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Abstract
Objective: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic reso-
nance imaging. We compare the performance of common reference-based and reference-free image quality metrics on unique 
datasets with real motion artifacts, and analyze the metrics’ robustness to typical pre-processing techniques.
Materials and methods: We compared five reference-based and five reference-free metrics on brain data acquired with and 
without intentional motion (2D and 3D sequences). The metrics were recalculated seven times with varying pre-processing 
steps. Spearman correlation coefficients were computed to assess the relationship between image quality metrics and radio-
logical evaluation.
Results: All reference-based metrics showed strong correlation with observer assessments. Among reference-free metrics, 
Average Edge Strength offers the most promising results, as it consistently displayed stronger correlations across all sequences 
compared to the other reference-free metrics. The strongest correlation was achieved with percentile normalization and 
restricting the metric values to the skull-stripped brain region. In contrast, correlations were weaker when not applying any 
brain mask and using min-max or no normalization.
Discussion: Reference-based metrics reliably correlate with radiological evaluation across different sequences and datasets. 
Pre-processing significantly influences correlation values. Future research should focus on refining pre-processing techniques 
and exploring approaches for automated image quality evaluation.
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Introduction

Quantitative evaluation of image quality is crucial across 
various sub-fields of magnetic resonance imaging (MRI). 
Particularly, the development and thorough validation of 
new image reconstruction and artifact correction techniques 
requires reliable quantitative image quality assessment. A 
large number of image quality metrics (IQMs) are employed 
in the literature, with some being reference-based metrics 
that require a ground truth or reference image, and others 
being reference-free [1].1 However, none of these metrics 
are sensitive to all types of image artifacts and the lack of 
standardized image quality evaluation might lead to "metric-
picking". Thus, the use of IQMs for benchmarking different 
image reconstruction or motion correction methods is chal-
lenging and might misguide future research [2–4].

Most IQMs were originally designed for natural images 
and their performance in the medical domain may not yet 
have been thoroughly validated [2, 4]. Medical image quality 
can be defined as how well the desired clinical information, 
i.e. the clinical diagnosis, can be extracted from the image in 
the relevant downstream task [5]. In practice, however, refer-
ence values for task-based quality measures are challenging 
to define and time consuming to obtain. Hence, radiological 
evaluation of overall image quality is commonly used as a 
gold standard when investigating the performance of IQMs 
[6–9]. Such an evaluation is typically based on the radiolo-
gist’s assessment of signal-to-noise ratio, sharpness, blurring 
and presence of artifacts in the images.

In the context of MR image reconstruction and motion 
correction, structural similarity index (SSIM) and peak 
signal-to-noise ratio (PSNR) are among the most com-
monly used IQMs. Yet, their performance and reliability 
vary between different studies. The organizers of the first 
fastMRI challenge found that SSIM performed consistently 
with radiological evaluation [10]. For the second fastMRI 
challenge, however, SSIM failed to detect hallucinations by 
numerous top-performing models [11]. Additionally, two 
recent studies on the correlation of IQMs with radiological 
evaluation have reported SSIM and PSNR to perform worse 
than other reference-based metrics, e.g. feature similarity 
index (FSIM) and visual information fidelity (VIF) [6, 7]. 
SSIM has also been shown to be less sensitive to simulated 
motion than e.g. VIF [12]. However, motion artifacts are 
complex, simulations often too simplistic [3], and none of 
these studies used real-motion data in their evaluation.

Alternatively, perceptual metrics based on deep features 
have been increasingly used in the computer vision and 
medical imaging community as an alternative to traditional 

IQMs [13–15]. Yet, they have not been comprehensively 
evaluated for medical imaging in general [4], nor for MR 
motion correction in particular. Moreover, all reference-
based IQMs rely on a high-quality reference image. On the 
one hand, “hidden noise” in such reference images might 
influence metric values and lead to suboptimal ranking of 
different reconstructions [16]. On the other hand, in some 
scenarios - like prospective clinical studies or dynamic 
imaging - a ground-truth image might not be available at all. 
For these cases, quality evaluation relies on reference-free 
metrics. However, their development is challenging [17], and 
they have shown less consistent correlation with radiological 
scores than reference-based metrics [8, 9].

