
functional gait tests highly correlate with the SPRS score
[7] since the 10 m walking test and 2 min walk test evalu-
ate walking speed and endurance, respectively. As the
SPRS primarily assesses “Walking distance without pause,
‘Gait quality, ‘Maximum gait speed; and ‘Climbing stairs,
functional gait tests do not provide added value. In par-
ticular, distinct features, including subtle gait deficits not
observable by clinical raters, cannot be detected [8—10].

Using instrumented gait analysis, HSP-specific gait pat-
terns and subtle gait deficits may be objectively quanti-
fied. The gold standard in instrumented gait analysis is
three-dimensional motion capture (MOCAP). These
systems are highly accurate and precise but expensive,
require a time-consuming setup and data recording pro-
cess [11], and are challenging to integrate into clinical
routine examinations [12]. In contrast, there are instru-
mented gait analysis systems using inertial sensors or
instrumented mats, which are mobile, easy-to-apply, and
provide results after a short period. Recently, validated
inertial sensor systems have gained importance for gait
analysis as an alternative to MOCAD, as they also provide
the ability to collect real-life mobility data [11]. Addition-
ally, instrumented gait analysis may be used to discrimi-
nate between HSP and cerebral palsy (CP) [13] and to
quantify gait changes in prodromal HSP gene carriers
[14]. For neurodegenerative diseases such as HSP, elec-
tromyography (EMG) combined with kinematic, kinetic,
and spatio-temporal parameters is an essential measure
of instrumented gait analysis [15] as it objectively detects
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muscle stiffness and spasticity, which is of major impor-
tance for interpreting gait deficits.

However, there is no structured overview available that
focuses on digital outcome measures of instrumented
gait analysis in HSP patients. Existing reviews on instru-
mented gait analysis did not include inertial sensor sys-
tems [16]. Four reviews focus on different treatment
methods for HSP patients and include results from gait
analysis as an outcome measure [6, 17-19]. The latest
review focused on general outcome measures and bio-
markers for HSP [6]. Therefore, this systematic review
aimed to summarize the outcome measures of instru-
mented gait analysis ranging from inertial sensors to
different MOCAP systems and identify the most impor-
tant HSP-specific digital outcomes based on the existing
literature.

Methods

The systematic review was planned, conducted, and
reported according to the PRISMA-2020 statement
guidelines for reporting systematic reviews [20].

Eligibility criteria and search strategy
A literature search was performed in the 3 databases:
PubMed, Scopus, and Web of Science in March 2025,
including all articles published until March 24, 2025,
without defining a starting date. Solely English-language
and original research articles were included. Conference
abstracts, review articles, data articles, commentaries,
grey literature, and study protocols were excluded. In
addition, reference lists of included and relevant review
articles were searched.

The search string was developed based on the PICO
framework and was used for each database. The PICO
framework included:

— DPopulation: patients with pure or complicated HSP

— Intervention: detect gait patterns using instrumented
gait analysis

— Comparison: healthy controls or no intervention
group

— Outcome: gait parameters or other outcome meas-
ures of instrumented gait analysis

The search strategy was a combination of HSP terms
AND gait terms AND measurement terms (Fig. 1). For
PubMed, an additional MeSH term ("gait analysis") was
used. The search string for each database is shown in
Table S1.

Selection process
Two independent researchers conducted a literature
search based on the inclusion and exclusion criteria. All
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Fig. 1 Search strategy. In Web of Science and Scopus the same search strategy was used, for PubMed additionally the mesh term "gait analysis"

was included

studies were screened for inclusion by title/abstract and
then by full text. In very rare cases of disagreement, a
consensus was reached through discussion with an inde-
pendent third researcher. Eligible studies had to meet the
following inclusion criteria: studies with HSP patients of
all ages and genders, and an instrumented gait analysis
was performed to detect gait-related metrics or improve-
ments of gait patterns. We excluded single case reports
and case series, studies that did not primarily focus
on HSP (e.g., mixed cohorts with CP), studies that did
not focus on gait (e.g. balance, reflex activity, or move-
ment activities other than gait), and studies that did not
use instrumented measures (e.g., stopwatch-measured
gait test). Importantly, we excluded case and case series
reports (study cohort: n<10) as the cases were inter-
preted individually instead of performing group analyses,
resulting in limited generalizability and the risk of over-
interpreting findings from single cases in very heteroge-
neous disease cohorts.

