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Abstract
In this paper,wepresent new regularizedShannon sampling formulas related to the spe-
cial affine Fourier transform (SAFT). These sampling formulas use localized sampling
with special compactly supported, continuous window functions, namely B-spline,
sinh-type, and continuous Kaiser–Bessel window functions. In contrast to the known
Shannon sampling series for SAFT, the regularized Shannon sampling formulas for
SAFT possesses an exponential decay of the approximation error and are numerically
robust in the presence of noise, if certain oversampling condition is fulfilled.

Keywords Special affine Fourier transform · SAFT · Shannon sampling theorem ·
Compactly supported window function · Regularized Shannon sampling formula
related to SAFT · Error estimates · Numerical robustness

Mathematics Subject Classification 94A20 · 42A38 · 65T50

1 Introduction

The special affine Fourier transform (SAFT) was introduced by Abe and Sheridan [1]
for the study of certain operations on optical wave functions. For f ∈ L1(R), it is an
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integral transform of the form

FA f (ω) =
∫
R

f (t) φA(t, ω) dt, ω ∈ R, (1.1)

with the kernel

φA(t, ω) = 1√
2π |b| exp

[
i

2b

(
at2 + 2pt − 2ωt + dω2 + 2(bq − dp)ω

)]
, t, ω ∈ R,

depending on a parameter matrix A =
(
a b p
c d q

)
∈ R

2×3 with submatrix

(
a b
c d

)

satisfying ad−cb = 1 and b �= 0, and an offset vector

(
p
q

)
. The name “special affine

Fourier transform” comes from the fact that the transform (1.1) is related to a special
affine transform of the time-frequency coordinates

(
t ′
ω′

)
=

(
a b
c d

) (
t
ω

)
+

(
p
q

)
,

with

(
a b
c d

)
belonging to the special linear group SL(2,R). We will not go into a

detailed discussion of the origin and relations of the SAFT to various fields in physics,
but we take (1.1) merely as a signal transform. The SAFT is a generalization of the
classical classical Fourier transformF defined by

F f (ω) = 1√
2π

∫
R

f (t) e−iωt dt . (1.2)

and it includes a number of well-known signal transforms as special cases (see Table
1 or [8, Table 1]).

As a matter of fact the ordinary translation operator Tx f (t) = f (t − x) does
not interact nicely with the kernel of the SAFT (1.1), i.e., the function TxφA(t, ω) =
φA(t−x, ω) is in general different fromφA(t, ω) φA(−x, ω) except if A =

(
0 1 0

−1 0 0

)
.

As a consequence, working with the ordinary translation operator a number of facts
known from ordinary Fourier analysis are no longer valid. This holds in particular
for the important Shannon sampling theorem, which allows the reconstruction of a
function f ∈ L2(R) with Fourier transformF f supported in [−πL, πL] with some

L > 0 from its samples f
(
n
L

)
, n ∈ Z, using ordinary translates of the scaled cardinal

sine function sinc(L ·), viz.
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Table 1 Various parameter matrices and corresponding SAFT’s

Parameter matrix A Condition Corresponding SAFT FA

(
0 1 0

−1 0 0

)
Fourier transform

(
0 1 p

−1 0 q

)
Offset Fourier transform

(
a b 0
c d 0

)
ad − cb = 1, abd �= 0 Canonical linear transform

(
a b p
c d q

)
ad − cb = 1, abd �= 0 Offset canonical linear transform

(
1 b 0
0 1 0

)
b �= 0 Fresnel transform

(
cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

)
θ /∈ πZ Fractional Fourier transform

(
cos(θ) sin(θ) p

− sin(θ) cos(θ) q

)
θ /∈ πZ Offset fractional Fourier transform

(
cosh(θ) sinh(θ) 0
sinh(θ) cosh(θ) 0

)
θ �= 0 Hyperbolic transform

f (t) =
∑
n∈Z

f
( n

L

)
sinc(Lt − n), t ∈ R. (1.3)

In case that the SAFTFA of f ∈ L2(R) is supported in the interval [−πL |b|, πL |b|],
formula (1.3) does in general no longer hold. In order to get an analogue for (1.3) in
case of the SAFT it is necessary to work with a different concept of translations.
In [10] a generalized A-translation operator T A

x was introduced which matches with
the SAFT FA, and its various consequences for the related harmonic analysis were
studied. This operator reads as

T A
x f (t) = e−i ab x(t−x) f (t − x), t, x ∈ R.

It obviously reduces to the ordinary translation if A =
(

0 1 0
−1 0 0

)
. Moreover, it was

demonstrated in [10] that fundamental properties of the ordinary Fourier transform, as
for example the convolution theorem, hold for the SAFT as well, if we work with the
operator T A

x instead of Tx . In [7] Bhandari and Zayed also studied the SAFT in some
detail and worked out a number of aspects of this transform. The authors considered
a generalized translation somewhat implicitly but did not work out its properties and
consequences with respect to the related harmonic analysis explicitly. In [9] the SAFT
and related modulation spaces were extensively studied. Furthermore, in [7] and later
in [10] shift invariant spaces related to T A

x were studied and, in particular, an analogue
of the Shannon sampling theorem for the SAFT FA was derived. It states that a
function f ∈ L2(R), where the support of FA f

supp(FA f ) = clos{ω ∈ R : FA f (ω) �= 0}
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is contained in [−πL |b|, πL |b|] with some L > 0, can be reconstructed from its

samples f
(
n
T

)
, n ∈ Z, with T ≥ L as

f (t) = ρA(t)
∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n), t ∈ R, (1.4)

with the exponential function

ρA(t) = e
i
2b (at2+2pt), t ∈ R.

Although this representation is quite satisfactory from a theoretical point of view
it suffers in the same manner as the ordinary Shannon sampling formula (1.3) from
some computational shortcomings. Apart from the obvious problem of using infinitely
many samples, the slow decay of the scaled cardinal sine function sinc(T ·) prevents
a good approximation of f by truncation of the series. In order to mitigate these
flaws, the scaled cardinal sine function sinc(T ·) is multiplied by a suitable com-
pactly supported, continuous window function ϕ. Hence instead of sinc(T ·), the
function sinc(T ·) ϕ is used for the reconstruction of a function f ∈ L2(R) with

supp(FA f ) ⊆ [−πL |b|, πL |b|]. In the classical situation A =
(

0 1 0
−1 0 0

)
, local-

ization by a suitable window function and oversampling with T > L was used as
regularization strategies for the problem. There is a huge stack of papers dealing with
the problem of a stable and robust computation of the sampling series, see [11, 14, 15,
20, 26, 27] and references therein. The Gaussian window function was frequently used
as a window function. However, it turned out that certain compactly supported, con-
tinuous window function lead to much better approximation results [14]. Motivated
by this observation, we concentrate our studies in this paper on a suitable class of
compactly supported, continuous window functions as well. We consider in particular
three special window functions in detail and analyse the corresponding approximation
behaviour.

The paper is organized as follows. In Sect. 2 we recall all necessary properties of the
SAFT. Section 3 provides the results on sampling for the SAFT FA. Regularization
of the Shannon sampling formula for FA will be considered in Sect. 4. A detailed
study of regularization by specific window functions will be presented in Sect. 5.

2 Special Affine Fourier Transform

In this sectionwe shall define the SAFTmore precisely andwewill discuss the relevant
properties of this transform. Before doing so, let us briefly recall the definition of
function spaces which are relevant for us in the sequel. By C0(R) we denote the
Banach space of continuous functions f : R → C which vanish at infinity equipped
with the norm ‖ f ‖∞ = maxt∈R | f (t)|. The spaces L p(R), 1 ≤ p ≤ ∞ are defined
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as usual with their respective norms

‖ f ‖p =
⎧⎨
⎩

( ∫
R

| f (t)|p dt
)1/p

1 ≤ p < ∞,

ess supt∈R| f (t)| p = ∞.

