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Abstract 

Bac kgr ound: Compar ati v e g enomics, g enetic spr ead anal ysis, and context-aw ar e ranking ar e crucial in understanding micr obial dy- 
namics’ impact on pub lic health. gSpr eadComp str eamlines the path fr om in silico analysis to hypothesis generation. By integrating 
comparati v e g enomics, g enome annotation, normalization, plasmid-mediated g ene transfer, and microbial resistance-virulence risk- 
ranking into a unified workflow, gSpreadComp facilitates hypothesis generation from complex microbial datasets. 

F indings: The gSpreadComp w orkflow w orks through 6 modular steps: taxonomy assignment, genome quality estimation, antimicro- 
bial resistance (AMR) gene annotation, plasmid/chromosome classification, virulence factor annotation, and downstream analysis. 
Our workflow calculates gene spread using normalized weighted av era ge pr ev alence and ranks potential resistance-virulence risk 
by inte gr ating micr obial r esistance , virulence , and plasmid tr ansmissibility data and producing an HTML r e port. As a use case , w e 
analyzed 3,566 metagenome-assembled genomes recovered from human gut microbiomes across diets. Our findings indicated con- 
sistent AMR across diets, with diet-specific resistance patterns, such as increased bacitracin in vegans and tetracycline in omni v or es. 
Nota b l y, ketogenic diets showed a slightly higher resistance-virulence rank, while vegan and vegetarian diets encompassed more 
plasmid-mediated gene transfer. 

Conclusions: The gSpreadComp workflow aims to facilitate hypothesis generation for targeted experimental validations by the iden- 
tification of concerning resistant hotspots in complex microbial datasets. Our study raises attention to a mor e thor ough study of the 
critical role of diet in microbial community dynamics and the spread of AMR. This resear c h underscores the importance of inte gr ating 
genomic data into public health str ate gies to combat AMR. The gSpreadComp workflow is av aila b le at https://github.com/mdsufz/gS 
preadComp/ . 

Ke yw or ds: risk-r anking, compar ati v e g enomics, g ene spread, human microbiome, virulence factors, horizontal transmission, 
meta genome-assemb led genomes, antimicr obial r esistance 

 

c  

t
m  

p  

u  

c  

a  

e
e
r
(  

f  

[

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giaf072/8174998 by H

elm
holtz Zentrum

 M
uenchen user on 27 June 2025
Bac kgr ound 

The microbial safety of food, water, and environmental matrices 
has been a critical concern for public health since the 1990s 
[ 1 ]. Differ ent a ppr oac hes, suc h as quantitativ e micr obial risk 
assessment, hav e pr ovided v aluable insights and hav e been 

fundamental in evidence-based policymaking in public health. 
Typicall y, these a ppr oac hes involv e 4 steps: hazard identification,
exposur e assessment, dose–r esponse anal ysis, and risk c har ac- 
terization [ 2 ]. Ho w e v er, tr aditional micr obial safety a ppr oac hes 
often focus on individual potential pathogens and ma y o verlook 
comm unity inter actions. 

Ad ditionally, the ad vent of high-throughput sequencing 
technologies has improved our ability to study microbial 
Recei v ed: October 19, 2024. Revised: Mar c h 5, 2025. Accepted: May 9, 2025 
© The Author(s) 2025. Published by Oxford Uni v ersity Pr ess on behalf of GigaScienc
Commons Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), whic
medium, provided the original work is properly cited. 
omm unities with incr eased detail. Adv ances in sequencing
ec hnologies can potentiall y enhance our understanding of 

icrobial ecology and improve microbial analysis’s accuracy,
recision, and speed [ 3 ]. Concomitantly to the advances in
nderstanding micr obial ecology, ther e is a gr owing need for
omm unity-focused a ppr oac hes to assess r elativ e impacts
cr oss div erse micr obial populations. When integr ated with
xposure and dose–response data, such an approach would 

