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ABSTRACT
Current theories of memory processing postulate a slow transformation from episodic to abstract, gist-like memories. We previ-
ously demonstrated that sleep shortly after learning improves gist abstraction in healthy volunteers across a one-year retention 
interval using a visual version of the Deese-Roediger-McDermott (DRM) paradigm. Here, we investigate the temporal evolution 
of this effect by testing recognition performance on a similar DRM task immediately after encoding, as well as 1 week and 1 year 
later. Moreover, we address the role of feature overlap during encoding, using stimulus sets that are either closely related to or 
more distant from their common prototype. Behavioural data were obtained from N = 16 healthy volunteers in a within-subjects 
design, where different sets of shapes were learned in separate experimental sessions, followed by consolidation during day-time 
wakefulness or nocturnal sleep, respectively. Our results indicate high levels of (false) recognition of non-encoded prototypes for 
all measurement points, including after 1 year. However, in contrast to our previous findings, gist memory was not affected by 
whether participants slept or stayed awake during the first 12 h after encoding. Comparisons across experiments indicate that the 
divergent results are due to changes in task demands rendering item and gist memory traces less distinct in the present study. Our 
results confirm the behavioural persistence of visual gist abstraction across extended intervals. At the same time, they highlight 
that sleep effects on this process are highly dependent on task demands.

1   |   Introduction

The benefits of sleep for memory consolidation were originally 
demonstrated using unrelated stimuli such as individual sylla-
bles (Jenkins and Dallenbach 1924) or words (Gais et al. 2006). 
However, research over several decades has stimulated the idea 

that sleep is at least as important for extracting and consolidating 
higher-order structure contained in newly encoded information 
(Brodt et al. 2023; Landmann et al. 2014; Lerner and Gluck 2019; 
Lewis and Durrant 2011; Wagner et al. 2004). Accordingly, cur-
rent theories of memory processing postulate a slow transfor-
mation from episodic to more abstract memories, with the latter 
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based on generalised representations that are often referred to 
as the ‘gist’ of the encoded information (Dudai 2012; Winocur 
and Moscovitch 2011; Yassa and Reagh 2013). Gist-based recog-
nition and reasoning are thought to support adaptive behaviour 
by improving generalisation to novel instances while retaining 
a reliable record of central stimulus features (Zeithamova and 
Bowman 2020).

However, gist abstraction may also impair memory performance 
(Tompary and Davachi 2017). Indeed, one of the most prominent 
areas of research into gist abstraction are studies investigating 
‘false’ memories: in the classic Deese-Roediger-McDermott (DRM) 
paradigm (Deese  1959; Roediger and McDermott  1995), partici-
pants learn lists of words that are highly semantically related (e.g., 
‘bed’, ‘dream’, ‘night’, ‘rest’). At a later retrieval test, participants 
often remember the gist of the learned lists (e.g., ‘sleep’), and they 
usually do so with high subjective confidence, despite not having 
seen these lures during learning. It has been argued that such find-
ings indicate gist abstraction, since the non-veridical recognition 
of the common denominator of multiple stimuli is likely useful in 
real-world settings (Cann et al. 2011; Diekelmann et al. 2010; Kurz 
et  al.  2019; Kurz et  al.  2021; Pardilla-Delgado and Payne  2016; 
Payne et al. 2009). However, this conclusion is questionable given 
that performance in the DRM paradigm may reflect the character-
istics of pre-existing semantic networks rather than abstractions. 
Nevertheless, similar results have been reported when abstract vi-
sual stimuli are used as learning material (Homa and Hibbs 1978; 
Posner and Keele 1968, 1970; Zeng et al. 2021). Here, in the ab-
sence of high-level knowledge about the stimulus domain, ‘false’ 
memories are more likely to reflect active processes of abstraction.

Gist abstraction is thought to benefit from sleep (Dudai 
et al. 2015; Inostroza and Born 2013; Lewis and Durrant 2011). 
However, the picture emerging from studies that tested the ef-
fects of sleep on gist abstraction is inconclusive (Newbury and 
Monaghan 2019): whereas some studies showed an enhancing 
effect of sleep (Diekelmann et  al.  2010; McKeon et  al.  2012; 
Pardilla-Delgado and Payne  2016; Payne et  al.  2009), others 
found no difference or even a reduction of gist knowledge after 
sleep compared with wakefulness (Darsaud et  al.  2011; Fenn 
et al. 2009; Lo, Sim, et al. 2014).

One factor that may have contributed to the mixed outcomes of 
previous studies is the delay of testing, which in most of these 
studies was relatively short. Earlier studies have suggested 
that gist abstraction is a process that evolves slowly over time 
(McDermott  1996; Neuschatz et  al.  2001; Payne et  al.  1996; 
Posner and Keele 1970; Seamon et al. 2002; Strange et al. 1970; 
Thapar and McDermott 2001; Toglia et al. 1999). In a previous 
study (Lutz et al. 2017), we used a non-verbal, visual version of 
the DRM paradigm to test this idea. We found a beneficial effect 
of sleep on gist abstraction only after a retention interval of 1 
year, while recall of veridical memories was improved imme-
diately after sleep vs. wakefulness (Lutz et al. 2017). Moreover, 
we observed high recognition rates for gist-like prototypes in a 
baseline test early after encoding. These findings suggested that 
abstraction may occur early after encoding, but then requires 
sleep to be retained for the long term.