In this work, we aim to assess the performance of com-
monly used reference-based and reference-free metrics in 
evaluating motion correction methods for research settings. 
We extend our previous evaluation of IQMs [8, 9] with 
recent advances (VIF and perceptual image quality metric). 
Rather than being complete and comprehensive, our selec-
tion of IQMs focuses on the most relevant and commonly 
used metrics in the field of MR motion correction, as those 
offer a higher interpretability and acceptance in the com-
munity. We perform our evaluation on two unique datasets 
with real motion artifacts [18, 19], which to the best of our 
knowledge has not been used for the analysis of IQMs so far. 
Further, we analyze the effect of common pre-processing 
steps on the IQMs, and their correlation with radiological 
assessment. The findings of our study might serve as recom-
mendations for a reliable usage of IQMs in future studies.

Methods

Image quality metrics

In this study, we adopted ten IQMs: five reference-based and 
five reference-free metrics. The selection was made based on 
the metrics’ popularity within the MR community [3, 6, 20], 
code availability (when possible), and findings presented in 
the existing literature. We here report a list of the adopted 
metrics and provide the metrics’ definitions in Table 1. For 
further implementation details we refer the reader to each 
reference as well as to our GitHub repository.

Reference‑based metrics

• Structural Similarity Index Measure (SSIM) [21] 
measures the similarity between two images by evalu-
ating luminance, contrast, and structure similarity. It 
provides a value between – 1 and 1, where 1 indicates 
perfect similarity.

1 To avoid confusion we note that sometimes reference-based metrics 
are also referred to as paired metrics and reference-free metrics as 
unpaired metrics.

https://github.com/melanieganz/ImageQualityMetricsMRI
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• Peak Signal-to-Noise Ratio (PSNR) [22] measures the 
ratio between the maximum possible power of a signal 
and the power of corrupting noise. It is expressed in deci-
bels (dB), with higher values indicating a better image 
quality.

• Feature Similarity Index Measure (FSIM) [23] cal-
culates the image similarity using the phase congruency 
on the frequency representation of the magnitude image, 
which detects edge similarities. High phase congruency 
values in Fourier components identify sharp light–dark 
transitions, perceived as edges. Gradient magnitude, 
added to account for contrast invariance, enhances the 
metric. FSIM ranges from 0 to 1, with 1 indicating identi-
cal images.

• Visual Information Fidelity (VIF) [24] is a metric 
based on natural scene statistics, designed to evaluate the 
quality of images based on the information they convey 
to the human visual system. One appealing feature of VIF 
is its ability to measure improvements in image quality 
compared to the reference image, which is indicated by 
a value greater than 1.

• Perceptual Image Patch Similarity (LPIPS) [13] 
measures the distance between features extracted from 
two images with a pre-trained convolutional neural net-
work. LPIPS is 0 for identical images and increases with 
decreasing similarity.

Reference‑free metrics

• Tenengrad (TG) [25] is a gradient-based metric com-
monly used to assess image sharpness or focus. It meas-
ures the intensity of edges by averaging gradient magni-
tudes across the image. Higher values indicate sharper 
images with prominent edges.

• Average Edge Strength (AES) [26, 27] is a similar gra-
dient-based metric. It is designed to quantify the over-
all edge content in an image by calculating the average 
gradient magnitude across detected edges. Higher values 
indicate more pronounced edges, typically associated 
with sharper images.

• Normalized Gradient Square (NGS) [20] is another 
gradient-based metric, used to assess image sharpness. 
It is a normalized version of TG, providing a relative 
measure of image focus.

• Image Entropy (IE) [20, 28] is a statistical metric that 
quantifies the amount of randomness in an image by ana-
lyzing the distribution of pixel intensities. Lower entropy 
values indicate more uniform, ordered pixel intensities, 
which are typically associated with higher image qual-
ity, such as sharper or less noisy images. We follow the 
implementation of Atkinson et al. [28].