quip decision-makers and stakeholders with a more robust 
isk statement. Specificall y, identifying antimicr obial r esistance 
AMR) spr ead, virulence factor (VF) spr ead, and genetic mobility
actors are crucial for enhanced microbial risk c har acterization
 3 , 4 ]. 
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Genetic information is spread among entities by vertical gene
ransfer (VGT) and horizontal gene transfer (HGT). While VGT is
 ele v ant for pr eserving and stabilizing genetic material, HGT has
 crucial role in the evolutionary and ada ptiv e pr ocess [ 5 ]. Conse-
uentl y, HGT allows micr obes in micr obial comm unities to per-
orm functional leaps and rapidly adapt to new en vironments .
her e ar e 3 most r ecognized mec hanisms of HGT in pr okaryotes:
onjugation, transformation, and transduction. Conjugation re-
uires physical contact between the cells. Transformation is the
ptake of exogenous DNA, mostly plasmids, from the environ-
ent. Transduction is the delivery of genetic material through

iruses and virus-like agents [ 6 ]. Ho w ever, even though transduc-
ion and transformation events are effective for gene exchange,
lasmid-mediated conjugation is often recognized as the most

mpactful HGT mechanism [ 7 ]. Plasmids often carry genes that
llow potential selective adv anta ges (e.g., AMR or heavy metal re-
istance , VFs , and degradation of xenobiotics) [ 8 , 9 ]. 

Specificall y, the spr ead of AMR in clinical and natural environ-
ents is recognized as one of the most significant global threats

 10 , 11 ]. The misuse of antibiotics in a gricultur e, the envir onment,
nd human medicine cr eates selectiv e pr essur e on antimicr obial-
esistant bacteria (ARB), which may facilitate the HGT of those
 esistances. Antibiotics ar e extensiv el y used for farm animal and
lant production [ 12 , 13 ]. In 2015, a notable trend emerged in
he United States, where 62% of antibiotics initially intended for
se in food-producing animals were ultimately used in human
edicine. Additionally, 70% of medically relevant antibiotics were

old for animal use [ 14 ]. Furthermore, while the use of antibiotics
n plant a gricultur e is gener all y consider ed lo w er than in human
nd v eterinary medicine, r ecent studies suggest it may be more
idespr ead than pr e viousl y thought. Str e ptom ycin, o xytetracy-

line, kasugam ycin, o xolinic acid, and gentamicin are commonly
sed in crop protection, particularly in the American and Asian
ontinents [ 15 ]. 

In addition, HGT e v ents pr ovide r a pid ada ptation to bacteria
trains, including AMR, making the development of novel an-
imicr obials onl y a short-term palliativ e measur e [ 16 ]. Minimiz-
ng problematic HGT and disseminating antimicrobial resistance
enes (ARGs) is the potential long-term solution to the AMR prob-
em. Inher entl y, adv ances in understanding plasmid-mediated
GT dynamics in complex micr obiomes ar e a po w erful tool to
ontrol horizontal dissemination [ 17 , 18 ]. 

Although HGT e v ents, specificall y plasmid-mediated tr ansfers,
lay a significant role in the evolution and adaptation of micro-
ial populations, most of those e v ents r emain undetected. Con-
equentl y, se v er al bioinformatics tools and algorithms were de-
 eloped to tac kle HGT e v ents . For instance , GIST [ 19 ] and Island-
iewer [ 20 ] use genome sequences’ features to assign HGT. Dark-
orse [ 21 ] and HGTector [ 22 ] use the “best matc hes” a ppr oac h to

dentify HGT e v ents based on r efer ence genomes . Other methods ,
uch as Ranger-DTL [ 23 ] and AnGST [ 24 ], r equir e the r econcilia-
ion of gene trees with the corresponding species trees to make
he HGT pr ediction. Finall y, the MetaCHIP [ 25 ] tool combines the
esults of the similarity and phylogenetic approaches. 