A second open question is whether the temporal evolution of gist 
abstraction depends on the extent to which features of different 

stimuli overlap (Bowman and Zeithamova  2020). It has been 
shown that sleep is particularly involved in consolidating mem-
ory traces of weak-to-intermediate strength (Denis et al. 2021; 
Drosopoulos et al. 2007; Lutz et al. 2024; Stickgold 2009). This 
suggests that encoding strength would affect both the degree to 
which sleep promotes abstraction, as well as its temporal evolu-
tion. However, to our knowledge, this has not been systemati-
cally investigated.

In the present study, we address the nature and dynamics of vi-
sual gist abstraction using an adapted version of our previously 
established protocol (Lutz et al. 2017). We had participants learn 
stimuli of different degrees of similarity with their respective pro-
totypes and measured abstraction immediately after encoding, 
after 1 week, and after 1 year. We hypothesized that sleep (vs. 
wakefulness) improves gist abstraction (i.e., higher recognition for 
prototypes vs. encoded stimuli) 1 week after encoding (compared 
with an immediate test), particularly for stimuli that share little 
(vs. more) feature overlap. We further hypothesized that this ben-
eficial effect of sleep on gist abstraction is maintained over longer 
periods of time and would still be visible 1 year after encoding.

Our results confirm that gist memory persists for up to 1 year, 
but we did not observe a beneficial effect of sleep on visual gist 
abstraction at either time point. To better understand the rea-
sons for these equivocal findings, we compared the present data 
to our previous experiments and found that changes in task 
parameters led to differences in baseline performance which 
likely reduced benefits of sleep for gist memory abstraction and 
consolidation.

2   |   Methods

2.1   |   Participants

Based on the parameters and results of our previous study (Lutz 
et al. 2017), 16 healthy participants (8 female, 8 male; mean age: 
23 years; range: 18–33) took part in the present experiment. 
Two participants were excluded from analyses of sleep param-
eters due to technical issues (for one participant, no EEG was 
recorded) or poor EEG quality (non-stereotypic artefacts, po-
tentially related to electrodes becoming detached overnight). 
Furthermore, only 12 of the original 16 participants were avail-
able for retesting after 1 year. Participants were not on any 
medication, caffeine, or alcohol, and did not suffer from any 
neurological or psychological disorder. In addition, participants 
had a normal sleep–wake cycle (i.e., their usual bedtime was be-
tween 2200 and 2400 h and they usually got up between 0700 
and 0900 h), had a normal or corrected-to-normal visual acu-
ity, and were not colour-blind. All participants gave written in-
formed consent and were paid for participation. The experiment 
was approved by the ethics committee of the Medical Faculty at 
the University of Tübingen and conducted in accordance with 
the approved guidelines.

2.2   |   Stimuli and Task

To test the sleep-dependent evolution of gist abstraction, we 
employed an adapted version of the non-verbal visual DRM 
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paradigm (Diekelmann et al. 2011; Lutz et al. 2017; Slotnick and 
Schacter 2004) and tested participants across different time in-
tervals (20 min after encoding, after a delay of 1 week, as well 
as after ~1 year of retention; see Design and procedure). The 
total of 80 employed stimulus sets each consisted of 10 abstract 
exemplar shapes derived from a single prototype (Figure  1A) 
(Slotnick and Schacter  2004). For the present study, every set 
was split into two subsets based on the results of a pilot experi-
ment in a separate sample of participants (N = 14): subsets either 
contained the five shapes rated most similar to the prototype 
(“close” subset) or the five shapes rated least similar to the pro-
totype (“distant” subset). On average, participants rated the sub-
sets' distance from their prototype at a median of 3 and 8 on a 
scale of 1 to 10 (with 1 being closest and 10 being most distant). 
These ratings were significantly different for all sets individu-
ally (Wilcoxon signed-rank test, p ≤ 0.011) except for two (out of 
80), which showed a statistical trend (p ≤ 0.088).

During encoding, the shapes of a given subset were presented 
on the screen one after another, twice in a row in the same 
order. Presentation time was 2.5 s per shape, with an inter-
stimulus interval of 3 s (Figure 1B, left). In each experimental 
condition (sleep/wake), participants were shown shapes from 
40 stimulus sets, with half of the sets presented as close sub-
sets and the other half as distant subsets. Participants were 
informed about the repeated presentation of shapes from the 
same set. Stimuli appeared at one of two pre-defined loca-
tions on the screen (left or right), with all stimuli of one set 
presented at the same location. The participants' task was 
to memorise the visual features and location of every single 
shape. Presentation of stimuli followed specific rules to ensure 
comparability between conditions: (1) presentation of close or 
distant shapes of a set was counterbalanced across partici-
pants and conditions. (2) To ensure comparable variances of 
stimulus sets across conditions, sets of comparable perceived 
similarity were sampled and counterbalanced across condi-
tions. Stimulus sets were ranked according to the perceived 
similarity of their items with the respective prototype, with 
similarity judgements obtained in a pilot study on a separate 
sample (N = 14). Similarity judgements were transformed into 
a measure of “internal consistency”, and the continuum of in-
ternal consistencies was split into eight bins of equal width. 
From each of these bins, five sets were sampled per condition, 
resulting in 40 sets containing 200 individual stimuli per con-
dition. (3) Presentation on the left and right side of the screen 
switched after each set, with the starting condition counter-
balanced across participants and presentation locations coun-
terbalanced across conditions for each set. (4) No more than 
three close or distant subsets were presented in a row. In ad-
dition, the order of the sets was randomly selected for each 
participant.