• Gradient Entropy (GE) [20] combines gradient- and 
entropy-based evaluation. It calculates the entropy of the 
gradient magnitudes of an image and provides a measure 
of the randomness or complexity of the image’s edge 

Table 1  Definitions of image quality metrics

x: image to be evaluated; x̂ : reference image; m/m̂ : patch of x/x̂ , � : mean value, � : standard deviation, c1∕c2 ∝ L2 : variables proportional to 
dynamic range L; d : distance measure; F  : features extracted with pre-trained neural network; gi,j =

√

(∇xxij)
2 + (∇yxij)

2 : gradient magnitude; 
E(x): binary mask of edges of x; ↑ : metric value increases as image quality increases; ↓ : metric value decreases as image quality increases

Metric Definition Values
(↑ image quality)

Required image
value range

Reference-based SSIM 1

�M�

∑

m,m̂∈M

(2𝜇m𝜇m̂+c1)(2𝜎mm̂+c2)

(𝜇2
m
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2
m
+𝜎2

m̂
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PSNR 10 log10
max(x̂)2

1

IJ

∑I,J

i=1,j=1
(xij−x̂ij)

2

↑ –

FSIM Due to the complexity, please refer to Appendix A ↑, limit ∶ 1 [0, 255] or [0, 1]
VIF Due to the complexity, please refer to Appendix A ↑ [0, 255] or [0, 1]
LPIPS d(F(x),F(x̂)) ↓, limit ∶ 0 [-1, 1]

Reference-free TG 1

IJ
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i,j

↑ –
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√
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↓ –
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−
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gi,j
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↓ –
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structures. Lower values typically indicate more struc-
tured and concentrated edges, reflecting higher image 
quality.

Data acquisition

In this study, we utilized two different datasets: first, a 
publicly available dataset acquired at the Neurobiology 
Research Unit (NRU, Copenhagen, Denmark)2 [18]. This 
dataset includes 3D T1 MP-RAGE, 3D T2 FLAIR, 2D T1 
STIR, and 2D T2 TSE acquisitions with instructed head nod-
ding and shaking motion from 22 healthy participants. Each 
sequence was acquired with and without voluntary motion, 
as well as with and without prospective motion correction. 
The acquisition without motion and without motion correc-
tion served as reference image. Second, a private dataset 
acquired at the Cardiff University Brain Research Imaging 
Centre (CUBRIC, Cardiff, UK) [19]. This dataset consisted 
of solely MP-RAGE images from 9 healthy participants. 
Reference images were available for each subject, and the 
dataset comprised of acquisitions with and without volun-
tary motion. The motion types included nodding, continuous 
circular head movements, and "step-wise" motion. Retro-
spective motion correction was applied to the whole dataset, 
while uncorrected images remain available.

Both datasets were acquired on 3 T Prisma MRI scan-
ners (Siemens Healthineers, Erlangen, Germany). Further 

information regarding acquisition details, types of voluntary 
motion and motion correction methods for both datasets can 
be found in [18, 19].

Pre‑processing

Our pre-processing pipeline comprised five different steps 
to estimate the IQMs: skull-stripping, alignment, mask-
ing, normalization and the method used to reduce a set of 
IQM values across slices to a single value. Skull-stripping 
was performed on the reference MP-RAGE images using 
the Brain Extraction Tool (BET) [29] (further parameters 
-R -f 0.4 -m). For each sequence, the non-reference images 
were co-registered with the respective reference image. The 
brain mask extracted from the MP-RAGE reference was co-
registered to the reference image of the remaining sequences 
(3D FLAIR, 2D TSE, 2D TIRM), to ensure that the brain 
masks are in the same space as the corresponding sequence. 
Both alignments were performed using the rigid registration 
option in FLIRT (FMRIB’s Linear Image Registration Tool) 
[30]. To avoid inconsistencies with peripheral slices, only 
slices containing at least 10% brain voxels were included in 
the pre-processing and subsequent analysis.

While we fixed these first two steps with respect to the 
tooling used, we varied the masking, normalization and 
reduction method of the slice-wise IQM values into a sin-
gle value (mean or worst slice), as illustrated in Fig. 1. 
First, the images were either (i) not masked, (ii) masked 
directly (where only intensities inside the brain were used 

Fig. 1  Different pre-processing choices are involved for calculating 
IQMs. We vary three of the common pre-processing steps, namely 
masking, normalization and reduction method of the IQM val-
ues. The brain mask was either neglected, multiplied to the images 
or the metric was only evaluated within brain mask voxels. Images 

were either not normalized or normalized with min-max, mean-std 
or percentile normalization (except for FSIM, VIF, and LPIPS which 
require specific image values as shown in  1). IQM values across 
slices were reduced by calculating the mean value or taking the worst 
value of all slices (min/max depending on IQM)