Data collection process and data items

Two researchers independently extracted data from the
articles using a spreadsheet. Again, discrepancies were
solved through discussion between the researchers and,
if necessary, a third independent senior researcher was
included. Information about author/year, participant
characteristics, measurement system, outcome measures,
and results. Additionally, the gait metrics were catego-
rized into several groups according to the type: temporal,
spatial parameters, kinetic, kinematic, electromyogra-
phy (EMG), other, and unknown parameters. Parameters
related to time and additional distance (spatio-temporal

parameters) (e.g., walking speed) were categorized under
the spatial parameter category. The type 'unknown’ was
defined for parameters that were measured but not
explicitly mentioned in the study, and ‘other’ summa-
rizes very specific parameters that could not be classi-
fied in any of the defined categories mentioned above. It
is important to note that for all parameter types, solely
parameters measured during walking were extracted
from the articles. For instance, one study assessed EMG
during muscle stretching, which was not included in this
analysis. Most studies did not provide a parameter defini-
tion. For this reason, parameters with a similar meaning
were grouped (e.g., trunk tilt, trunk lean, trunk flexion,
or trunk and thorax, or lower leg and shank). Also, the
nomenclature of the gait parameters in studies differed
substantially. Therefore, we used a standardized ter-
minology based on Wolf et al. [21] and Perry [22] (e.g.,
max hip FlexExt sw refers to the maximum hip flexion—
extension angle during the swing phase). Additionally, it
was noted whether the gait parameters significantly dif-
ferentiated HSP patients from controls in observational
studies, between treated/untreated groups, before/after
treatment in interventional studies, or if no statistical test
was performed.

Study risk of bias assessment

The quality of the included studies was evaluated using
the QUADAS-2 tool (Quality Assessment of Diagnos-
tic Accuracy Studies) [21]. This tool consists of four key
domains: patient selection, index test, reference standard,
and flow and timing. Each domain was assessed in terms
of risk of bias and concerns regarding applicability with
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the signaling questions adapted to align with the aim of
this systematic review. In detail, the domains included
(a) patient selection: e.g., range of disease severity, exclu-
sion criteria, (b) index test: instrumented gait analysis,
(c) reference standard: SPRS or modified Ashworth scale
(MAS), and (d) flow and timing: e.g., index test and ref-
erence assessed at the same time point. Afterward, two
independent researchers performed the quality assess-
ment for all included studies, categorizing each domain
as having a "low; ’high; or "unclear’ risk of bias and appli-
cability concerns [21]. Discrepancies were resolved
through discussion to achieve consensus.

Results

Study selection

Database searching in PubMed, Scopus, and Web of Sci-
ence resulted in a total of 1.522 articles. After removing
duplicates, 891 articles were screened for title/abstract
and excluded in case of single case reports and case
series, studies that did not primarily focus on HSP, stud-
ies that did not focus on gait, and studies that did not use
instrumented measures. The remaining 78 articles were
checked for eligibility. In total, 38 articles were included
in the review, as 40 were removed because they did not
meet the inclusion criteria. The PRISMA flow diagram in
Fig. 2 shows the detailed selection process.

Study characteristics

The 38 included articles were published between 2004
and 2024, comprising 29 observational studies and 9
interventional studies. Over half of the studies (n=25)
included a healthy control group, while 7 studies involved
other diseases, with CP being the most common. The
mean sample size across the studies was 29 HSP patients,
ranging from 6 to 112. The mean age of the HSP patients
ranged from 9 to 58, except for four studies that did not
provide the mean age of participants. Of all studies, 31
included solely adults, 6 included children and young
adults, and the remaining paper included a mixed cohort
of adults and children [23]. Further details on each study
are presented in Table 1. A variety of systems have been
used for instrumented gait analysis. The majority of stud-
ies used an MOCAP system (26 studies), while one study
used an instrumented pressure mat [24], and another
used a baropodometric platform [25]. Ten studies used
inertial measurement unit (IMU)-based systems, rang-
ing from one to three sensors. Seven of these systems
used two sensors at the feet, one used multiple sensors
on the lower back and shanks [26], another one on the
lower back and feet [27], and one used a single lower
back sensor [12]. Out of all the studies included, only
three investigated walking on a treadmill [28-30]; all oth-
ers researched overground walking.
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The interventional studies investigated a variety of
interventions, including botulinum toxin type A [31],
a combination of botulinum toxin and daily stretching
exercises [22, 24], a combination of botulinum toxin A
and physiokinesiotherapy [25], treatment with methyl-
phenidate [29], gait-adaptability on C-Mill [32], hydro-
therapy, Functional Electrical Stimulation (FES) [33], and
a startling acoustic stimulus simultaneously paired with
an imperative stimulus [34].

Risk of bias in studies

A summary of the quality of the included studies, rated
by the QUADAS-2 scale, is presented in Fig. 3; details
by study are given in Table S2. In total, 7 out of the 38
included studies were rated ‘low’ in all 7 domains con-
cerning both risk of bias and concerns regarding appli-
cability. In contrast, one study was rated with ‘high’
or ‘unclear’ in all domains. For another 15 studies, 6
domains were rated ‘low’ and the remaining domain
‘unclear’ or ‘high! Further, 7 studies were identified in
which 5 domains were rated ‘low’ and the remaining 8
were assessed with low” quality in 2 or 3 domains.