During the 20-min and one-week tests, participants were pre-
sented with 20 sets each, that is, half of the encoded sets were 
tested during the 20-min test and the other half was tested 
during the one-week test. Four types of shapes per set were pre-
sented: one ‘old shape’ from the encoded subset; one ‘related 
shape’ from the corresponding unseen subset of the same set; 
the non-studied ‘prototype’ of each set; and three ‘new shapes’ 
from non-studied sets (with each triplet taken from the same set; 
Figure 1B, middle). To minimise variance in similarity between 

prototypes and old or related shapes, we only presented partic-
ipants with shapes that were previously rated to be of interme-
diate distance in the close and distant subsets (i.e., we always 
presented the third out of 5 shapes in each subset, after sort-
ing them from closest to most distant on the basis of rating data 
from an independent sample as described above). Unlike during 
encoding, in this recognition test, shapes were presented in the 
middle of the screen. For each shape, participants had to indi-
cate if they had seen it before and where it was presented (i.e., 
they were presented with the choices “old-left”, “old-right” and 
“new”). As there was no effect of position recall between con-
ditions (p ≥ 0.198 for main and interaction effects with Sleep/
wake), data were collapsed across this measure. Afterwards, 
they were asked to make remember/know/guess judgements and 
indicate their confidence on a 4-point scale. To reduce potential 
recognition biases due to shapes of different sets being presented 
with the same sequential pattern, we pseudo-randomly selected 
the first stimulus from each encoded set seen in a test session to 
be either an old shape, a related shape, or a prototype shape with 
equal probability of 1/3. It was also ensured that the same stim-
ulus type from different sets (old, related or prototype shapes) 
was not presented more than twice in a row. Apart from these 
rules, presentation of stimuli was again randomised for every 
participant. The recognition test was followed by an exploratory 
familiarity rating where the same stimuli that were presented 
during the recognition test (one prototype, one old shape and 
one related shape per set) were simultaneously shown on the 
screen. Participants’ task was to rank them according to their 
familiarity (from most to least familiar). Data for this task are 
not shown due to the exploratory nature of this task and largely 
inconclusive results.

In a separate session following the one-week test, participants 
took part in a set rating task. To determine if the prototypes re-
ally represent the gist of their respective sets, participants were 
presented with all 11 shapes (i.e., the 10 exemplars plus the pro-
totype) of each set. They were then asked to pick two shapes 
they thought represented the whole set best, with the most rep-
resentative shape to be selected first. All 80 sets (i.e., 40 sets in 
each condition) were rated. The location of the shapes was ran-
domised for each participant.

Finally, at the one-year test, participants were simultaneously 
presented with two stimuli (either an old shape vs. a new shape 
or a prototype vs. a new shape; Figure 1B, right). In this two-
alternative forced-choice (2-AFC) task, for each pair, partici-
pants were asked which of the two shapes was more familiar 
to them. Additionally, they were asked for their confidence on 
a 4-point scale. As in the 20-min and one-week tests, we used 
one of the old shapes (that had been seen three times, twice 
during encoding and once during set rating, but had not been 
tested during recognition) and the prototype (which had also 
been seen three times, during recognition test, familiarity rat-
ing, and set rating) of each of the 80 sets. This was balanced by 
an equal number of new shapes. We used two shapes from each 
new set (thus matching the number of shapes per encoded set, 
one old shape and one prototype), that is, the 160 new shapes 
were derived from 80 unseen sets. Presentation of stimulus 
types was balanced across the two locations. Furthermore, as in 
the 20-min and 1-week tests, the shapes were pseudo-randomly 
selected such that for one half  of the  sets, the first stimulus 
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FIGURE 1    |    (A) Example stimulus set. Stimulus sets consisted of 10 abstract shapes derived from a single prototype. Every set was split into two 
subsets containing either the five shapes rated most similar to the prototype (“close” subset), or the five shapes rated least similar to the prototype 
(“distant” subset) in a pilot study on a separate sample of participants (N = 14). (B) Memory task. In each experimental condition (see below), partici-
pants encoded 40 sets of 5 abstract shapes (either close to or distant from the prototype; repeated twice in a row), presented either on the left or right 
side of a computer screen (only two shapes per set shown for simplicity). At the test after 20 min or 1 week, participants were presented with studied 
old shapes, non-studied related shapes from the same set, non-studied prototype shapes, as well as new shapes. Memory performance for old shapes 
was taken as an index of veridical memory, whereas false recognition of prototypes was used to operationalize gist memory. False recognition of re-
lated shapes was used to test whether prototypes were indeed perceived as prototypical (see Methods and Supplementary Information for details). For 
each shape, participants were asked if it is old (i.e., if they have seen it before) or new. If they thought it was old, they should also indicate whether it 
was presented on the left or right side of the screen. Participants should further indicate whether they remember, know, or guess and how confident 
they are about their choice (4-point scale). Finally, during the one-year test, participants performed a two-alternative forced-choice (2-AFC) task, in 
which they were presented with either an old shape or prototype on one side of the screen and a new shape on the other side of the screen, and they 
had to decide which of them is more familiar. Afterwards, they were asked to indicate their confidence about their choice on a 4-point scale. (C) 
Experimental design. Each participant was tested in a Sleep and a Wake condition. In the Sleep condition, participants encoded the stimulus mate-
rial in the evening, and in the Wake condition, they encoded the stimulus material in the morning. Twenty minutes afterwards, there was a first test 
(20-min test), followed by a test after a one-week delay (one-week test). At the end of participants' two experimental conditions, they took part in a 
set rating. Approximately 1 year later, participants were tested again (one-year test). Testing was done in counterbalanced order between the two 
conditions. Different sets of stimuli were used for the two conditions and the 20-min and one-week tests. During the one-year test, stimuli from both 
conditions were compared with new stimuli.
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presented during the test was an old shape and for the other half 
of the sets, it was the prototype shape. In addition, at least three 
shapes from other sets were shown before another shape of the 
same set was shown again.