The inner product for L2(R) is denoted by 〈·, ·〉.
The special affine Fourier transform (SAFT) of a function f ∈ L1(R) is defined as

FA f (ω) = 1√
2π |b|

∫
R

f (t) e
i
2b

(
at2+2pt−2ωt+dω2+2(bq−dp)ω

)
dt, ω ∈ R,

(2.1)

where A =
(
a b p
c d q

)
∈ R

2×3 is a fixed parameter matrix with ad−bc = 1 and b �= 0.

We exclude the case b = 0, which is discussed in [8] too. For comprehensive studies
of the properties of the SAFT we refer to [7–10].

The SAFTFA can be written in a more convenient form using the auxiliary func-
tions

ηA(ω) = e
i
2b (dω2+2(bq−dp)ω), ρA(t) = e

i
2b (at2+2pt), ω, t ∈ R. (2.2)

The SAFT FA now reads as

FA f (ω) = ηA(ω)√|b| F (ρA f )
(ω

b

)
, ω ∈ R, (2.3)

whereF stands for the ordinary Fourier transform (1.2). As ηA and ρA are unimodular
functions, i.e., |ηA(ω)| = 1 = |ρA(t)| for all t, ω ∈ R, we immediately get from (2.3)
that FA f belongs to C0(R) with ‖FA f ‖∞ ≤ (2π |b|)−1/2 ‖ f ‖1. Moreover, (2.3)
also shows that FA can be extended to L2(R) and defines a unitary operator on that
space, viz.

〈FA f ,FAg〉 = 〈 f , g〉, f , g ∈ L2(R). (2.4)

In particular, ‖FA f ‖2 = ‖ f ‖2 for f ∈ L2(R). The inverse of FA on L2(R) can
readily be obtained from (2.3). It is given as

F−1
A f (t) = ρA(t)√

2π |b|
∫
R

f (ω) ηA(ω) eiωt/b dω. (2.5)

The inverse of the SAFT FA can be represented in the form

F−1
A f (t) =

∫
R

f (ω) φA′(ω, t) dω = FA′ f (t), t ∈ R,
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with kernel

φA′(ω, t) = 1√
2π |b| exp

[
− i

2b

(
dω2 + 2 (pq − dp) − 2ωt + at2 + 2pt

)]

= 1√
2π |b| ηA(ω) ρA(t) eiωt/b, ω, t ∈ R.

where the corresponding parameter matrix A′ is given as (see [8])

(
d −b bq − dp

−c a cp − aq

)
.

In [10], the authors introduced a generalized translation operator related to the
SAFT FA which was called A-translation T A

x with a real shift parameter x . For a
function f : R → C and x ∈ R it reads as

T A
x f (t) = e−i ab x(t−x) f (t − x), t ∈ R. (2.6)

Obviously, T A
x is a norm-preserving operator on all spaces L p(R), 1 ≤ p ≤ ∞,

and it reduces to the ordinary translation Tx f (t) = f (t − x) if A =
(

0 1 0
−1 0 0

)
.

However, note that T A
x ( f ·g) is in general different from (T A

x f )·(T A
x g). The following

statements regarding the A-translation operator T A
x can be found in [10]. The proofs

of these statements are rather straightforward and will be omitted here.

Proposition 2.1 For the A-translation operator T A
x and any f ∈ L1(R), the following

properties hold

(i) T A
x f (t) = ρA(x) ρA(t) ρA(t − x) f (t − x),

(ii) T A
x T A

y = e−i ab xy T A
x+y, x, y ∈ R,

(iii) FA(T A
x f )(ω) = ρA(x) e−iωx/b FA f (ω), x, ω ∈ R.

3 Shannon Sampling Series for SAFT

In [6, 10, 25, 31], an analogue of the Shannon sampling theorem for the SAFT FA

was obtained. In order to formulate this sampling theorem, let us introduce some
notations. For given L > 0, a function f ∈ L2(R) is called FA-bandlimited in
[−πL |b|, πL |b|], if

supp(FA f ) ⊆ [−πL |b|, πL |b|].

For A =
(

0 1 0
−1 0 0

)
, we obtain the classical notion of a bandlimited function, viz.

f ∈ L2(R) is F -bandlimited in [−πL, πL], if supp(F f ) ⊆ [−πL, πL]. Note
that L > 0 is the so-called sampling density. There is a close relation between FA-
bandlimited and F -bandlimited functions. More precisely we have
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Proposition 3.1 Let L > 0 be given. A function f ∈ L2(R) isFA-bandlimited in the
interval [−πL |b|, πL |b|] if and only if the associated function f A = ρA f ∈ L2(R)

isF -bandlimited in [−πL, πL].
Proof Assume that f ∈ L2(R) isFA-bandlimited in [−πL |b|, πL |b|]. Using (2.3),
we see immediately that

supp
(
F (ρA f )

) ⊆ [−πL, πL],

i.e., f A = ρA f isF -bandlimited in [−πL, πL].
Conversely, let g ∈ L2(R) be F -bandlimited in [−πL, πL]. Then from (2.3) it

follows that

(F g)(ω) = √|b| ηA(ω)FA(ρ̄A g)(bω), ω ∈ R.

Hence ρ̄A g ∈ L2(R) isFA-bandlimited in [−πL |b|, πL |b|]. ��
Remark 3.2 The equivalence class of functions f ∈ L2(R) with supp

(
F (ρA f )

) ⊆
[−πL, πL] always contains a smooth function. Indeed, for any r ∈ N0 the function
(iω)r F (ρA f )(ω) is in L1([−πL, πL]) such that

(ρA f )(r)(t) = 1√
2π

∫ πL

−πL
F (ρA f )(ω) (iω)r eiωt dω

belongs to C0(R). Clearly, with ρA f also f is smooth. In the sequel, we will always
pick the smooth representative of an FA-bandlimited function.

Example 3.3 The cardinal sine function is defined as usual by

sinc(t) =
{

sin(π t)
π t , t ∈ R \ {0},

1, t = 0.
(3.1)

For fixed L > 0, the function sinc(L ·) is F -bandlimited in [−πL, πL]. Thus by
Proposition 3.1, the function

ψ(t) = ρA(t) sinc(Lt), t ∈ R, (3.2)

isFA-bandlimited in [−πL |b|, πL |b|], and by Proposition 2.1 (i) we have

T A
x ψ(t) = ρA(t) ρA(x) sinc(L(t − x)).

for any x ∈ R.

The statements of the next lemma might be well-known. We therefore omit its
proof.
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Lemma 3.4 The set of shifted cardinal sine functions sinc(· − n) with n ∈ Z forms an
orthonormal system in L2(R), i.e.,

∫
R

sinc(ω − m) sinc(ω − n) dω = δm,n, m, n ∈ Z,

with the Kronecker symbol δm,n. For each x ∈ R, the following identities hold

∑
n∈Z

sinc(x − n) = 1,
∑
n∈Z

∣∣sinc(x − n)
∣∣2 = 1. (3.3)

It is an easy consequence that the system {√L sinc(L ·−n) : n ∈ Z} is an orthonor-
mal basis for the space of functions in L2(R)which areF -bandlimited in [−π L, π L].
The following result is the SAFT analogue of the above statement.

Lemma 3.5 Let ψ(t) = ρA(t) sinc(Lt) with L > 0. Then
{√

L T A
n/Lψ : n ∈ Z

}
is an orthonormal basis for the subspace of L2(R) of all functions which are FA-
bandlimited in [−π L|b|, πL|b|].
Proof Using Lemma 3.4, we obtain for all m, n ∈ Z that

〈T A
m/Lψ, T A

n/Lψ〉 = ρA

(m
L

)
ρA

( n

L

)
〈sinc(L · −m), sinc(L · −n)〉

= 1

L
ρA

(m
L

)
ρA

( n

L

)
〈sinc(· − m), sinc(· − n)〉 = 1

L
δm,n .