Eleven studies were classified as having a ‘low’ risk of
bias in all assessed risk of bias domains. Patient selection
had the highest risk of bias with 58% of the studies show-
ing a ‘low’ risk of bias, 25% ‘high’ and the remaining 17%
‘unclear’ The index test of the risk of bias assessment was
the domain that had either a ‘low’ or ‘high’ risk of bias.

Twenty-three studies were assessed as having ‘low’
concerns regarding applicability across all correspond-
ing domains. ‘High’ concerns regarding applicability
occurred in the domain of patient selection (25%); for the
other two categories, most of the studies had ‘low’ con-
cerns or were rated as ‘unclear’

Digital outcome measures

The digital outcome measures observed in HSP patients
were categorized into several groups: spatial-, temporal-
parameter, kinetic, kinematic, EMG, other [e.g., total
energy consumption (TEC)], and unknown parameters.
Figure 4 provides an overview of the number of stud-
ies utilizing parameters of each type. These parameters
were analyzed separately for both observational and
interventional studies. Parameters classified as ‘other’
could not be assigned to any of the predefined groups.
The ‘unknown’ category occurred in two studies [9,
35]. Among observational studies, spatial and temporal
parameters were the most commonly used, with 23 out of
29 studies incorporating both. In interventional studies,
spatial parameters were the most frequently reported, as
they were included in every study except one.
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Identification of studies via databases and registers

< Records identified from Databases

s (n=1.522):

5§ PubMed (n = 297)

s Scopus (n = 789)

z Web of Science (n = 436)
Records screened (title/abstract)
(n=891)

ED

'g Records sought for retrieval

o (n=78)

(&)

(7]

Full-text articles assessed for eligibility
(n=78)

8

S Studies included in review

"g (n=38)

Records removed before screening:
Duplicate records removed (n = 631)

—

) Records excluded:
Abstract screening (n = 891)

Records not retrived

(n=0)

Records excluded (n=40):
—_— No original article (n=13)
Not instrumented (n=15)
Not focused on HSP (n=4)
Not focused on gait (n=3)
Case (series) reports (n=5)

Fig. 2 PRISMA flow diagram. This diagram shows the selection process of the included studies. Citation searching was not added to the Figure,

as no additional articles were found through this method

Observational studies

A total of 29 observational studies were conducted,
examining the parameters presented in Fig. 5. The
two most frequently reported temporal parameters
were stride time (reported in 11 studies) and cadence
(reported in 10 studies), followed by swing and stance
duration (each reported in 8 and 9 studies, respectively).
Notably, 44% of the temporal parameters were solely
reported once. Among the spatial parameters, walking

speed was the most commonly used, observed in 20 out
of 23 studies that reported spatial parameters, followed
by step width, reported in 10 studies. The majority of
spatial parameters were only observed once. Regard-
ing kinematic parameters, 17 different angles, velocities,
and positions were measured, with generic parameters
being calculated for each. The most frequently observed
ones were knee, ankle, and hip angles, included in 15,
14, and 13 studies, respectively. For kinetic parameters,
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(b) applicability

Flow and timing
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Fig. 3 Summary of the quality of all included studies using the QUADAS-2 tool (a) risk of bias (b) concerns regarding applicability. QUADAS-2

Quality Assessment of Diagnostic Accuracy Studies

10 different parameters were measured. The most com-
monly used kinetic parameters were ankle power and
knee moment, each reported in three studies. In terms of
EMG, 12 different muscles were investigated. Most fre-
quently, the following 6 muscles were measured: rectus
femoris, vastus lateralis, tibialis anterior, gastrocnemius
medialis, biceps femoris, and soleus.

Interventional studies

The 9 interventional studies included various parameter
types: 10 different temporal parameters, 8 spatial param-
eters, 3 different joint angles (kinematic parameters),
moments (kinetic parameters), and 4 different muscles
(EMG). These individual parameters are presented in
Fig. 6. The most frequently observed temporal parameter
was cadence, reported in 3 [29, 32, 36] out of 5 studies
that included temporal parameters. All other temporal
parameters, except stride time (n=2) [31, 32], were only
reported in one study. Walking speed, measured in 7
out of 8 studies that included spatial parameters, was
the most frequently reported spatial parameter. Regard-
ing the kinematic parameters, 3 studies reported generic
parameters for the hip, knee, and ankle angles. Concern-
ing kinetic parameters, one study reported parameters of
the hip, knee, and ankle [36]. One study measured EMG
[34], but the authors did not include muscle activity.
Instead, they focused on calculating muscle offsets dur-
ing gait initiation.

HSP-relevant digital outcome measures

In the following, solely parameters were reported that
showed significant differences in at least one study (i)
between HSP patients and healthy controls (observa-
tional studies), (ii) between treated and untreated groups
(interventional studies), or (iii) comparing before and
after treatment (interventional studies).