2.3   |   Design and Procedure

Participants took part in two conditions in a within-subjects 
design: in the Sleep condition, they were initially tested 20 min 
after encoding before a night of normal sleep; in the Wake con-
dition, the same participants were initially tested 20 min after 
encoding before normal daytime wakefulness. Subsequent tests 
took place after a delay of 1 week, as well as after ~1 year of re-
tention (Figure 1C).

Half of the participants started with the Sleep condition; the 
other half started with the Wake condition. In addition to the 
experimental sessions, 2–3 days before the Sleep condition, there 
was an adaptation night to familiarise participants with sleeping 
in the sleep lab environment.

Inclusion and exclusion criteria were assessed using simple 
questionnaires, as well as the Freiburg Vision Test, FrACT 
(Bach  2007), and a colour vision online test (http://​www.​
color​-​blind​ness.​com/​color​-​arran​gemen​t-​test/​) when par-
ticipants first arrived at the sleep lab. Additionally, in the 
adaptation night session, participants took part in a word flu-
ency test (Aschenbrenner et al. 2000) and a handedness test 
(Oldfield  1971). During the adaptation night, participants 
had the opportunity to sleep in the laboratory with the elec-
trode setup for polysomnographic EEG recordings between 
11:00 PM and 7:00 AM. The next morning, they completed a 
questionnaire on sleep quality (the German “Schlaffragebogen 
A/Revidierte Fassung” [SF-A/R]; Görtelmeyer 2011) and left 
the laboratory.

On the day of the encoding session, participants came to the 
laboratory between 8:00 PM and 08:15 PM (Sleep condition) 
or 8:00 AM and 8:15 AM (Wake condition). After initial tests 
investigating participants' vigilance (Diekelmann et  al.  2013) 
and subjective sleepiness (Stanford Sleepiness Scale; Hoddes 
et al. 1972), encoding of the stimulus material started at 8:30 PM 
(Sleep condition) or 8:30 AM (Wake condition). Participants 
were again tested on their sleepiness at the end of encoding, and 
then performed a first test after 20 min of relaxing music (20-
min test; Lutz et al. 2017).

This was followed by a first debriefing (asking participants how 
difficult they found it to encode the stimulus material, if they 
used a particular encoding technique, and how difficult it was 
for them to recognise the shapes in the test), and a digit span 
test. Afterwards, in the Sleep condition, participants had the 
possibility to sleep in the sleep laboratory for 8 h, from 11:00 PM 
until 7:00 AM, including polysomnographic recordings. The 
next morning, they completed another questionnaire on sleep 
quality (SF-A/R) and left the laboratory. In the Wake condi-
tion, participants left the laboratory after the digit span test. 
Participants were instructed to keep a regular sleep–wake cycle 
and refrain from taking day-time naps during the retention in-
tervals. For this purpose, their motor activity was controlled by 

actimetry (MotionWatch 8, CamNtech Ltd., Cambridge, UK) in 
both conditions. Additionally, we used a questionnaire to record 
participants' daily activities. Participants also filled a brief sleep 
diary until they returned for the one-week test.

The one-week test session took place 7 days after encoding at 
3:00 PM. The test was preceded by initial tests on vigilance and 
sleepiness, and followed by another debriefing (asking how dif-
ficult participants found it to recognise the stimulus material, 
and, if this was their second condition, if they noticed similar-
ities between stimuli within or across sets), a digit span test, a 
test on their general sleep quality (Pittsburgh Sleep Quality 
Index, PSQI) and chronotype (Morningness-Eveningness 
Questionnaire, MEQ; Horne and Ostberg  1976). Participation 
in the two conditions was separated by an interval of at least 
2 weeks. All participants were invited for an additional set rat-
ing session after finishing both conditions. The set rating took 
place at 3:00 PM and was again preceded by tests on vigilance 
and sleepiness.

Finally, 12 participants of the original sample took part in a 
one-year test (mean delay from initial encoding, 368 ± 26 days; 
cf. Lutz et al. 2017). All participants were tested between 4:30 
and 6:30 PM. Before this final test, we again tested participants' 
vigilance and sleepiness.