Hence
{√

L T A
n/Lψ : n ∈ Z

}
is an orthonormal system. It can be easily shown

that the system is complete in the space of functions which are FA-bandlimited in
[−πL|b|, πL|b|]. ��

The following Shannon sampling theorem for the SAFT was proved in [7, 10, 25,
31]. Using Proposition 3.1, the sampling theorem for the SAFT is simple consequence
of the classical Shannon sampling theorem for F -bandlimited functions.

Theorem 3.6 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] and let fA =
ρA f be the associated function of f . Then

f (t) = ρA(t)
∑
n∈Z

f
( n

L

)
ρA

( n

L

)
sinc(Lt − n)

= ρA(t)
∑
n∈Z

f A
( n

L

)
sinc(Lt − n) (3.4)

for every t ∈ R, where the series (3.4) converges absolutely and uniformly on R.
Furthermore,

∑
n∈Z

∣∣ f ( n

L

)∣∣ |sinc(Lt − n)| ≤ √
L ‖ f ‖2 (3.5)
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for all t ∈ R.

Proof By assumption, f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|]. Then by
Proposition 3.1, the associated function f A = ρA f isF -bandlimited in [−πL, πL].
Applying the classical Shannon sampling theorem to theF - bandlimited function f A,
we obtain

f A(t) =
∑
n∈Z

f A
( n

L

)
sinc(Lt − n)

for all t ∈ R, where the above series converges absolutely and uniformly on R. This
implies that the series

f (t) = ρA(t) f A(t) = ρA(t)
∑
n∈Z

f A
( n

L

)
sinc(Lt − n)

= ρA(t)
∑
n∈Z

f
( n

L

)
ρA

( n

L

)
sinc(Lt − n), t ∈ R

converges absolutely and uniformly on R, since |ρA(t)| = 1 for each t ∈ R.
By Lemma 3.4 we have

∑
n∈Z

|sinc(Lt − n)|2 = 1, t ∈ R. (3.6)

The absolute convergence of theShannon sampling series (3.8) forFA and the estimate
(3.5) can be shown by applying the Cauchy–Schwarz inequality as follows:

∣∣ρA(t)
∣∣ ∑
n∈Z

∣∣∣ f
( n

L

)∣∣∣
∣∣∣ρA

( n

L

)∣∣∣
∣∣∣sinc(Lt − n)

∣∣∣

=
∑
n∈Z

∣∣ f ( n

L

)∣∣ ∣∣sinc(Lt − n)
∣∣

≤
(∑
n∈Z

∣∣ f ( n

L

)∣∣2)1/2 (∑
n∈Z

∣∣sinc(Lt − n)
∣∣2)1/2

=
( ∑
n∈Z

∣∣ f ( n

L

)∣∣2)1/2.

By Lemma 3.4 and (3.4) it follows that

‖ f ‖22 = 〈 f , f 〉 =
∑
n∈Z

∣∣ f ( n

L

)∣∣2 ∫
R

(
sinc(Lt − n)

)2
dt = 1

L

∑
n∈Z

∣∣ f ( n

L

)∣∣2.
(3.7)

This completes the proof. ��
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An equivalent formulation of Theorem 3.6 can be given in terms of the A-translates
T A
n/L of the function ψ defined in Example 3.3.

Corollary 3.7 Let ψ(t) = ρA(t) sinc(Lt) with L > 0 be given. If f ∈ L2(R) is
FA-bandlimited in [−πL |b|, πL |b|], then

f (t) =
∑
n∈Z

f
( n

L

)
(T A

n/Lψ)(t) (3.8)

for every t ∈ R, where the series (3.8) converges absolutely and uniformly on R.

Proof ByExample 3.3, the functionψ isFA-bandlimited in [−πL |b|, πL |b|]. Using
the A-translation (2.6) with shift parameter x = n

L , we obtain for all n ∈ Z,

(T A
n/Lψ)(t) = T A

n/L

(
ρ̄A sinc(L ·))(t) = ρA(t) ρA

( n

L

)
sinc(Lt − n) (3.9)

such that from Theorem 3.6 the representation (3.8) of f follows. ��
By Lemma 3.4, the system {Tn/Lψ : n ∈ Z} is an orthonormal basis for the space of

functions which are FA-bandlimited in [−πL|b|, πL|b|], thus convergence of (3.8)
resp. (3.4) also holds with respect to the ‖ · ‖2-norm.

Remark 3.8 For some special SAFT’s, corresponding Shannon sampling theorems

were studied mainly in the signal processing literature. For A =
(
1 b 0
0 1 0

)
with b �= 0,

Theorem 3.6 implies the sampling theorem of the Fresnel transformFA (see [12]). For

A =
(

cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

)
with θ /∈ πZ, Theorem 3.6 yields the sampling theorem

for the fractional Fourier transform FA (see [5, 6, 33]).

For the parameter matrix A =
(
cosh(θ) sinh(θ) 0
sinh(θ) cosh(θ) 0

)
with θ �= 0, Theorem 3.6

yields a sampling theorem for the hyperbolic transform. For A =
(
a b 0
c d 0

)
∈ R

2×3

with ad − bc = 1 and abd �= 0, Theorem 3.6 implies the sampling theorem of the
linear canonical transform FA (see [24, 29, 34]), which reads for f ∈ L2(R) with
supp(FA f ) ⊆ [−πL |b|, πL |b|] as follows

f (t) = e−i a
2b t2

∑
n∈Z

f
( n

L
) ei

a
2b n2/L2

sinc(Lt − n)

for all t ∈ R.

Suppose that f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|] which, without
loss of generality, can be assumed to be smooth (see Remark 3.2). Although the

reconstruction of f from samples f
(
n
L

)
, n ∈ Z, is possible according to Theorem
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3.6, it is numerically an unstable process in the deterministic sense. Consider for a

sufficiently large N ∈ N erroneous samples of f
(
n
L

)
, n ∈ Z, given as

f̃
( n

L

)
=

⎧⎨
⎩

f
(
n
L

)
+ εn n ∈ {−N , . . . , N },

f
(
n
L

)
n ∈ Z \ {−N , . . . , N }

with complex error terms εn which are uniformly bounded by |εn| ≤ ε. Then we
obtain the function

g(t) = ρA(t)
∑
n∈Z

f̃
( n

L

)
ρA

( n

L

)
sinc(Lt − n)

= f (t) + ρA(t)
N∑

n=−N

εn ρA

( n

L

)
sinc(Lt − n), t ∈ R.

An upper estimate for the sup-norm of the difference of f and g is given by

‖g − f ‖∞ ≤ ε max
t∈R

N∑
n=−N

| sin(Lt − n)|.

By [14, Theorem 2.2] we have

max
t∈R

N∑
n=−N

|sinc(Lt − n)| <
2

π

(
ln(N ) + 2 ln(2) + γ

) + N + 2

πN (N + 1)
,

with Euler’s constant [32]

γ = lim
N→∞

( N∑
n=1

1

n
− ln(N )

)
= 0.57721566 . . . .

Nowweshall give a lower bound for the approximationof f utilizingperturbed sam-
ple values. The result shows in particular that the reconstruction of aFA-bandlimited
function f by the Shannon sampling series (3.8) for FA is numerically unstable in
the deterministic sense.

Theorem 3.9 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with fixed
L > 0. For arbitrary N ∈ N and ε > 0 define

εn = ε sign
(
sinc( 12 − n)

)
ρA

( n

L

)
= ε (−1)n+1 sign(2n − 1) ρA

( n

L

)

for |n| ≤ N and εn = 0 for |n| > N. Then

‖g − f ‖∞ ≥ ε
( 2

π
ln(N ) + 4

π
ln(2) + 2γ

π

)
> ε

( 2

π
ln(N ) + 5

4

)
.
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Proof The special choice of the complex error terms εn leads to

g(t) − f (t) = ε ρA(t)
N∑

n=−N

sign
(
sinc( 12 − n)

)
sinc(Lt − n).