Observational studies

A total of 365 different gait parameters were reported
in observational HSP studies, but only 214 were used
to compare HSP patients and healthy controls (see
Table S3). Results show that 123 of 214 parameters sig-
nificantly differentiated between both groups (Fig. 7).
Walking speed was identified as the most frequently
differentiating parameter in 9 studies [14, 23, 27, 30, 35,
37-39], followed by step width in 7 [28, 30, 35, 37, 39—
41] and knee range-of-motion (ROM) in 6 [23, 30, 38,
41-43]. Spatio-temporal parameters often presented
significant results across multiple studies. Many kin-
ematic measures were used, with over 26% providing
significant results in more than one study. In contrast,
parameters related to kinetics, EMG, and others dif-
fered significantly solely in one study.

Interventional studies

Among the 44 gait parameters measured in interven-
tional studies, 12 demonstrated a treatment effect
through various interventions (overview in Table S4).
Walking speed was the most frequently reported
parameter, showing improvements in 6 [22, 24, 25, 33,
36] out of 9 interventional studies. All other parameters
showed improvements in only one study. A detailed
overview is presented in Fig. 8.

Discussion

This systematic review aimed to summarize the out-
come measures of instrumented gait analysis, including
inertial sensors and MOCAP systems, and to identify
the most important HSP-specific digital outcomes. To
date, instrumented gait analysis has been used in obser-
vational and interventional studies in adults and chil-
dren, providing different metrics to characterize gait
patterns in HSP patients. In the following, we describe



Koch et al. Journal of NeuroEngineering and Rehabilitation

(2025) 22:129

Page 16 of 25

Temporal
Spatial
Kinematic
Kinetic
EMG
Other
Unknown

Hmm observational
interventional

8 10 12 14 16

18 20 22 24 26 28

Number of Studies
Fig. 4 Gait parameter types used in the different interventional and observational studies; ‘other”: parameters which could not be classified in one
of the categories; 'unknown”: more parameters were measured, but they were not explicitly mentioned. EMG Electromyography
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Fig. 5 Single gait parameters of all parameter types included in the observational studies. As parameters categorized in the ‘others’ group were
used sporadically in a few studies, they were not displayed in this figure. Red lines indicate the number of studies that included the specified
parameter type in total. For spatio-temporal parameters, no derived parameters are displayed. Kinematic, kinetic, and EMG parameters were
grouped based on the involved joint/segment/muscle. EMG Electromyography, SPcmp spatial variability composite measure, max maximum, A area

under the curve, GRF ground reaction force, msw mid swing phase

the most robust parameters and identify urgent needs
for future studies.

Relevance of stationary and mobile systems for gait
analysis

Most studies (n=26) were conducted in a controlled lab-
oratory environment, using different stationary MOCAP
systems. Significantly fewer studies (n=10) investigated

different mobile sensor systems. MOCAP systems offer a
wide range of parameters based on recordings in a sta-
tionary clinical setting. As a result, MOCAP systems
are essential for precisely characterizing HSP gait pat-
terns. However, they are limited to the hospital setting,
whereas wearable sensor systems have the potential to be
used in the home environment of HSP patients, reflect-
ing real-world gait patterns. Interestingly, one study
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Fig. 6 Single gait parameters of all parameter types included in the interventional studies. Red lines indicate the number of studies that included
the specified parameter type in total. For spatio-temporal parameters, no derived parameters are displayed. Kinematic, kinetic, and EMG parameters
were grouped based on the involved joint/segment/muscle. Nr. number, CV coefficient of variation

simulated real-life walking in a hospital setting [27]; how-
ever, this approach provides limited relevance for gait
patterns recorded in the patients’ home environment.
Consequently, mobile, sensor-based systems are urgently
needed, but they must provide technically robust and
clinically meaningful measures. Hence, sensor-based
systems need to undergo stringent technical and clini-
cal validation. A proposed single-sensor approach seems
to offer a reliable method for identifying steps in HSP
[12]. Another IMU-based system with sensors fixed on
the instep of both feet was technically and clinically vali-
dated [43-45]. The temporal parameters appear to validly
reflect the gait impairment of HSP patients in the hospital
[46]. Significant correlations between temporal param-
eters, including coefficients of variation (CV)s and the
SPRS, were detected, as well as with SPRS gait subitems,
and all parameters were also significantly correlated with
the Falls Efficacy Scale (FES-I) (patient-reported fear of
falling) [46]. A three IMU-sensor based approach also
showed recently in a cohort of SPG7 patients additional
correlations between kinematic parameters of the lumbar
spine and feet with the SPRS [27], however, the sensor
system was not adapted for HSP.