2.4   |   Data Acquisition and Analysis

Behavioural data was acquired using MATLAB/Psychtoolbox 
(RRID:SCR_002881; Brainard  1997; Kleiner et  al.  2007; 
Pelli 1997). We measured accuracy of task performance and re-
action times. Gist memory was assessed in terms of recognition 
performance for the prototype shapes; veridical memory was 
assessed as the recognition performance for old shapes. For cor-
relational analyses, we additionally calculated a difference score 
between recognition of prototypes and old shapes (prototypes 
minus old shapes). Finally, the recognition performance (per-
centage of “old” responses) for shapes of the non-studied half of 
a set (here referred to as “related” memory) was contrasted with 
prototypes as a measure of prototypicality (i.e., to investigate if 
prototypes were indeed perceived as more prototypical, given 
that both prototypes and related shapes were not seen during 
initial encoding; see Figure S1).

To assess whether and how participants slept during the one-
week interval, we collected actigraphy data and used additional 
questionnaires. Participants were asked to press a marker on the 
actigraph (MotionWatch 8) when switching off the lights in the 
evening and getting up in the morning. In the subjective ques-
tionnaires, participants should indicate the time they switched 
off the lights, the time when they fell asleep, how often and how 
long they were awake during the night, as well as the time when 
they got up. Time in bed (TiB) was calculated as the time be-
tween lights off and getting up; sleep period was calculated as 
the time between falling asleep and waking up; sleep onset la-
tency (SOL) was calculated as the difference between lights off 
and the time falling asleep; and wake after sleep onset (WASO) 
was calculated as the time being awake after falling asleep. For 
the analysis of the actigraphy data, we used a standard algorithm 
as implemented in MotionWare 1.2.5 (RRID:SCR_022253), with 
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a high sensitivity threshold for the detection of wake phases and 
an epoch length of 15 s.

Polysomnographic recordings were used to monitor brain ac-
tivity in the Sleep condition during the experimental night in 
the laboratory. The electroencephalogram (EEG) was recorded 
at eight locations (F3 and F4, C3 and C4, P3 and P4, and O1 
and O2, according to the international 10–20 system). The 
electrodes were referenced online against the mean of the two 
mastoids (A1, A2). Additionally, the electrooculogram (EOG) 
and electromyogram (EMG, electrodes positioned on the chin) 
were recorded with bipolar montages. Sleep scoring was per-
formed manually following standard criteria (Rechtschaffen 
and Kales  1968). Offline analyses of slow oscillations (SO) 
and sleep spindles were performed using algorithms imple-
mented in SpiSOP (RRID:SCR_015673), based on sleep stages 
S2, S3, and S4 and using standard parameters. Spindles were 
detected in a range of ±1 Hz around the individual frequency 
peak (mean = 13.22, SD = 0.5) in the spindle frequency range 
based on channel-averaged power spectra. Given the visuo-
perceptual nature of our task, our focus was on occipital SOs. 
Thus, SO measures were averaged across electrodes O1 and O2. 
Co-occurrence of spindles and SOs was assessed in two ways. 
First, within each participant and each electrode site, the per-
centage of spindles coinciding with an SO (SO trough) ± 1.2 s 
around the spindle trough was determined and then averaged 
across all electrode sites. Secondly, only for spindles coinciding 
with an SO between the two positive-to-negative zero crossings 
of an SO (Denis et al. 2021; E.-M. Kurz et al. 2023), the signal 
(±3 s around SO trough) was filtered using a 0.3 Hz high-pass fil-
ter and a 3.5 Hz low-pass filter. The same signal was then filtered 
between ±1 Hz around the individually determined spindle fre-
quency peak. The Hilbert transform was then applied to each 
time series to extract the instantaneous phase of the SO filtered 
signal and the instantaneous amplitude of the spindle frequency 
filtered signal, respectively. For each SO-spindle event, the SO 
phase at the spindle amplitude maximum was then extracted 
and averaged across electrodes within a participant using the 
circstat toolbox (Berens 2009) in MATLAB.

2.5   |   Statistics

Two-tailed tests were chosen for all statistical analyses. The level 
of significance was set to p < 0.05. Repeated-measures ANOVAs 
as implemented in JASP (JASP Team 2024) were used, in com-
bination with follow-up t-tests. Greenhouse–Geisser correction 
of degrees of freedom was applied when the assumption of sphe-
ricity was violated. We report original degrees of freedom and 
corrected p values in these cases.

3   |   Results

We tested the temporal evolution of sleep-associated visual gist 
abstraction and the role of stimulus similarity in this process. 
Participants encoded sets of abstract shapes and performed a 
first individual-stimulus recognition test of half of the encoded 
stimulus sets after 20 min. Performance for prototypical shapes 
not seen during encoding was used as an index of gist abstrac-
tion. This was followed by either nighttime sleep or daytime 

wakefulness in separate experimental sessions, with normal 
sleep–wake patterns indicated by polysomnography (PSG) re-
cordings (Table S1) and actigraphy measurements (Table S2). A 
second recognition test was performed 1 week later for the other 
half of the encoded sets, thus ensuring that prototypical stimuli 
used to assess gist memory were not seen by the participants 
before recognition testing during either the 20-min or the one-
week test. Subsequent control tests confirmed that prototype 
shapes were indeed perceived as prototypical (Figures  S1 and 
S2; see also Figure S3). Finally, participants returned to the lab-
oratory for a 2-AFC recognition task after a delay of one year.