For t = 1
2L we obtain

‖g − f ‖∞ ≥ |g( 1
2L ) − f ( 1

2L )| = ε

N∑
k=−N

∣∣sinc(1
2

− n)
∣∣

= 2ε

π
+ 2ε

π

N∑
n=1

( 1

2n − 1
+ 1

2n + 1

)

= 2ε

(2N + 1)π
+ 4ε

π

N∑
n=1

1

2n − 1
.

As shown in [14, Formula (2.8)], it holds

N∑
n=1

1

2n − 1
>

1

2
ln(N ) + ln(2) + γ

2
− 1

4N (2N + 1)
.

Hence this yields the estimate

‖ f̃ − f ‖∞ > ε
( 2

π
ln(N ) + 4

π
ln(2) + 2γ

π

)
+ ε

2N − 1

π N (2N + 1)

> ε
( 2

π
ln(N ) + 4

π
ln(2) + 2γ

π

)
.

Since 4
π
ln(2) + 2γ

π
= 1.2500093 . . . > 5

4 , we get the final estimate. ��

Remark 3.10 Assume that f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|] with
L > 0. Let t ∈ R be arbitrary fixed. In Theorem 3.9 we have seen that the approxima-
tion of f by the N -th partial sum fN of the corresponding Shannon sampling series
forFA, which is given by

fN (t) = ρA(t)
N∑

n=−N

f
( n

L

)
ρA

( n

L

)
sinc(Lt − n),

is not numerically robust in the deterministic sense. Otherwise, a simple average case
study (see [30]) shows that this approximation is numerically robust in the stochastic

sense. For this we suppose that instead of the exact samples f
(
n
L

)
only noisy samples
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f̃
(
n
L

)
= f

(
n
L

)
+ Xn , n = −N , . . . , N , are given, where the complex random vari-

ables Xn are uncorrelated, each of them having expectation E(Xn) = 0 and constant
variance V(Xn) = E

(|Xn|2
) = ρ2 with some ρ > 0. Then we form the function

gN (t) = ρA(t)
N∑

n=−N

f̃
( n

L

)
ρA

( n

L

)
sinc(Lt − n)

and consider the stochastic approximation error


N (t) = gN (t) − fN (t) = ρA(t)
N∑

n=−N

Xn ρA

( n

L

)
sinc(Lt − n).

Obviously, this stochastic error 
N (t) has the expectation

E
(

N (t)

) = ρA(t)
N∑

n=−N

E
(
Xn

)
ρA

( n

L

)
sinc(Lt − n) = 0

and the variance

V
(

N (t)

) = ∣∣ρA(t)
∣∣2 N∑

n=−N

V
(
Xn

) ∣∣ρA

( n

L

)∣∣2 ∣∣sinc(Lt − n)
∣∣2

= ρ2
N∑

n=−N

∣∣sinc(Lt − n)
∣∣2.

From (3.4) it follows that

N∑
n=−N

∣∣sinc(Lt − n)
∣∣2 ≤ 1

such that V
(

N (t)

) ≤ ρ2.

4 Regularized Shannon Sampling Formulas for SAFT

In this section, we assume that f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|]
with some L > 0. Then f is alsoFA-bandlimited in [−πT |b|, πT |b|], where T > L .
Instead of L , we use T as sampling density. Our aim is to improve the representation
of f by the Shannon sampling series for FA with sampling density T , i.e.,

f (t) = ρA(t)
∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n), t ∈ R. (4.1)



   40 Page 14 of 32 Journal of Fourier Analysis and Applications            (2025) 31:40 

The practical use of the Shannon sampling series (4.1) forFA is rather limited due to
the need of infinitelymany samples. A second limitation of its use in practice originates
in the fact that the scaled cardinal sine function sinc(T ·) decays very slowly, which
results in poor convergence of the Shannon sampling series. Furthermore, in case of

noisy samples f̃
(
n
T

)
, n ∈ Z, the convergence of the Shannon sampling series forFA

can even break down completely (see [11, 15] and Theorem 3.9). In order to overcome
these limitations, regularization techniques were considered. For the classical Fourier
transform, the concept of regularized Shannon sampling formulas with localized sam-
pling and oversampling has been studied by several authors [14, 15, 17, 21–23, 28].
Often a Gaussian window function supported on whole R was used in these studies.
In [14], it was shown that the compactly supported sinh-type window function (4.3)
produces smaller approximation errors than the Gaussian window function. Therefore
we focus on compactly supported, continuous window functions in the following.

For any m ∈ N \ {1} let �m/T be the class of even continuous functions ϕ : R →
[0, 1] with the following properties:

(i) ϕ is supported on

[
− m

T , m
T

]
,

(ii) ϕ is monotonically decreasing on

[
0, m

T

]
with ϕ(0) = 1 and ϕ

(
m
T

)
= 0.

A function of the class �m/T will henceforth be called window function with the
truncation parameter m, where T > L denotes the sampling density. Later we will
use one of the following window functions of �m/T .

Example 4.1 (a) Let M2s denote the centered cardinal B-spline of even order 2s ∈ 2N.
The B-spline window function is defined as

ϕB(t) = 1

M2s(0)
M2s

(T s t
m

)
, t ∈ R. (4.2)

(b) The sinh-type window function is defined for the parameter β = mπ (T−L)
T as

ϕsinh(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
sinh β

sinh
(
β

√
1 − ( T tm )2

)
t ∈

[
− m

T , m
T

]
,

0 t ∈ R \
[

− m
T , m

T

]
.

(4.3)

(c) Let againβ = mπ (T−L)
T . The continuousKaiser–Besselwindow function is defined

as

ϕcKB(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
I0(β)−1

(
I0

(
β

√
1 − ( T tm )2

)
− 1

)
t ∈

[
− m

T , m
T

]
,

0 t ∈ R \
[

− m
T , m

T

]
,

(4.4)
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where I0 is the modified Bessel function of the first kind, given by

I0(x) =
∞∑
k=0

1

((2k)!!)2 x2k, x ∈ R.

Wewill consider the following regularization strategies for Shannon sampling series
related toFA:

1. A better approximation of a function f ∈ L2(R) which is FA-bandlimited in
[−πL |b|, πL |b|] can be obtained by so-called oversampling with a sampling

density T > L , i.e., instead of the samples f
(
n
L

)
, n ∈ Z, we work now with

the samples f
(
n
T

)
, n ∈ Z. Oversampling means that we apply a larger sampling

density T > L for the reconstruction of f .
2. TheShannon sampling series (4.1) forFAwill be regularizedbyawindowfunction

ϕ ∈ �m/T with moderate m ∈ N \ {1}. Thus we consider instead of the series

ρA(t)
∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n)

the regularized Shannon sampling formula forFA with sampling density T given
by

RA
ϕ,m f (t) = ρA(t)

∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
, t ∈ R.

(4.5)

Since ϕ ∈ �m/T is compactly supported, the computation of RA
ϕ,m f (t) for fixed

t ∈ R needs only a finite number of samples of f .

Note that since

ρA(t) ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)∣∣
t=k/T = δn,k, n, k ∈ Z,

we have an interpolating approximation of f on the grid 1
T Z, viz.

RA
ϕ,m f

( k

T

)
= f

( k

T

)
, k ∈ Z.

Furthermore, the use of a window function ϕ ∈ �m/T implies that the computation

of RA
ϕ,m f (t) for t ∈ R \ 1

T Z requires only 2m samples f
(
n
T

)
, where n ∈ Z fulfills
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|n − T t | < Tm. Hence the function f can be recovered on the interval

[
0, 1

T

]
by

f (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (0) t = 0,

f
(
1
T

)
t = 1

T ,

ρA(t)
m∑

n=1−m

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
t ∈

(
0, 1

T

)
.

Thus the reconstruction of f on the interval [−1, 1] needs only 2T + 2m − 1 samples

f
(
n
T

)
with n = −T − m, . . . , T + m. This fact is called localized sampling of f .