Most IMU approaches, except for 3 studies [9, 26, 27],
have solely considered temporal parameters and were
not validated for other parameters in HSP. Two studies
analyzed more than one kinematic parameter using an
approach based on three IMU sensors [26, 27]. One of the
studies has also shown that the spatio-temporal and kin-
ematic parameters, previously observed to differentiate

between HSP and healthy controls, demonstrate excel-
lent test—retest reliability [26]. The other study analyzed
kinematic parameters based on sensors placed on the
lumbar spine and feet, showing that an additional sensor
may provide further information [27]. These results indi-
cate that additional IMU-based parameters require tech-
nical and clinical validation in future studies.

Previous studies have shown significant correlations
between spatio-temporal and kinematic parameters and
the SPRS [14, 27, 42, 44, 46, 47]; the single parameters
are presented in Table S5. These studies demonstrate
the clinical relevance of instrumented gait analysis and
the added value for HSP, indicating that capturing those
parameters in hospital settings and especially monitor-
ing them in everyday life is meaningful. This is of particu-
lar importance as there is a lack of studies investigating
daily life mobility in HSP. In addition, except for the study
mentioned above, there is a lack of evidence for the
potential need to use multiple sensors to better reflect
full-body movements instead of monitoring impaired
movement patterns from a single body position. This
aspect should be investigated in future studies.

HSP relevant digital outcome measures

Numerous studies have used instrumented gait analysis
in HSP (76% observational, 24% interventional) to char-
acterize gait patterns [29, 35, 39-41, 48], subgroup HSP
patients [23, 41, 47, 49, 50], distinguish HSP patients
from other diseases with similar characteristics [13, 23,
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35, 38, 39, 51], and evaluate the effect of treatment [22,
24, 25, 30—34, 36].

Spatio-temporal and kinematic parameters

Based on the included studies, the spastic gait pattern of
HSP patients significantly differs from those of healthy
controls in spatio-temporal and kinematic parameters.
HSP patients, both children and adults, show reduced
walking speed, stride length, cadence, and ROM of the
distal joints and segments (such as sagittal ankle and
knee angles) compared to healthy controls [29, 35, 41, 42,
48]. From a clinical perspective, it is reasonable that these
parameters distinguish between HSP and healthy con-
trols since, e.g., reduced walking speed is a consequence
of impaired walking, and a decreased ROM knee reflects
leg spasticity in HSP patients.

Walking speed was identified in 9 [14, 23, 27, 30, 35,
37-39] out of 20 studies as an important parameter to
differentiate between HSP patients and controls. Four
studies found no difference but used speed-matching
to avoid gait speed as a confounding factor [40-42, 48].
Since walking speed affects gait patterns, including spa-
tio-temporal parameters, joint kinematics, and joint
kinetics [52], it should be accounted for when compar-
ing healthy controls and HSP patients. This consideration
was made in one interventional and six observational
studies [40-42, 47, 48, 51] and should be taken into
account while interpreting the results. However, this can
be challenging due to the variability in walking speed
within the patient groups.

The ROM knee was the most frequently observed
parameter distinguishing HSP patients from healthy con-
trols, with Martino et al. [47] highlighting its importance

for characterizing HSP gait. Marsden et al. [48] observed
that adults with HSP walk stiff-legged with less knee
flexion during the swing phase. Additionally, ten differ-
ent knee parameters significantly distinguished patients
from controls. However, ROM ankle (n=8), ROM hip
(n=8), and ROM pelvic tilt (n=7) were analyzed almost
as frequently as ROM knee. However, the ROM ankle
seems less relevant as the results were contradicting. In
contrast, ROM trunk Flexion/Extension was significantly
increased in 4 studies [37, 38, 41, 53]. Increased trunk
movements were also observed in frontal and transversal
planes [41, 53], indicating that HSP patients compensate
for altered lower body movements with trunk and pelvic
movements [38]. Interestingly, ROM hip did not distin-
guish between groups, although studies noted differences
in specific hip angle parameters (see Fig. 7).

These findings indicate that novel parameters are
needed for characterizing the gait deviation of the hip,
such as the max hip Flexion/Extension swing phase and
min hip Flexion/Extension stance phase, as both differen-
tiated three times. In 5 out of 6 studies, the ROM pelvic
tilt distinguished between HSP patients and healthy con-
trols. Notably, the sole study that showed no differences
involved adults [41], while the others involved children
[35, 38, 39, 53] or a mixed cohort [23]. Figure S1 shows
kinematic variables separately for children and adults,
indicating that a larger variety of kinematic parameters
were measured for children. Conversely, more spatio-
temporal parameters were observed for adults (Figure
§2). It is important to note that children walk at a slower
pace with shorter stride lengths than adults [54], which
may also influence kinematics. Moreover, the progres-
sion and clinical characteristics of childhood-onset HSP
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differ from those of adult-onset HSP. This indicates the
need for more detailed studies of spatio-temporal and
kinematic parameters in both adults and children.