3.1   |   Sleep Does Not Improve Gist Abstraction as a 
Function of Feature Overlap

To test whether the evolution of gist memory across the first week 
after encoding is modulated by stimulus similarity and sleep 
immediately after encoding, we conducted a repeated measures 
ANOVA with factors Sleep/Wake condition, 20-min/1-week 
tests, Prototype/Old stimuli and Close/Distant stimulus sets. 
The results indicated globally lower recognition rates after 1 
week (main effect 20-min/1-week, F(1, 15) = 5.38, �2p = 0.26, 
p = 0.035). This effect was driven by lower performance if par-
ticipants slept immediately after encoding (20-min/1-week × 
Sleep/Wake, F(1, 15) = 5.22, �2p = 0.26, p = 0.037; Figure  2). No 
other main or interaction effects linked to sleep were significant 
(remaining p ≥ 0.272). In particular, the hypothesized four-way 
interaction of all factors was far from significant (F < 1). Also, 
encoding close or distant stimulus subsets did not change recog-
nition performance in any condition (all p ≥ 0.148). In addition, 
confidence ratings and remember/know/guess judgements did 
not indicate any differences between Sleep and Wake conditions 
(all p ≥ 0.125; Table  S3). Additional control tests on vigilance, 
sleepiness, and digit span further did not differ between Sleep 
and Wake conditions at any point of time (Table S4).

FIGURE 2    |    Overall memory performance after 20 min and 1 week. 
Means ± SEM and individual data points are shown for overall perfor-
mance (% old responses across prototypes and old shapes), separated for 
Sleep and Wake conditions in the 20-min and one-week tests. *p < 0.05 
for the interaction between Sleep/Wake and 20-min/1-week. N = 16.
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To test whether gist memory persists across extended intervals, 
we invited participants back to the laboratory after ~1 year. In 
a 2-AFC task, they selected the more familiar of two stimuli 
presented simultaneously: either an old shape vs. a new shape 
or a prototype vs. a new shape. A repeated-measures ANOVA 
with factors Sleep/Wake condition, Prototype/Old stimuli and 
Close/Distant stimulus sets showed better performance for pro-
totypes compared with old shapes (main effect Prototype/Old, 
F(1, 11) = 5.45, �2p = 0.33, p = 0.039; Figure 3A). This effect was 
marginally more pronounced for stimuli from distant subsets 
(interaction Prototype/Old × Close/Distant, F(1, 11) = 3.76, �2p 
= 0.26, p = 0.079; post-hoc tests: Distant, t(11) = 2.54, Cohen's 
d = 0.67 [95% CI: −0.29, 1.63], p = 0.027; Close, t(11) = 0.49, 
Cohen's d = 0.08 [95% CI: −0.45, 0.62], p = 0.636; cf. Figure 3B,C). 
However, there were no significant differences in performance 
between stimulus sets seen in the Sleep and Wake conditions 
(no main effect of Sleep/Wake, F(1, 11) = 0.00, �2p = 0.00, p = 1.00; 
no Sleep/wake × Prototype/Old interaction, F(1, 11) = 0.33, 
�2p = 0.03, p = 0.577; no Sleep/Wake × Prototype/Old × Close/
Distant interaction, F(1, 11) = 0.01, �2p = 0.00, p = 0.927).

In summary, with regard to the initial recognition tests, we did 
not find main or interaction effects involving the Prototype/Old 
factor after 20 min and after 1 week. Conversely, 2-AFC perfor-
mance after 1 year indicates stronger memory for prototypes 
than for originally encoded items. This effect appears somewhat 
more pronounced for dissimilar items. Overall, however, gist 
representations do not seem to strongly depend on stimulus sim-
ilarity during encoding. Moreover, the emergence and stability 
of gist memory did not differ between sleep and wake conditions 
across the first week after encoding.

3.2   |   Changes in Task Demands Explain Absence 
of Sleep Effects

The absence of sleep effects here contrast with our previous 
study (Lutz et al. 2017). Given that we started out with a sample 
of comparable size to Lutz et al. (2017), but obtained data from 
only 75% of participants during the final test after 1 year, we 
first assessed achieved power post-hoc. Specifically, we tested 

whether a difference in prototype recognition between sleep and 
wake conditions after 1 year would have been detectable in our 
effective sample if it were of similar effect size as in our previous 
study, disregarding any hypothesized interactions. For a one-
tailed comparison with N = 12, p = 0.05, and 1 − � = 0.8, the 
required effect size is d = 0.77. This is comparable to the effect 
observed in our previous study (d = 0.56). Thus, the divergent 
results may be due to a lack of statistical power, in addition to 
differences in experimental protocols.

The main difference between the two experiments was the ad-
dition of a stimulus-similarity factor in the present study. This 
was implemented via an increase of stimulus sets (40 sets per 
condition, compared with 16 in Lutz et al. 2017) and by splitting 
them into similar and dissimilar groups (resulting in 5 instead 
of 10 stimuli per set). We reasoned that encoding half as many 
stimuli per set for more than twice as many sets would increase 
task difficulty, and thus presented each set twice in a row.