Remark 4.2 By (4.5), the expression RA
ϕ,m f is a linear combination of A-translates of

the function χ(t) = ρA(t) sinc(T t) ϕ(t). Using (2.6) we have

T A
n/Tχ(t) = ρA(t) ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
, n ∈ Z,

and hence

RA
ϕ,m f (t) =

∑
n∈Z

f
( n

T

)
T A
n/Tχ(t).

Note that since ϕ is a function from the class �m/T it has support

[
− m

T , m
T

]
and this

implies that for fixed t ∈ R the representation RA
ϕ,m f (t) is a finite sum.

Now we give an estimate for the uniform approximation error ‖ f − RA
ϕ,m f ‖∞,

where f ∈ L2(R) isFA-bandlimited in [−πL |b|, πL |b|].
Theorem 4.3 Let 0 < L < T and m ∈ N\{1} be given. Let f ∈ L2(R) be FA-
bandlimited in [−πL |b|, πL |b|]. Further let ϕ ∈ �m/T be a given window function.

Then the error of the regularized Shannon sampling formula (4.5) of FA satisfies
the estimate

‖ f − RA
ϕ,m f ‖∞ ≤ E(m, L, T ) ‖ f ‖2

with the error constant

E(m, L, T ) = √
L max

ω∈[−πL,πL]

∣∣∣1 − 1√
2π

∫ ω+πT

ω−πT
(Fϕ)(τ) dτ

∣∣∣. (4.6)

Proof By assumption, f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|]. Then by
Proposition 3.1, the associated function f A = ρA f isF -bandlimited in [−πL, πL].
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We choose T > L as sampling density and apply the regularized Shannon sampling
formula for f A related to the classical Fourier transform F , i.e.,

Rϕ,m fA(t) =
∑
n∈Z

f A
( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)

=
∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
.

As shown in [14, Theorem 3.2], it holds the error estimate

‖ f A − RA
ϕ,m fA‖∞ ≤ E(m, L, T ) ‖ f A‖2

with the error constant (4.6). Note that in [14] there was used a different form of the
Fourier transform. From f = ρ̄A fA and RA

ϕ,m f = ρ̄A Rϕ,m fA it follows immediately
that

‖ f − RA
ϕ,m f ‖∞ = 1 · ‖ f A − Rϕ,m fA‖∞, ‖ f ‖2 = 1 · ‖ f A‖2.

This completes the proof. ��
Remark 4.4 The error constant (4.6) is independent of f and FA. It measures the
regularisation effect of ϕ ∈ �m/T by oversampling with sampling density T > L . For
each ω ∈ [−πL, πL] we have ω − πT < 0 and ω + πT > 0. By ϕ ∈ �m/T it holds

1√
2π

∫
R

(Fϕ)(ω) dω = (F−1Fϕ)(0) = ϕ(0) = 1.

For a suitable window function ϕ ∈ �m/T with moderate m ∈ N \ {1}, the error
constant E(m, L, T ) can be sufficiently small as we will demonstrate in Sect. 5.

In Theorem 3.9, we have seen that the Shannon sampling series for FA does not
behave stably with respect to perturbed samples of an FA-bandlimited function f .
Now we are considering this problem for the regularized Shannon sampling formula
related to FA. It turns out that in contrast to the Shannon sampling series (3.8) the
regularized Shannon sampling formula (4.5) for FA is numerically robust, i.e., the
uniform error is small for perturbed samples of anFA-bandlimited function f . More
precisely we have the following statement.

Theorem 4.5 Let 0 < L < T and m ∈ N\{1} be given. Let f ∈ L2(R) be FA-
bandlimited in [−πL |b|, πL |b|]. Further let ϕ ∈ �m/T be a given window function.

Furthermore, let f̃
(
n
T

)
= f

(
n
T

)
+ εn, n ∈ Z, be perturbed samples with complex

error terms εn which are uniformly bounded by |εn| ≤ ε with 0 < ε � 1. Let

h(t) = ρA(t)
∑
n∈Z

f̃
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
, t ∈ R.
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Then the following estimates hold

‖h − RA
ϕ,m f ‖∞ ≤ ε

(
2 + √

2π Fϕ(0)
)
, (4.7)

‖ f − h‖∞ ≤ ‖ f − RA
ϕ,m f ‖∞ + ε

(
2 + √

2π Fϕ(0)
)
. (4.8)

Proof We consider the perturbation error

e(t) = h(t) − RA
ϕ,m f (t) = ρA(t)

∑
n∈Z

εn ρA

( n

T

)
sinc(T t − n) ϕ

(
t − n

T

)
.

Note that for any t ∈ R the above sum contains only finitely many non-vanishing

terms. First we consider the case t ∈
(
0, 1

T

)
. Due to the properties of ϕ ∈ �m/T and

the fact |εn| ≤ ε, we obtain

|e(t)| ≤
m∑

n=1−m

|εn| |sinc(T t − n)| ϕ
(
t − n

T

)
≤ ε

m∑
n=1−m

ϕ
(
t − n

T

)
.

Since ϕ ∈ �m is monotonically decreasing on

[
0, m

T

]
, we have for t ∈

(
0, 1

T

)

that

m∑
n=1−m

ϕ
(
t − n

T

)
=

( 0∑
n=1−m

+
m∑

n=1

)
ϕ
(
t − n

T

)
=

m−1∑
n=0

ϕ
(
t + n

T

)
+

m∑
n=1

ϕ
(
t − n

T

)

≤
m−1∑
n=0

ϕ
( n

T

)
+

m∑
n=1

ϕ
(1 − n

T

)
= 2

m−1∑
n=0

ϕ
( n

T

)
.

The latter sum can be estimated further by applying once more the monotonicity of ϕ

on

[
0, m

T

]
. We obtain

m−1∑
n=0

ϕ
( n

T

)
< ϕ(0) +

∫ (m−1)/T

0
ϕ(t) dt ≤ 1 +

∫ m/T

0
ϕ(t) dt .

Since Fϕ(0) =
√

2
π

∫ m/T
0 ϕ(t) dt , we eventually have

|e(t)| ≤ 2 ε

m−1∑
n=0

ϕ
( n

T

)
≤ ε

(
2 + √

2π Fϕ(0)
)
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for every t ∈
(
0, 1

T

)
. Note that |e(0)| = |ε0| ≤ ε and

∣∣e( 1
T

)∣∣ = |ε1| ≤ ε, which

leads to

max
t∈[0,1/T ] |e(t)| ≤ ε

(
2 + √

2π Fϕ(0)
)
. (4.9)

The same technique can obviously be applied to get the estimate (4.9) for every interval[
k
T , k+1

T

]
, k ∈ Z, and thus (4.7) follows.

The inequality (4.8) can easily be derived by applying the triangular inequality and
(4.7). ��

5 Specific Regularized Shannon Sampling Formulas for the SAFT

In this sectionwewill study regularized Shannon sampling serieswith specificwindow
functions which we have introduced in Example 4.1.We assume again that f ∈ L2(R)

isFA-bandlimited in [−πL |b|, πL |b|] with L > 0.

5.1 Regularization with B-splineWindow Function

Let m ∈ N\{1} and s ∈ N with s < πm
2 be given. A good choice is s = �m/2�. Set

T > πm
πm−2s L . First we consider the B-spline window function ϕB ∈ �m/T of order

2s as defined in (4.2). The B-spline regularized Shannon sampling formula for FA

with sampling density T reads as follows

RA
B,m f (t) = ρA(t)

∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕB

(
t − n

T

)
. (5.1)

We will now show that the uniform approximation error ‖ f − RA
B,m f ‖∞ decays

exponentially. More precisely the following statement holds.