Interestingly, reduced ROM foot segments, as well as
decreased foot lift and max ground clearance [14, 42],
appear to be clinically relevant parameters. Lassmann
et al. [14] reported reduced ROM foot segment and max
ground clearance even in prodromal HSP patients. In
total, numerous kinematic parameters were measured;
however, out of 251 kinematic parameters, only 39 (14%)
were calculated more than twice (Table S3), confirming a
lack of clearly defined outcome measures. These findings
indicate that ROM knee and foot are crucial digital meas-
ures for HSP. However, to establish potential endpoints
for clinical studies, it is necessary to conduct multicenter
studies, acknowledging the limited sample sizes of this
rare disease. Notably, three more recent studies used a
multicenter design to reach higher statistical power [27,
31, 46].

In a longitudinal study, Loris et al. [55] observed that
some temporal parameters appear to reflect disease pro-
gression. Stride time, stance time, and relative swing
duration demonstrated significant correlations with the
sum of the functional subitems of the SPRS [55]. Apart
from this study, only one case series focused on lon-
gitudinal instrumented gait data. They observed that
early-onset gait deviations tended to improve until ado-
lescence and decline in adulthood [56]. Two additional
studies analyzed longitudinal data in a sub-cohort of
their patients [44, 46]. A more recent study observed that
sensor-based gait parameters reflect disease progression
in a cohort of 11 HSP patients [46]. In general, there is
a huge lack of longitudinal studies using instrumented
gait analysis in HSP. Future investigations should focus
on detecting disease progression and therapy response in
repeated measure designs as well as stringent application
of patient and clinician reported anchor parameters.

EMG and kinetic parameters

EMG and kinetics were not frequently studied in HSP.
Only 6 out of 29 observational studies examined EMG
patterns [35, 40-42, 47, 57] and kinetics [33, 35, 37, 39—
41]. One EMG study included children but described the
raw data only, reporting decreased rectus femoris acti-
vation in children with HSP [35]. EMG@G studies in adults
found increased and premature calf muscle activity dur-
ing the first half of stance [57]. In addition, significantly
increased co-activation of the antagonistic ankle [35, 40—
42, 47, 57] and knee muscles [40] correlated with Ash-
worth scores, indicating a link to lower limb spasticity
[40]. Complex methods were used in two studies to ana-
lyze spinal locomotor output [47] and assess locomotor
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coordination [42] in HSP to better understand its abnor-
mal locomotor pattern.

Concerning kinetics, solely moment and power of
the ankle, knee, hip, and area under the ground reac-
tion force curve (A_grf) were considered, whereas these
parameters were observed only once. The findings show
a tendency of lower values for A_grf [40] and lower ankle
power in different subphases [35, 39, 48]. Kinetics are
essential for a complete understanding of gait dysfunc-
tions [58]. When combined with kinetics and kinematics,
EMG may be a valuable tool for identifying the most effi-
cient treatment method [15]. Further studies are needed
to understand the impact of EMG and kinetics in adults
and children with HSP.

Relevance of subgrouping/clustering in HSP

Gait parameters were not solely used to compare HSP
patients with healthy controls, but interestingly also for
subgrouping and gait pattern classification due to the
heterogeneity of the disease [1]. Wolf et al. [23] con-
ducted a cluster analysis on the sagittal gait kinematics
of HSP and CP patients, resulting in five clusters: crouch
gait) recurvatum gait, ’stiff knee gait, ’jump knee gait; and
‘norm-like gait’ These clusters were similar to the CP gait
classification system by Sutherland and Davids [23, 59].

Pulido-Valdeolivas et al. [50] conducted a clustering
analysis and identified six walking patterns in children
with HSP. Five of these patterns were similar to the find-
ings of Wolf et al. [23]. Mean pelvic tilt and hip flexion
at initial contact were the most important parameters
for differentiating patterns. In the study of Joseph et al.
[49], two physiotherapists were able to classify adult
HSP patients into the groups proposed by Wolf et al. [23]
and showed significant differences in ankle, knee, and
hip angles using Statistical Parametric Mapping (SPM)
between groups [49]. Serrao et al. [41] identified three
distinct HSP walking patterns based on ROM differ-
ences: subgroup one with reduced ROM hip, knee, and
ankle; subgroup two with reduced ROM knee and ankle;
and subgroup three with increased ROM hip. These
subgroups also differed in spatio-temporal parameters
and correlated with disease severity (SPRS) [41]. Mar-
tino et al. [47] used the identical subgrouping method
and observed subgroup differences in the spinal maps of
motor neuron (MN) activation.