To test whether these changes affected participants' perfor-
mance, we collapsed the present data across stimulus similarity 
(which exerted only marginal effects, see above) and performed 
analyses across experiments at the 20-min and one-year tests. 
At the 20-min test, we observed differential performance lev-
els for prototypes and old shapes between the two experiments 
(interaction Prototype/Old × Experiment, F(1, 30) = 4.66, �2p 
= 0.13, p = 0.039). This was driven by lower recognition levels 
for prototypes in the present experiment compared with Lutz 
et al.  (2017). Conversely, at the one-year test, we found higher 
overall performance in the present experiment (F(1, 27) = 7.11, 
�2p = 0.21, p = 0.013). This main effect was mostly due to a larger 
difference in performance between prototypes and old stim-
uli in our previous experiment (interaction Prototype/Old × 
Experiment, F(1, 27) = 7.84, �2p = 0.23, p = 0.009; Figure 4A). In 
addition, the effect of sleep vs. wakefulness on overall recog-
nition performance tended to be larger in our previous experi-
ment (interaction Sleep/Wake × Experiment, F(1, 27) = 3.18, �2p 
= 0.11, p = 0.086; Figure 4B). These results may be explained by 
changes in experimental parameters such as the reduced num-
ber of items per set, the reduced similarity between items and 
prototypes for the distant sets, and viewing items twice during 

FIGURE 3    |    One-year test. Means ± SEM and individual data points for prototypes and old shapes are shown for 2-AFC performance at the one-
year test. (A) Overall performance across Sleep and Wake conditions. (B) Performance for stimulus sets similar to the set prototype (close sets), split 
for Sleep and Wake conditions. (C) Performance for distant sets, split for Sleep and Wake conditions. A marginally significant interaction between 
stimulus type and stimulus similarity (Close/Distant × Prototype/Old, p = 0.079) was followed up with post hoc indicating preferential consolidation 
of prototype information for distant stimulus sets. *p < 0.05 for comparisons between stimulus types; $$$p < 0.001, $$p < 0.01, $p < 0.05 for comparisons 
against chance level (50%); n.s., not significant. N = 12.
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encoding, which likely rendered item and gist memories less 
distinct here than in our original study and may thereby have 
reduced the effect of sleep on gist abstraction.

4   |   Discussion

We investigated the effect of post-encoding sleep on gist abstrac-
tion from visual shapes across retention intervals of 20 min, 1 
week, and 1 year. We found that gist memory for prototypes not 
seen during initial encoding was evident early after encoding, 
persisted across 1 week, and exceeded veridical item memory 
after 1 year. Specifically, whereas gist and veridical memory per-
formance were roughly comparable after 20 min and virtually 
identical after 1 week, we found better memory for prototypes 
compared with initially encoded items after 1 year. This effect 
was independent of whether participants slept or stayed awake 
after encoding, as we found no beneficial effect of sleep on gist 
abstraction across 1 week or 1 year of retention. We also did 
not find a beneficial effect of sleep on consolidation of veridi-
cal memories. Notably, overall memory tested after 1 week was 
even better after post-encoding wakefulness than sleep. Taken 
together, our findings indicate that gist information is rapidly 
extracted and supports memory performance after 1 year of en-
coding, and that both its extraction and consolidation can occur 
independently of whether people sleep or stay awake immedi-
ately after encoding.

The difference between recognition of prototypes and old shapes 
after 1 year of retention is in line with our previous results (Lutz 
et al. 2017), as well as with current theories of memory transfor-
mation (Dudai et al. 2015; Nadel et al. 2012; Squire et al. 2015; 
Winocur and Moscovitch 2011) proposing that gist abstraction 
is a process that evolves slowly over time. Assuming that proto-
types represent an overlap of multiple individual representations 
of old shapes, prototypes should be more strongly represented 
than old shapes and thus less prone to forgetting over time. This 
assumption is in line with the long-held view of gist being an evo-
lutionary adaptation to efficiently cope with the limited capac-
ity of our brains to store information (e.g., Feld et al. 2016; Feld 
and Born 2017; Lewis and Durrant 2011; Lutz and Born 2019), 

and it agrees with earlier literature showing that gist memories 
are persistent and exceed recall of the originally encoded items 
after a delay of days (McDermott 1996; Neuschatz et al. 2001; 
D. G. Payne et  al.  1996; Thapar and McDermott  2001), weeks 
(Posner and Keele 1970; Strange et al. 1970; Toglia et al. 1999) or 
months (Seamon et al. 2002; Zeng et al. 2021) following encod-
ing. However, we also replicated our previous findings of high 
prototype recognition early after encoding (Lutz et  al.  2017), 
suggesting that a substantial amount of gist information is ex-
tracted during or immediately after encoding. While this result 
is also in line with the previous work showing substantial levels 
of gist recall/recognition immediately after encoding (including 
short-term memory tasks, e.g., Coane et  al. 2007),  additional 
studies are required to test whether gist representations during 
later measurements reflect persistence of such early memory 
traces, or whether these undergo additional qualitative changes 
in accordance with the notion of an active process of abstraction 
developing over extended periods of time. To conclusively an-
swer this question will require tasks in which the same testing 
procedure can be used across long intervals. Here, we resorted 
to using a 2-AFC procedure after 1 year to counter expected 
effects of memory decay, which in turn did not allow us to as-
sess the stability of different memory traces in the same statis-
tical model. In addition, future studies will need to resolve the 
issue of repeated presentation of prototype shapes before testing 
after prolonged time intervals. With the present protocol, gist 
abstraction can only be addressed during the 20-min and one-
week intervals, that is, when the prototypes were not seen by the 
participants, whereas performance at the one-year test cannot 
be used to distinguish gist abstraction from retention of proto-
types once they have been presented during the immediate or 
1-week tests.