Theorem 5.1 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with L > 0.
Assume that m ∈ N \ {1}, s ∈ N with s < πm

2 , and T > πm
πm−2s L. Let ϕB ∈ �m/T be

the B-spline window function (4.2) of order 2s.
Then

‖ f − RA
B,m f ‖∞ ≤ √

L
( 2sT

mπ (T − L)

)2s−1 ‖ f ‖2. (5.2)

Proof According to Theorem 4.3 we have

‖ f − RA
B,m f ‖∞ ≤ √

L ‖ f ‖2 max
ω∈[−πL,πL]

∣∣
B(ω)
∣∣
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with the auxiliary function


B(ω) = 1 − 1√
2π

∫ ω+πT

ω−πT
FϕB(τ ) dτ, ω ∈ [−πL, πL].

By [19, p. 496] we have

∫
R

M2s(t) e
−iωt dt =

(
sinc

ω

2π

)2s
,

since the cardinal sine function is here defined by (3.9). Hence the B-spline window
function (4.2) has the Fourier transform

FϕB(ω) = m√
2π sT M2s(0)

(
sinc

m ω

2π sT

)2s
, (5.3)

which results in

1 = ϕB(0) = 1√
2π

∫
R

FϕB(τ ) dτ = m

2π sT M2s(0)

∫
R

(
sinc

m τ

2π sT

)2s
dτ.

Then the auxiliary function 
B takes the form


B(ω) = m

2π sT M2s(0)

( ∫
R

(
sinc

m τ

2π sT

)2s
dτ −

∫ ω+πT

ω−πT

(
sinc

m τ

2π sT

)2s
dτ

)

= m

2π sT M2s(0)

( ∫ ∞

πT−ω

(
sinc

m τ

2π sT

)2s
dτ +

∫ ∞

πT+ω

(
sinc

m τ

2π sT

)2s
dτ

)
.

The single integral terms can be estimated by

∫ ∞

πT±ω

(
sinc

m τ

2π sT

)2s
dτ ≤ (2sT )2s

m2s

∫ ∞

πT±ω

τ−2s dτ = (2sT )2s

(2s − 1)m2s(πT ± ω)2s−1 .

Hence we obtain for all ω ∈ [−π L, π L] that

0 ≤ 
B(ω) ≤ (2sT )2s−1

(2s − 1)m2s−1 π M2s(0)

( 1

(πT − ω)2s−1 + 1

(πT + ω)2s−1

)
.

From T > L andω ∈ [−πL, πL] it follows that πT ±ω ∈ [(T −L)π, (T +L)π ].
Taking into account that the function x1−2s is decreasing for x > 0, we conclude

max
ω∈[−πL, πL]

∣∣
B(ω)
∣∣ ≤ 2 (2sT )2s−1

(2s − 1)m2s−1 π2s M2s(0) (T − L)2s−1 .

Applying [14, Formula (5.3)] gives

4

3
≤ √

2s M2s(0) <

√
6

π
. (5.4)
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Thus for the error constant (4.6) we obtain the estimate

E(m, L, T ) ≤ 3

2π

√
L

( 2sT

mπ (T − L)

)2s−1
√
2s

2s − 1
≤ √

L
( 2sT

mπ (T − L)

)2s−1
,

because it holds

3

2π

√
2s

2s − 1
< 1, s ∈ N.

By the oversampling condition T > πm
πm−2s L we have 0 < 2sT

mπ (T−L)
< 1. This

completes the proof. ��
Letm ∈ N\{1} and s ∈ Nwith s < πm

2 be given. Nowwe show that for the B-spline
regularized Shannon sampling formula (5.1) for FA, the uniform perturbation error
‖RA

B,m f − RA
B,m f̃ ‖∞ is relatively small.

Theorem 5.2 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with L > 0.
Assume that m ∈ N\{1}, s ∈ Nwith s < πm

2 , and T ≥ L are given. Let ϕB ∈ �m/T be

theB-spline window function (4.2) of order 2s. Furthermore, let f̃
(
n
T

)
= f

(
n
T

)
+εn,

n ∈ Z, be noisy samples with complex error terms εn which are uniformly bounded
by |εn| ≤ ε with 0 < ε � 1.

Then theB-spline regularized Shannon sampling formula (5.1) forFA with density
T is numerically robust and it holds

‖RA
B,m f − h‖∞ ≤ ε

(
2 + 3

√
2m

4
√
s T

)
,

where h is given by

h(t) = ρA(t)
∑
n∈Z

f̃
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕB

(
t − n

T

)
.

Proof By Theorem 4.5 we only have to determine the valueFϕB(0) for the B-spline
window function (4.2). From (5.3) and (5.4) it follows that

FϕB(0) = m√
2π sT M2s(0)

≤ 3m

4T
√
s π

and hence

√
2π FϕB(0) ≤ 3

√
2m

4T
√
s
.

��
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If s ∈ N satisfies s < πm
2 and if T fulfills the oversampling condition T > πm

πm−2s L ,
the uniform error ‖ f − h‖∞ is small too by Theorems 5.1 and 5.2. Note that we can
choose s ∈ N and m ∈ N\{1} with s < πm

2 independently.

5.2 Regularization with Sinh-TypeWindow Function

Let m ∈ N \ {1}. Using the sinh-type window function (4.3), now we consider the
regularized Shannon sampling formula for FA with sampling density T ≥ m

m−1 L .
The sinh-type regularized Shannon sampling formula for FA with sampling density
T takes the form

RA
sinh,m f (t) = ρA(t)

∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕsinh

(
t − n

T

)
, t ∈ R.

(5.5)

We will demonstrate that the uniform approximation error ‖ f − RA
sinh,m f ‖∞ decays

exponentially with respect to m.

Theorem 5.3 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with L > 0.
Let m ∈ N\{1} and T ≥ m

m−1 L be given. Let ϕsinh ∈ �m/T be the sinh-type window
function (4.3).

Then it holds

‖ f − RA
sinh,m f ‖∞ ≤ 5

√
L e−mπ (T−L)/T ‖ f ‖2. (5.6)

Proof Note that β = mπ (T−L)
T ≥ π by the assumptions m ∈ N\{1} and T ≥ m

m−1 L .
According to Theorem 4.3 we have

‖ f − RA
sinh,m f ‖∞ ≤ √

L ‖ f ‖2 max
ω∈[−πL,πL]

∣∣
sinh(ω)
∣∣

with


sinh(ω) = 1 − 1√
2π

∫ ω+πT

ω−πT
Fϕsinh(τ ) dτ, ω ∈ [−πL, πL].

Following [18, p. 38, 7.58] we have

Fϕsinh(τ ) = m
√

π√
2 T sinh β

·
{

(1 − ν2)−1/2 I1(β
√
1 − ν2) |ν| < 1,

(ν2 − 1)−1/2 J1(β
√

ν2 − 1) |ν| > 1
(5.7)

with the scaled frequency ν = m
βT τ . With this change of variable the function 
sinh

now reads as


sinh(ω) = 1 − βT√
2π m

∫ ν1(ω)

−ν1(−ω)

Fϕsinh

(βT

m
ν
)
dν
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with the linear increasing function ν1(ω) = m
βT (ω + πT ) for ω ∈ [−πL, πL]. Since

β = mπ (T−L)
T , we have ν1(−πL) = 1 and ν1(ω) ≥ 1 for all ω ∈ [−πL, πL].

Now let 
sinh(ω) = 
sinh,1(ω) − 
sinh,2(ω) with


sinh,1(ω) = 1 − βT√
2π m

∫ 1

−1
Fϕsinh

(βT

m
ν
)
dν,


sinh,2(ω) = βT√
2π m

( ∫ −1

−ν1(−ω)

+
∫ ν1(ω)

1

)
Fϕsinh

(βT

m
ν
)
dν

= βT√
2π m

( ∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)
Fϕsinh

(βT

m
ν
)
dν.

In view of (5.7) these functions take the form


sinh,1(ω) = 1 − β

2 sinh β

∫ 1

−1

I1(β
√
1 − ν2)√

1 − ν2
dν,


sinh,2(ω) = β

2 sinh β

( ∫ ν1(−ω)

1
+

∫ ν1(ω)

1

) J1(β
√

ν2 − 1)√
ν2 − 1

dν.