Ollenschléger et al. [9] used a machine learning classi-
fier to detect reduced foot elevation in adults with HSP,
achieving accuracy close to clinical assessments (88%).
Van de Venis et al. [60] grouped patients by increased
trunk movements and found an association of these with
reduced balance capacity. However, in a more recent
study, the same authors did not observe differences in
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gait parameters between fallers and non-fallers, whereas
distinctions in clinical and functional scales existed [28].

Due to the phenotypic heterogeneity of the disease,
subgrouping of HSP patients may be a useful method to
comprehensively characterize HSP-specific gait patterns.
This method could also help to define an individualized
treatment for the affected patients and the best treatment
option for each patient group. Previous research indi-
cated that a classification system resembling an adapted
CP classification may be appropriate for HSP as well.

Instrumented gait patterns differentiate disease entities
Patients with childhood-onset HSP may resemble those
with CP, leading to a misdiagnosis during childhood [1,
13, 35, 39]. However, HSP is progressive, and treatment
approaches may differ [23, 38]. Hence, instrumented gait
analysis might be a useful tool to distinguish between
these diseases, especially when genetic analyses remain
negative. Several studies have reported gait parameters
distinguishing HSP from CP [13, 23, 35, 38, 39], cerebel-
lar ataxia (CA), and Parkinson’s disease (PD) [51].

Cimolin et al. [39] aimed to assess differences between
children with HSP and CP. Interestingly, they observed
differences in the knee and ankle joints but not in spatio-
temporal parameters. Both groups showed knee hyper-
extension in midstance, but solely the HSP group had a
prolonged stance duration [39]. Piccinini et al. [35] also
observed significant differences in knee kinematics and
additional knee kinetics, supporting the importance of
the knee in differentiating these two pathologies. Wolf
et al. [23] performed a cluster analysis and identified
some gait characteristics indicative of HSP: prolonged
hip extension, knee hyperextension, ankle plantar flex-
ion, and large trunk tilt velocities. However, they could
not clearly distinguish HSP from CP patients due to the
heterogeneity of these diseases. Additionally, they found
that more HSP patients showed a recurvatum knee (e.g.,
prominent knee extension or hyperextension in mid-
stance) compared to CP [23].

Importantly, in contrast to the previous studies, Bon-
nefoy-Mazure et al. [38] included upper body motions
in their research and found that HSP patients compen-
sated with a rapid spine tilt, while CP patients used their
arms, resulting in increased shoulder elevation and elbow
flexion compared to HSP. MacWilliams et al. [13] used
a machine learning classifier to differentiate between
patient groups (HSP and CP) based on gait and physical
exam variables, achieving high specificity and sensitivity.
In contrast to the other studies, Serrao et al. [51] com-
pared gait patterns in patients with degenerative neuro-
logical diseases (HSP, CA, and PD) and found that the
ROM ankle was included in all clusters when clustering
sets of parameters for differentiating diseases.
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In summary, knee kinematics and upper body motions
play a major role in differentiating these diseases; how-
ever, due to small sample sizes, more research, especially
in upper body motions, is needed. These studies indicate
that instrumented gait analysis is an important objective
measure to detect intra- and inter-disease differences.

The role of instrumented gait measures in interventional
studies

Instrumented gait analysis was also used to evaluate
the effect of treatment in HSP. However, 24% (n=9) of
the included studies only had an interventional study
design, and none involved children. While 365 differ-
ent parameters were used in observational studies, only
44 were measured in interventional (8%) studies, and
only one included EMG [34] and kinetics [36]. More
interventional studies were performed; however, they
did not use instrumented gait measures [16], potentially
because no clinically relevant digital outcome parameters
are defined yet. Ibrahim et al. [31] used IMU-based gait
metrics in a multicenter interventional study represent-
ing a promising example for future trials. This multi-
center study involving the largest interventional cohort
of 56 HSP patients found significant correlations between
gait parameters and clinical scores regarding treat-
ment effects and, for the first time, predicted treatment
response using machine learning models.

In the 9 interventional studies, 27% of the measured
parameters showed improvement. Given that progres-
sively worsening gait deviations are one of the main
symptoms of HSP [2, 3], gait analysis has the potential to
be a valuable objective indicator of improvement in inter-
ventional studies. Future research should, therefore, aim
to further identify clinically relevant outcome measures.
However, since those studies were conducted with small
sample sizes (average of 21), the strength of expression
of these gait parameters is limited and should be inter-
preted carefully. Therefore, further studies are needed
to define relevant digital outcome measures for HSP as
potential endpoints for clinical studies.

In addition, simulations of HSP gait may be used to
predict interventional outcomes, as a recent study did
a computer simulation with a neuro-muscular model of
human walking [61]. These are promising steps toward
clinically relevant digital gait outcomes in HSP.