2 https:// openn euro. org/ datas ets/ ds004 332/ versi ons/1. 3.0

https://openneuro.org/datasets/ds004332/versions/1.3.0


Magnetic Resonance Materials in Physics, Biology and Medicine 

during metric calculation) or (iii) masked through multi-
plication with the brain mask (which effectively zeroes 
out the background of the image). Second, the intensities 
were normalized volume-wise following (i) a min-max, (ii) 
a mean divided by standard deviation, or (iii) a percentile 
( 1st / 99.9th ) normalization approach. Alternatively, (iv) the 
intensities were not normalized at all.3 Third, the IQM val-
ues were computed for each slice and the final metric value 
was determined as either the mean or the worst value among 
all slices (min/max depending on IQM).

Image quality assessment

As illustrated in Fig. 2, the anonymized images from the 
NRU dataset were evaluated by two neuroradiologists 
with over 10 years of experience in reading MR images 
(N.S. and S.S.) and two recently graduated radiographers 
(M.R.R. and B.P.). For the CUBRIC dataset, ratings were 
performed by one of the experienced neuroradiologists 
(S.S.). Because of the different levels of experience in 
evaluating medical images, we averaged the scores with 
a double weight on the radiologists. The image assess-
ment was performed using a 1-5 Likert scale [31], with 
5 representing a perfect image (without artifacts) and 1 a 
completely non-diagnostic image. Both radiologists and 

radiographers were instructed to score the images based 
on the worst slice within the volume. The intra-variability 
between evaluators was assessed using the Krippendorff’s 
alpha coefficient, which ranges from 0 (no agreement) 
to 1 (perfect agreement), with values above 0.8 typically 
considered indicative of good reliability.

The correlation between the IQM values and the scores 
given by the evaluators was estimated using the Spearman 
rank correlation coefficient [32]. While the Pearson corre-
lation coefficient uses a linear function, the Spearman cor-
relation coefficient applies a monotonic function to meas-
ure strength and direction of the relationship between the 
two variables, which are also not required to be normally 
distributed [33]. The Spearman rank correlation coefficient 
spans between -1 and 1, representing a perfectly monotonic 
negative and positive relationship between the two variables, 
respectively. Spearman correlation magnitudes above 0.7 
indicate strong correlations [33].

Results

Validity of observer scores

First, we tested the validity of the observer scores for the 
NRU dataset. The Krippendorff’s alpha coefficient shows 
good agreement between the observers in case of the MP-
RAGE sequence, with a value of 0.82. For the T2 TSE, 
T2 FLAIR and T1 STIR images the evaluators displayed 

Fig. 2  Overview of the correla-
tion analysis between image 
quality metrics and observer 
scores. Each 3D image volume 
was evaluated by one neuroradi-
ologist for the CUBRIC dataset 
and by two neuroradiologists 
and two radiographers for the 
NRU dataset. For the latter, 
the scores were averaged with 
double weight on the more 
experienced neuroradiologists. 
IQMs were computed with 
various preprocessing choices 
(compare Fig. 1), as illustrated 
exemplary for SSIM. IQM 
values and observer scores of 
all images were then used to 
calculate the Spearman correla-
tion coefficient to measure the 
agreement between IQMs and 
observers

3 Note that FSIM, VIF and LPIPS require a specific image value 
range (see Table  1). These metrics can only be calculated for min-
max and percentile normalization and require an additional rescaling 
to the respective value ranges after normalization.
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moderate agreement with values of 0.78, 0.70 and 0.71, 
respectively.

Correlation of IQMs with observer scores across MR 
sequences

The correlation of the analyzed IQMs with observer scores 
for both datasets is compared in Fig. 3 for the pre-processing 
settings {Multiply, Percentile, Worst}. All reference-based 
IQMs show a strong correlation with radiological assess-
ment, with small variations in their relative performance 
for different MR sequences. Among the reference-free 

IQMs, AES and TG perform best, but correlations are not 
as strong and less consistent across sequences and datasets 
as for reference-based IQMs. Figure 4 compares three MP-
RAGE example images from one subject with varying lev-
els of motion, showing image quality metrics alongside the 
average evaluation scores from the observers.