Using [13, 6.681–3] and [2, 10.2.13], we get

∫ 1

−1

I1(β
√
1 − ν2)√

1 − ν2
dν =

∫ π/2

−π/2
I1(β cos σ) dσ = π

(
I1/2

(
β
2

))2 = 4
β

(
sinh β

2

)2

and hence


sinh,1(ω) = 1 −
2

(
sinh β

2

)2
sinh β

= 2 e−β

1 + e−β
.

By [13, 6.645–1] we have

∫ ∞

1

J1(β
√

ν2 − 1)√
ν2 − 1

dν = I1/2
(

β
2

)
K1/2

(
β
2

)
= 1 − e−β

β
> 0,

where I1/2 and K1/2 are modified Bessel functions of half order (see [2, 10.2.13,
10.2.14, and 10.2.17]). Numerical experiments have shown that

∣∣
∫ W

1

J1
(
β

√
ν2 − 1

)
√

ν2 − 1
dν

∣∣ ≤
3
(
1 − e−β

)

2 β

for all W > 1 and β ≥ π . Thus we obtain

∣∣
sinh,2(ω)
∣∣ ≤ β

2 sinh β

3
(
1 − e−β

)

β
= 3 e−β

1 + e−β
.
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Altogether the estimate

∣∣
sinh(ω)
∣∣ ≤ ∣∣
sinh,1(ω) − 
sinh,2(ω)

∣∣ ≤ 5 e−β

1 + e−β
< 5 e−β

holds for all ω ∈ [−πL, πL]. This implies

E(m, L, T ) ≤ 5
√
L e−mπ (T−L)/T ,

which completes the proof. ��

Now we show that for the sinh-type regularized Shannon sampling formula (5.5)
with respect toFA, the uniform perturbation error only grows asO(m), if f ∈ L2(R)

is FA-bandlimited in [−πL |b|, πL |b|] and if T fulfills the oversampling condition
T ≥ m

m−1 L .

Theorem 5.4 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with some
L > 0. Assume that m ∈ N\{1} and T ≥ m

m−1 L are given. Let ϕsinh ∈ �m/T be the

sinh-type window function (4.3). Furthermore, let f̃
(
n
T

)
= f

(
n
T

)
+ εn, n ∈ Z, be

noisy samples with complex error terms εn which are uniformly bounded by |εn| ≤ ε

with 0 < ε � 1.
Then the sinh-type regularized Shannon sampling formula (5.5) forFA with sam-

pling density T is numerically robust and it holds

‖RA
sinh,m f − h‖∞ ≤ ε

(
2 + 4m

T

)
,

where h is given by

h(t) = ρA(t)
∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕsinh

(
t − n

T

)
, t ∈ R.

Proof ByTheorem4.5weonly have to determine the valueFϕsinh(0) for the sinh-type
window function (4.3). From (5.7) it follows that

Fϕsinh(0) = m
√

π√
2 T sinh(β)

I1(β).

Applying the inequality
√
2πβ e−β I1(β) < 1 for β > 0 (see [20, Lemma 7]), we find

that

Fϕsinh(0) <
m eβ

2
√

β T sinh(β)
=

√
m

√
T (T − L)

(
1 − e−2β

) .
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Under the oversampling condition T ≥ m
m−1 L it holds

β = πm
T − L

T
≥ π

for all m ∈ N \ {1}. Hence we obtain

1√
T − L

≤
√
m√
T

.

Therefore by Theorem 4.5 we can estimate

‖h − RA
sinh,m f ‖∞ ≤ ε

(
2 + √

2π Fϕsinh(0)
)

≤ ε
(
2 + 2

√
π

1 − e−2β

m

T

)
.

Then by β ≥ π it follows

2
√

π

1 − e−2β ≤ 2
√

π

1 − e−2π = 3.551540 . . . < 4.

This completes the proof. ��

5.3 Regularization with Continuous Kaiser–BesselWindow Function

Letm ∈ N\{1} and T ≥ m
m−1 L be given. Using the continuousKaiser–Bessel window

function (4.4), we finally consider the regularized Shannon sampling formula forFA.
Then the continuous Kaiser–Bessel regularized Shannon sampling formula for FA

with sampling density T takes the form

RA
cKB,m f (t) = ρA(t)

∑
n∈Z

f
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕcKB

(
t − n

T

)
, t ∈ R.

(5.8)

Now we show that the uniform approximation error ‖ f − RA
cKB,m f ‖∞ decays expo-

nentially with respect to m.

Theorem 5.5 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with L > 0.
Let m ∈ N\{1} and T ≥ m

m−1 L be given. Further let ϕcKB ∈ �m/T be the continuous
Kaiser–Bessel window function (4.4).

Then it holds

‖ f − RA
cKB,m f ‖∞ ≤

√
L

I0(β) − 1

(1
2

+ 4m
T − L

T

)
‖ f ‖2. (5.9)
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Proof Note that β = mπ (T−L)
T ≥ π by our assumptions m ∈ N\{1} and T ≥ m

m−1 L .
From Theorem 4.3 it follows that

‖ f − RA
cKB,m f ‖∞ ≤ √

L ‖ f ‖2 max
ω∈[−πL,πL]

∣∣
cKB(ω)
∣∣

with


cKB(ω) = 1 − 1√
2π

∫ ω+πT

ω−πT
FϕcKB(τ ) dτ, ω ∈ [−πL, πL].

According to [18, p. 3, 1.1, and p. 95, 18.31], the Fourier transform of (4.4) has the
form

FϕcKB(τ ) =
√
2m√

π T (I0(β) − 1)
·
⎧⎨
⎩

(
sinh(β

√
1−ν2)

β
√
1−ν2

− sin(βν)
βν

)
0 < |ν| < 1,(

sin(β
√

ν2−1)
β

√
ν2−1

− sin(βν)
βν

)
|ν| > 1,

(5.10)

with the scaled frequency ν = m
βT τ . Using this substitution, the function 
cKB now

reads as


cKB(ω) = 1 − βT√
2π m

∫ ν1(ω)

−ν1(−ω)

FϕcKB

(βT

m
ν
)
dν

with the linear increasing function ν1(ω) = m
βT (ω + πT ) for ω ∈ [−πL, πL]. Since

β = mπ (T−L)
T , we have ν1(−πL) = 1 and ν1(ω) ≥ 1 for all ω ∈ [−πL, πL].

Now let 
cKB(ω) = 
cKB,1(ω) − 
cKB,2(ω) with


cKB,1(ω) = 1 − βT√
2π m

∫ 1

−1
FϕcKB

(βT

m
ν
)
dν,


cKB,2(ω) = βT√
2π m

( ∫ −1

−ν1(−ω)

+
∫ ν1(ω)

1

)
FϕcKB

(βT

m
ν
)
dν

= βT√
2π m

( ∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)
FϕcKB

(βT

m
ν
)
dν.

Using (5.10), these functions take the form


cKB,1(ω) = 1 − β

π (I0(β) − 1)

∫ 1

−1

( sinh(β √
1 − ν2)

β
√
1 − ν2

− sin(βν)

βν

)
dν,


cKB,2(ω) = β

π (I0(β) − 1)

( ∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)( sin(β √
ν2 − 1)

β
√

ν2 − 1
− sin(βν)

βν

)
dν.
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By [13, 3.997–1] we have

∫ 1

−1

sinh
(
β
√
1 − ν2

)

β
√
1 − ν2

dν = 2

β

∫ 1

0

sinh
(
β
√
1 − ν2

)
√
1 − ν2

dν

= 2

β

∫ π/2

0
sinh(β cos σ) dσ = π

β
L0(β),

where L0 denotes the modified Struve function (see [2, 12.2.1]) given by

L0(x) =
∞∑
k=0

(x/2)2k+1

(
�

(
k + 3

2

))2 = 2x

π

∞∑
k=0

x2k(
(2k + 1)!!)2 , x ∈ R.