The present results contrast with our previous findings (Lutz 
et al. 2017) in that we did not observe a beneficial effect of sleep 
soon after encoding on gist memory across extended intervals 
of up to 1 year. On the one hand, this could be due to the true 
effect of sleep on gist abstraction being smaller than suggested 
by our original findings. If so, our decision to measure the same 
number of participants as in our previous experiment may have 
entailed a lack of statistical power. Alternatively, or additionally, 

FIGURE 4    |    Comparison between (Lutz et al. 2017) and the present experiment at the one-year test. Means ± SEM and individual data points are 
shown for 2-AFC performance after 1 year across both experiments. (A) Performance for Prototypes and Old shapes differed in Lutz et al. (2017), but 
not in the present experiment (**p < 0.01 for the interaction between Experiment and Prototype/Old). (B) The effect of sleep vs. wakefulness on over-
all recognition performance tended to be larger in Lutz et al. (2017) than in the present experiment (*p < 0.1 for the interaction between Experiment 
and Sleep/Wake). N = 17 and N = 12 for the previous and present experiments, respectively.
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changes to our original experimental protocol may have dimin-
ished the effect of sleep on gist abstraction. Two such changes in 
particular may help explain the divergent results: First, to ob-
tain sufficient trial numbers despite the inclusion of additional 
experimental factors, we used a larger number of stimulus sets. 
Secondly, participants saw smaller sub-sets of stimuli (five in-
stead of 10 items) twice in a row (instead of only once) during 
encoding.

Direct comparisons across datasets showed lower recognition 
of prototypes shortly after encoding, but higher overall per-
formance and reduced distinctiveness of prototype and item 
memory traces after 1 year in the present experiment. This 
may be linked to the reduced number of stimuli per set in the 
present experiment. While a meta-analysis of verbal DRM 
studies found that shorter lists lead to increased sleep effects 
on false (i.e., gist) memory, only lists between 15 and 20 words 
long were used in studies analyzed (Newbury and Monaghan 
2019). More recently, Mak et al. (2023) reported similar results 
for DRM lists consisting of eight words. Using even shorter 
lists of three to seven words, Coane et al. (2007) reported more 
false memories for longer lists when recognition was assessed 
directly after encoding. While caution is warranted when com-
paring verbal and non-verbal protocols, these data suggest that 
our stimulus sets were at the lower limit for testing sleep ef-
fects on gist abstraction. Potential floor effects due to the small 
stimulus sets may have been compounded by the repeated pre-
sentation of stimuli, emphasising similarities and differences 
between individual stimuli and thereby supporting the emer-
gence of stronger and more distinct representations of both in-
dividual items and their prototypes (Benjamin 2001; Bowman 
and Zeithamova 2020). Given evidence that sleep particularly 
reinforces memory traces of weak-to-intermediate strength, 
representations in the present experiment may have been suf-
ficiently robust for sleep to only play a subordinate role in their 
consolidation, or to render consolidation processes during 
wakefulness equally effective (Bäuml et  al.  2014; Cairney 
et al. 2016; Creery et al. 2015; Drosopoulos et al. 2007; Lo, Dijk, 
et al. 2014; Lutz et al. 2024; J. D. Payne et al. 2012; Petzka et al. 
2021; Stickgold  2009). Indeed, item-specific processing has 
been shown to diminish reliance on gist representations com-
pared to relational processing, particularly in recognition tasks 
(Huff and Bodner 2013, 2018).  To explore this possibility, we 
performed correlation analyses based on PSG data from the 
Sleep condition. Results indicated a link between long-term 
gist abstraction and SOs as well as SO-spindle co-occurrence 
(Figure S4). Future studies should address the functional im-
portance of these correlations by recording PSG data during 
delayed sleep in the Wake condition.

We also tested the hypothesis that stimuli sharing more features 
with their prototype would yield higher initial prototype recog-
nition rates, and that sleep would be particularly important for 
extracting gist information from stimulus sets distant from their 
prototype. However, behavioural results showed no difference 
in recognition rates either 20 min or 1 week after encoding. And 
although we observed a marginally significant advantage for 
distant stimulus sets after 1 year, this effect was independent of 
the sleep/wake condition. Thus, feature overlap between stimuli 
and prototypes did not interact with consolidation during sleep 
or wakefulness to determine behavioural outcome.

5   |   Conclusion

In summary, our findings indicate that gist abstraction occurs 
soon after encoding visual shapes and leads to stable memories 
for non-learned prototypes across intervals of at least 1 year. In 
contrast to a previous experiment based on a similar protocol, 
this behavioural outcome was independent of sleep soon after 
encoding. This divergence was likely linked to the repeated pre-
sentation of a limited number of stimuli during encoding and 
highlights the central role of task demands during encoding on 
the temporal evolution of memory consolidation and abstraction.
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