To provide further context on these abstract correlation 
values, Fig. 5 shows the scatter plots of metric values against 
observer scores for the MP-RAGE sequence of the NRU 
dataset. Plots for the other sequences can be found in the 
Supplementary Information (Fig. S1).

Fig. 3  A Spearman correlation 
coefficient � between IQMs 
(x-axis) and observer scores for 
the four sequences of the NRU 
dataset (y-axis). Values are pro-
vided for statistically significant 
correlations (p-value < 0.05 ) 
and values corresponding to a 
strong correlation ( ∣ 𝜌 ∣> 0.6 ) 
are colored in blue and red. 
The metrics were calculated 
with the pre-processing settings 
{Multiply, Percentile, Worst}. 
B Median rank of each IQM, 
resulting from ranking the abso-
lute values of the correlation 
coefficients for each sequence 
and taking the median across 
sequences

Fig. 4  Three examples of MP-RAGE images from one subject. The 
reference image was acquired without voluntary motion and without 
motion correction, while the other two examples were acquired with 
voluntary motion (nodding/shaking) and with/without motion correc-
tion. Image quality metrics are reported, alongside with the average 
observers’ evaluation scores ("Score"). Examples for T2 FLAIR, T1 

TIRM and T2 TSE are shown in Fig. S2. The reference-based IQMS 
(SSIM, PSNR, FSIM, VIF, LPIPS) and reference-free IQMS (AES, 
TG, NGS, GE, IE) are shown to the right of the images. For the ref-
erence image, the reference-based IQMS are calculated on itself and 
colored in light-gray



Magnetic Resonance Materials in Physics, Biology and Medicine 

Fig. 5  Scatter plots visualizing the distribution of metrics values 
against observer scores. Each blue dot represents one MP-RAGE 
image volume from the NRU dataset and the corresponding regres-
sion line is shown green. For statistically significant correlations 

(p-value < 0.05 ), the corresponding Spearman correlation coefficient 
is provided on top of the plot. The metrics were calculated with the 
pre-processing settings {Multiply, Percentile, Worst}. Non-integer 
observer scores result from averaging the scores across the four raters

Fig. 6  Overview on the effect of pre-processing implementations 
in the correlation between IQM and observers’ scores on the MP-
RAGEs from the NRU (A) and the CUBRIC dataset (B). We com-
pare the different options for each pro-processing choice individually, 
while keeping the other two pre-processing settings at the standard 
{Multiply, Percentile, Worst}. The table only shows statistically sig-
nificant correlations ( p < 0.05 ), leaving the box empty if this require-
ment is not fulfilled. We indicated with a " ∗ " values for FSIM, VIF 
and LPIPS which are not available in case of normalization using 

"Mean-Std" and "None", as they require a specific range of values 
(see Table 1). Similarly, these values are unavailable with the "Mask" 
setting, as the metrics are computed across the entire matrix. Over-
all, we found that the correlations with reference-based metrics are 
more consistent compared to the reference-free metrics, which largely 
display weak correlation with the observer’s evaluations. The pre-pro-
cessing steps that mostly affect the correlation values are: not apply-
ing a brain mask ("No Mask"), applying no normalization ("None") 
or rescaling using the "Mean-Std" method
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Influence of implementation decisions

To test the robustness of the IQMs towards standard imple-
mentation variations, we compared the strength of cor-
relation for different pre-processing settings. We display 
the results for the MP-RAGE sequence (of both NRU and 
CUBRIC datasets) in Fig. 6, while the plots for the other 
sequences can be found in the Supplementary Information 
(Figs. S2, S3 and S4). We did not observe a significant 
difference in the correlation coefficients for different slice 
reduction methods, i.e. whether the metric value of the 
worst slice is chosen or the mean of all slices is calculated. 
However, with respect to different normalization meth-
ods, we observed inconsistent correlation results, particu-
larly for PSNR, AES and TG. Percentile normalization 
performed best over all metrics. Further, with respect to 
the brain mask application, we did not notice substantial 
differences between masking metric values or multiplying 
the images with the mask, but correlations dropped signifi-
cantly when no brain mask was applied at all.