Note that the function I0(x) − L0(x) is completely monotonic on [0, ∞) (see [4,
Theorem 1]) and tends to zero as x → ∞. Applying the sine integral function

Si(x) =
∫ x

0

sin t

t
dt, x ∈ R,

implies

∫ 1

−1

sin(βν)

βν
dν = 2

∫ 1

0

sin(βν)

βν
dν = 2

β
Si(β).

Hence we obtain


cKB,1(ω) = 1 − 1

I0(β) − 1

(
L0(β) − 2

π
Si(β)

)

= 1

I0(β) − 1

(
I0(β) − L0(β) − 1 + 2

π
Si(β)

)
.

For β = mπ (T−L)
T ≥ π it holds by [16, Lemma 5.1] that

∣∣I0(β) − L0(β) − 1 + 2

π
Si(β)

∣∣ <
1

2
.

Further it is known that I0(β) > 1 forβ > 0,which implies
∣∣
cKB,1(ω)

∣∣ < 1

2
(
I0(β)−1

)
for ω ∈ [−πL, πL].

Now we estimate
∣∣
cKB,2(ω)

∣∣ for ω ∈ [−πL, πL] by the triangle inequality as
follows

∣∣
cKB,2(ω)
∣∣ ≤ β

π
(
I0(β) − 1

)
( ∫ ν1(−ω)

1
+

∫ ν1(ω)

1

)∣∣∣ sin
(
β
√

ν2 − 1
)

β
√

ν2 − 1
− sin(βν)

β ν

∣∣∣ dν.
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By [20, Lemma 4], we have for ν ≥ 1 that

∣∣∣
sin

(
β

√
ν2 − 1

)

β
√

ν2 − 1
− sin(βν)

βν

∣∣∣ ≤ 2

ν2
.

Thus we conclude that

∣∣
cKB,2(ω)
∣∣ ≤ 4β

π
(
I0(β) − 1

)
∫ ∞

1

1

ν2
dν = 4β

π
(
I0(β) − 1

) .

Therefore we obtain for ω ∈ [−πL, πL] that
∣∣
cKB(ω)

∣∣ ≤ ∣∣
cKB,1(ω)
∣∣ + ∣∣
cKB,2(ω)

∣∣ ≤ 1

I0(β) − 1

(1
2

+ 4β

π

)

= 1

I0(β) − 1

(1
2

+ 4m
T − L

T

)
.

This completes the proof. ��
Remark 5.6 By [3, 16, Lemma 5.2], the function ex/

(
x I0(x)−x

)
is strictly decreasing

on
[
π, ∞)

. Under the oversampling condition T ≥ m
m−1 L we have

β = πm
T − L

T
≥ π (5.11)

for all m ∈ N \ {1}. Hence one can estimate

0 <
eβ

β I0(β) − β
≤ 2 eπ

π I0(π) − π
= 1.6444967 . . . <

7

4
. (5.12)

Thus we conclude that

0 <
1

I0(β) − 1

(1
2

+ 4β

π

)
<

(7β
8

+ 7β2

π

)
e−β.

Then by Theorem 5.5, the approximation error of the continuous Kaiser–Bessel reg-
ularized Shannon sampling formula (5.8) decreases exponentially with respect to m,
if T fulfills the oversampling condition T ≥ m

m−1 L .

Finally we show that for the continuous Kaiser–Bessel regularized Shannon sam-
pling formula (5.8) related toFA, the uniform perturbation error only grows asO(m),
if f ∈ L2(R) isFA-bandlimited in [−πL |b|, πL |b|] and T fulfills the oversampling
condition T ≥ m

m−1 L .

Theorem 5.7 Let f ∈ L2(R) be FA-bandlimited in [−πL |b|, πL |b|] with L > 0.
Let m ∈ N\{1} and T ≥ m

m−1 L be given. Further let ϕcKB ∈ �m/T be the continuous
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Kaiser–Bessel window function (4.4). Furthermore, let f̃
(
n
T

)
= f

(
n
T

)
+ εn, n ∈ Z,

be noisy samples with complex error terms εn which are uniformly bounded by |εn | ≤ ε

with 0 < ε � 1.
Then the continuous Kaiser–Bessel regularized Shannon sampling formula (5.8)

forFA with sampling density T is numerically robust and it holds

‖RA
cKB,m f − h‖∞ ≤ ε

(
2 + 7m

4T

)
,

where h is defined by

h(t) = ρA(t)
∑
n∈Z

f̃
( n

T

)
ρA

( n

T

)
sinc(T t − n) ϕcKB

(
t − n

T

)
, t ∈ R.

Proof ByTheorem4.5weonly have to estimate the valueFϕcKB(0) for the continuous
Kaiser–Bessel window function (4.4). From (5.10) it follows that

FϕcKB(0) =
√
2m√

π T
(
I0(β) − 1

) ( sinh β

β
− 1

)
(5.13)

= m eβ

√
2π β T

(
I0(β) − 1

) (
1 − e−2β − 2β e−β

)
(5.14)

<
m eβ

√
2π β T

(
I0(β) − 1

) . (5.15)

By the oversampling condition T ≥ m
m−1 L we have the estimate (5.11). Thus by

(5.12) it holds

0 <
eβ

β I0(β) − β
<

7

4

and hence

√
2π FϕcKB(0) <

7m

4T
.

This completes the proof. ��
Using the special window functions (4.2), (4.3), and (4.4), we compare the uniform

approximation error of the regularized Shannon sampling formulas for FA. Assume
that f ∈ L2(R) is FA-bandlimited in [−πL |b|, πL |b|] with L > 0. We consider
only the oversampling case T = 2L .

For the B-spline window function ϕ = ϕB ∈ �m/T of order 2 s with s = �m/2�,
the uniform approximation error can be estimated by (5.2) in the form

‖ f − RA
ϕ,m f ‖∞ ≤

( 4s

mπ

)2s−1 √
L ‖ f ‖2, m ∈ N \ {1}.
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Table 2 Upper bounds of the uniform approximation error ‖ f − RA
ϕ,m f ‖∞ for special window functions

ϕ ∈ �m/T in the case T = 2L

Window function ϕ ∈ �m/T Truncation parameter m Upper bound of ‖ f − RA
ϕ,m f ‖∞

ϕ = ϕB 3 4.24 × 10−1
√
L ‖ f ‖2

4 2.58 × 10−1
√
L ‖ f ‖2

5 1.32 × 10−1
√
L ‖ f ‖2

6 1.04 × 10−1
√
L ‖ f ‖2

ϕ = ϕsinh 3 4.49 × 10−2
√
L ‖ f ‖2

4 9.33 × 10−3
√
L ‖ f ‖2

5 1.94 × 10−3
√
L ‖ f ‖2

6 4.03 × 10−4
√
L ‖ f ‖2

ϕ = ϕcKB 3 3.23 × 10−1
√
L ‖ f ‖2

4 9.87 × 10−2
√
L ‖ f ‖2

5 2.82 × 10−2
√
L ‖ f ‖2

6 7.65 × 10−3
√
L ‖ f ‖2

For the sinh-type window function ϕ = ϕsinh ∈ �m/T , the uniform approximation
error can be estimated by (5.6) in the form

‖ f − RA
ϕ,m f ‖∞ ≤ 5 e−mπ/2

√
L ‖ f ‖2, m ∈ N \ {1}.

For the continuous Kaiser–Bessel window function ϕ = ϕcKB ∈ �m/T , we obtain
by (5.9) the estimate

‖ f − RA
ϕ,m f ‖∞ ≤ 1

I0(mπ/2) − 1

(1
2

+ 2m
)√

L ‖ f ‖2, m ∈ N \ {1}.

In Table 2, we see that the regularized Shannon sampling formulas for FA with
the sinh-type window function (4.3) or the continuous Kaiser–Bessel window func-
tion (4.4) are very accurate for m ≥ 4. Further, these regularized Shannon sampling
formulas for FA can easily be computed, require less samples, and are numerically
robust for noisy samples.
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