Quality of the included studies

The quality of the studies was assessed using the validated
QUADAS-2 tool. The highest risk of bias was obtained
in the domain of patient selection, mainly because of
an unknown (n=10) or slight (n=7) disease severity.
Slight was defined as SPRS< 16 [62] or MAS < 1.5 [30] as
defined. The MAS was used if no SPRS was applied, as
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the MAS also appears to be suitable for classifying the
severity of spasticity in HSP [30].

The ‘high’ risk of bias in the reference standard domain
was primarily due to instances where the SPRS or MAS
was either not assessed or not reported. In the flow and
timing domain, an ‘unclear’ risk of bias was either due to
the missing reference standard test or insufficient infor-
mation regarding the order or execution of the gait test.
The ‘high’ risk in the index test domain was associated
with a lack of parameter explanation or the conduction
and analysis of the gait assessment (e.g., only strides of
one side were used or walking on a treadmill).

In conclusion, most of the included studies were rated
as having a low’ risk of bias and low concerns regarding
applicability. Therefore, the general quality of studies in
the investigated research field is good. However, due to
distinct studies revealing high concerns, the interpret-
ability of the results is limited.

Limitations

This review has some limitations that should be consid-
ered when interpreting the findings. Some of our exclu-
sion criteria may have excluded potentially relevant
studies, as we did not consider case and case series
reports. For feasibility reasons, we limited the included
records to articles solely written in English. Further, the
sample size of the included studies was rather small, as
79% of the studies consisted of less than 50 participants,
but this was expected for a rare disease such as HSP.
Additionally, different instrumented systems, disease
stages, and genotypes were included. Some papers con-
sisted solely of HSP patients with a pure form, others with
mixed cohorts, contributing to the heterogeneity of the
results described above. Notably, some papers excluded
patients who were not able to walk without walking
aids, so more advanced disease stages were excluded in
more than 50% of the studies. In addition, several stud-
ies were conducted by identical working groups, so the
patient cohorts in different studies could include identi-
cal patients. Since patient cohorts (high risk of bias for
patient selection), test settings (e.g., pre-defined gait
speed vs. preferred gait speed), and equipment for instru-
mented gait analysis were highly heterogeneous, it was
decided to report the results without performing a meta-
analysis to avoid inadequate interpretations. The risk of
bias assessment in this review was focused on the diag-
nostic tool (instrumented gait analysis) rather than the
study designs of the included studies, and the systematic
review was not prospectively registered. We decided not
to use the Grading of Recommendations, Assessments,
Development and Evaluation (GRADE) system to detect
the quality of evidence in existing literature, as this
method appeared not appropriate for our aim. Future
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systematic reviews with meta-analysis should consider
using GRADE.

Conclusion and recommendations for further
research
In conclusion, this systematic review highlights the
important role of digital outcome measures of instru-
mented gait analysis in understanding and character-
izing gait patterns in HSP. The findings indicate that
while stationary MOCAP systems provide insights into
the gait characteristics of HSP in controlled lab environ-
ments, there is a need for validated inertial sensor sys-
tems to capture daily life walking patterns. It appears that
gait analysis is a promising tool for detecting intra- and
inter-disease differences in HSP. Spatio-temporal and
kinematic parameters are widely used and have shown
significant correlations with disease severity. Notably,
three key parameter groups are recommended: (i) evi-
dence-based: walking speed and ROM knee, since they
have been identified to distinguish HSP patients from
healthy controls, but it should be considered that both
parameters are rather general than disease-specific and
that a change in gait speed impacts other gait parameters.
(ii) Promising, further research needed: foot lift, ROM
foot, and gait variability, since those parameters reflect
disease severity in terms of reduced foot movements due
to increased spasticity and increased balance deficits rep-
resented by larger gait variability, and (iii) contradicting
results, but with potential clinical relevance: ROM hip.
Furthermore, this review shows the importance of vali-
dating additional parameters and developing clinically
relevant digital outcome measures to improve the assess-
ment of disease progression and therapy response in HSP.
Despite the potential of instrumented gait analysis,
there is a lack of studies, particularly regarding the lon-
gitudinal assessment of gait changes and the integration
of EMG@, kinetic data, and upper body parameters. In
addition, it is important to gain a deeper understand-
ing of gait patterns for different disease onsets and the
differentiation between children and adults with HSP.
Future research is needed for three aspects: (i) struc-
tured longitudinal multicenter studies with larger
sample sizes to establish robust digital mobility out-
comes. These long-term datasets allow for identifying
disease trajectories over the disease course on an indi-
vidual level. (ii) Mobility monitoring in patients’ home
environment as demonstrated, for example, in the
Mobilise-D project for PD. This real-life mobility data
enables to complement established clinical and func-
tional scores by addressing patients’ needs in their daily
life. (iii) Technical and clinical validation of additional
inertial sensor-based parameters. Filling these gaps will
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improve the identification of HSP-specific gait patterns,
establish relevant gait parameters for clinical trials, and
optimize treatment strategies for individuals with HSP.
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