Discussion

We have assessed the correlation of image quality metrics 
with radiological evaluation under various pre-process-
ing settings for two datasets with real motion artifacts. 
Our results confirm that reference-based IQMs exhibit 
consistently strong correlations with radiological assess-
ments. Among the reference-free IQMs, only AES and 
TG correlate consistently with observer scores across 
all four MR sequences. Pre-processing choices have a 
varying influence on the stability of the correlations. We 
have found that the robustness of the IQM estimation was 
largely unaffected by variations in slice reduction meth-
ods. Normalization techniques, in contrast, significantly 
influenced correlation strength, with percentile normaliza-
tion outperforming others. Furthermore, the use of brain 
masks proved essential, as the absence of a mask led to a 
substantial drop in correlation.

We have investigated the causes of the large variations 
due to pre-processing choices. To explain the influence of 
normalization, we have compared the distribution of pixel 
intensities for the four different normalization methods 

Fig. 7  Intensity distributions of one example MP-RAGE image (blue) 
and its reference (red) for the normalization settings A “None”, B 
“Min-max”, C “Mean-std” and D “Percentile”. The analysis is per-
formed only within the brain mask. Example slices of image and ref-

erence (same intensity window) are shown next to the histograms. 
Min-max normalization is impacted by large outlier values and leads 
to a mismatch of intensity values in image and reference
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for one example MP-RAGE image and its corresponding 
reference in Fig. 7. This illustrates that min-max normali-
zation is impacted by large outlier values, while mean-std 
and percentile normalization better match the histograms 
of the image and its reference. But additional methods of 
normalization could be considered as well, such as slice-
wise normalization. The influence of applying the brain 
mask is the most extensive, but also easy to understand. 
In our brain application the background covers more than 
60% of the image. Therefore, using the background when 
estimating IQMs will naturally bias the results since they 
will be largely driven by the background. This is also not 
desirable when one wants to assess image quality, since 
in a clinical evaluation the focus obviously lies on the 
image and not the background. This issue might be spe-
cific to brain imaging. Other application areas, e.g. cardiac 
or abdominal imaging, have a much larger portion of the 
image that contains no background and therefore mask-
ing is of lesser importance, and should be part of future 
investigation.

The observer scoring was performed on the worst slice of 
the image volume, based on discussions with the neuroradi-
ologists, since when they are looking for brain abnormali-
ties, e.g. epilepsy lesions or bleeds, they examine all slices 
of an image. Even if only some of the slices are degraded a 
proper diagnosis might not be possible. We tried to address 
this by comparing the mean vs. worst reduction method for 
the IQM values across slices and we have found that the 
IQM estimation was largely unaffected by variations in slice 
reduction methods.

The comparison between the MP-RAGE datasets 
acquired at different institutions shows consistently smaller 
correlation values for the CUBRIC dataset compared to 
NRU (Fig. 6). This discrepancy might be attributed to the 
larger variety of motion patterns performed during the acqui-
sition of the CUBRIC dataset compared to NRU, as well 
as to the limited quality evaluation (only one experienced 
radiologist for the CUBRIC dataset versus two radiologists 
and two technicians for the NRU dataset).

Finally, in this work we focused on the process of cal-
culating IQMs. But additional pre-processing steps, such 
as different brain mask extraction methods (FreeSurfer vs. 
BET vs. SPM) might also influence the results. If the mask-
ing completely fails and does not cover the whole region of 
interest, then no reliable IQM can be calculated. If it fails 
to remove all of the background due to e.g. excessive ghost-
ing, then the IQM would be affected, but probably lead to 
a similar result than not removing the background. Hence, 
this should be assessed in future work. Moreover, mis-reg-
istration can substantially affect the accuracy of image qual-
ity metric evaluations. Therefore, we suggest to inspect the 
quality of the registration, as different registration settings 
(FreeSurfer vs. FSL vs. SPM) have not been tested yet. In the 

intermediate, we strongly recommend to clearly describe all 
pre-processing steps, including which brain mask extraction 
and registration tool was utilized, and to share the analysis 
code openly.

Given the above, we cannot recommend a single IQM, but 
instead advocate for using a set of metrics to reflect differ-
ent properties. But in general, we see that if reference-based 
metrics are possible to compute, those perform better and are 
closer to radiological assessments and therefore preferable.

Limitations

Our current analysis is based on data acquired for research 
purposes that included a separate ’still’ reference scan. The 
reason for this is that we wanted to assess reference-based 
and reference-free IQMs and that IQMs are currently largely 
used to evaluate image quality, e.g. for sequence develop-
ment in the MR physics community. But of course, IQMs 
would also be desirable to be used in a clinical setting in 
order to provide inline quality assessment of MRI scans to 
reduce re-scans. Hence, it is desirable to assess if there exist 
any reference-free IQMs that correlate well with radiological 
assessments and to check the influence of pre-processing 
choices on clinical data as well. Some of the pre-processing 
choices might need to be adapted when they are applied to 
clinical data especially to 2D sequences with varying cover-
age. Moreover, our datasets are limited to 3T acquisitions: 
future studies should therefore evaluate the performance of 
image quality metrics at different field strengths and sub-
millimeter resolutions [34]. Finally, the presented IQMs 
are not proper metrics in the mathematical sense and will 
therefore always vary in values. Hence, a direct comparison 
of metric values between studies, is only possible if exactly 
the same metric implementation is used on exactly the same 
dataset. This precludes us from directly comparing studies 
of e.g. different motion correction methods and points in the 
direction of necessitating data sharing of standard datasets 
for methods testing.

Outlook

To bridge the gap between reference-free and reference-
based IQMs, future developments could focus on distribu-
tion-based metrics and learning-based approaches. In par-
ticular, approaches are favorable that do not require matched 
reference images but learn statistical properties of motion-
free and motion-corrupted images and thus mimic how 
radiologists assess image quality. Initial work on automated 
image quality assessment without reference images has 
demonstrated the potential of such approaches for specific 
sequences [35–37]. With the growth of large-scale datasets 
and computational resources, more powerful models can be 
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trained in the future [38], potentially enabling automated 
image quality assessment to become more robust and gen-
eralizable across applications.

Conclusion

In our study, we have evaluated the correlation between 
image quality metrics (IQM) and radiological scores, and 
have shown how different pre-processing steps can strongly 
affect the correlation between IQMs and radiological assess-
ment. Overall, we have found that reference-based IQMs 
show consistently stronger correlations than reference-free 
metrics across different datasets and image contrasts. Most 
importantly, our findings underscore the importance of pre-
processing choices in IQM-based quality assessment, as well 
as the need for sharing detailed documentation, in the spirit 
of reproducible research.

Supplementary information

Electronic supplementary information is available.

Appendix A Mathematical description

This section is meant to provide some additional information 
regarding the FSIM [23] and VIF [24] metrics reported in 
Table 1. For additional information, please refer to the respec-
tive references.

FSIM

The Feature Similarity Index Measure (FSIM) is calculated 
by first computing the similarity measure between the two 
images wrt. the phase congruency (PC) [39] and the gradient 
magnitude (GM):

where T1 and T2 are two positive constant defined to increase 
the stability of the two metrics.

From Eq. A1 and A2 we can derive the similarity index 
SL as:

(A1)SPC =
2PC1(x) ⋅ PC2(x) + T1

2PC2
1
(x) + PC2

2
(x) + T1

(A2)SGM =
2GM1(x) ⋅ GM2(x) + T2

2GM2
1
(x) + GM2

2
(x) + T2

(A3)SL = [SPC(x)]
�
⋅ [SGM(x)]

�

with � and � being weights to adjust the relative importance 
of the two terms. In this paper they were both kept at 1 as in 
the original implementation [23].

Finally the FSIM index can be derived as:

where PCm(x) = max(PC1(x),PC2(x)).

VIF

Visual Information Fidelity (VIF) quantifies the similarity 
between two images, here called test and reference images, 
capturing how well the reference’s information is preserved. 
The approach consists on measuring the information fidelity 
across multiple scales (resolution) by applying a Gaussian fil-
ter. The VIF is then calculated as the ratio of the information 
conveyed by the test image to the information available in the 
reference image. The VIF is then computed as:

with �2
x
 , �2

y
 , and �xy being the variances and covariance 

respectively of the test and reference images, and �2
n
 the 

variance of the noise. The overall VIF index is obtained by 
summing the contributions from all scales and normalizing 
them, resulting in a value within the interval [0, 1] , exceeding 
1 for images with enhanced contrast.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10334- 025- 01266-y.
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