A significant limitation of most current HGT detection meth-
ds is that they are not directly applicable to the entire micro-
iome but more for single bacteria taxa. In addition, most meth-
ds r equir e r efer ence genomes . For instance , the HGTector [ 22 ] is
estricted to HGT events from a defined distal group to designated
elf-group members, while DarkHorse [ 21 ] requires a reference
enome, a bottleneck for uncultured microorganisms. MetaCHIP
 25 ] can be applied at the comm unity le v el, giv en a set of re-
ov er ed genomes. Ho w e v er, MetaCHIP [ 25 ] does not dir ectl y inte-
r ate its r esults into r ele v ant sample metadata (i.e ., biome , clin-
cal data, environmental condition), reducing its usage for com-
ar ativ e genomics. In addition, none of the mentioned tools al-

ows for direct integration of plasmid-mediated transfer of anno-
ated genes to potential pathogenic bacteria by using, for example,
ompar ativ e genomics, whic h cr eates a significant barrier for non-
ioinformaticians , mainly clinicians , to use such datasets. Finally,
lasmids have also been reported to be transferred over consid-
rable taxonomic distances, adding complexity for HGT detection
ools to identify plasmid-mediated transfer in complex microbial
ommunities [ 25 , 26 ]. 

We designed the gSpreadComp w orkflo w to tackle the follow-
ng bottlenecks: (i) reduce the barrier of compar ativ e genomics
y integrating genome annotation, normalization, and sequence
omparison into a unified a ppr oac h; (ii) cr eate a systematic a p-
r oac h to quantify gene spread; (iii) integrate plasmid-mediated
ene transfer annotation to target metadata with the whole-
icr obiome comm unity in a genome-r efer ence independent a p-

r oac h; and (iv) pr ovide a r esistance-virulence risk-r anking metric
hat considers gene spr ead, pr okaryotic r esistance potential, and
irulence potential in the era of high-throughput microbial com-
 unity sequencing. Consequentl y, gSpr eadComp is a UNIX-based
 orkflo w for genome analysis (Fig. 1 ) that provides 6 modules

o perform the following tasks: taxonomy assignment, genome
uality estimation, ARG annotation, plasmid/c hr omosome
lassification, VF annotation, and in-depth downstream
nalysis. 

To demonstrate the potential of the gSpreadComp w orkflo w, w e
nalyzed the spread of ARGs in the human gut microbiome from
uman subjects with different diets. To this end, we gathered pub-

icl y av ailable meta genomes fr om the human gut containing in-
ormation about the subjects’ diet: (i) ancient, diet based on the
nalysis of ancient human fecal remains; (ii) ketogenic, fecal sam-
les from subjects with a high-fat, high-pr otein, low-carbohydr ate
iet; (iii) omnivore, fecal samples from subjects with a diverse
iet, including both plant- and animal-derived foods; (iv) vegan,
ecal samples from subjects with a plant-based diet, excluding all
nimal-deriv ed pr oducts; and (v) v egetarian, fecal samples fr om
ubjects with diet excluding meat but may include other animal-
eriv ed pr oducts. We then r ecov er ed the meta genome-assembled
enomes (MAGs) from those samples and annotated their ARGs
nd taxonomy . Finally , those MAGs wer e anal yzed using gSpr ead-
omp using the subjects’ diet as the target metadata. Notably, the
rimary objective of this use case is not to dr aw definitiv e conclu-
ions about the relationship between diet and antimicrobial re-
istance or virulence but to exemplify how gSpreadComp can be
pplied to complex metagenomic datasets. 

Our data r e v ealed antimicr obial r esistance, particularl y to m ul-
idrug and glycopeptide classes, to be widespread across all di-
ts, with specific resistances like bacitracin being more preva-
ent in v egans. Additionall y, while all diets exhibited similar over-
ll r esistance spr ead, n uances lik e increased tetracycline resis-
ance in omnivores were observed. The study also highlighted a
omplex relationship between diet and VFs, with specific diets
howing heightened resistance-virulence risks, like ketogenic. Fi-
all y, v egans and v egetarians wer e associated with a higher po-
ential to participate in plasmid-mediated HGT e v ents, under-
coring the significant role of diet in shaping microbial com-
unities and antimicrobial resistance patterns. While further

abor atory v alidation is r equir ed, gSpr eadComp acceler ates the
dentification of potential tar gets, str eamlining the path from
n silico analysis to hypothesis validation through experimental
erification. 
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Figure 1: gSpreadComp workflow. The minimal input necessary for gSpreadComp is the genome and its associated metadata. gSpreadComp offers the 
possibility to use the built-in prokaryotic taxonomy assignment using GTDBtk, prokaryotic quality estimation using CheckM, plasmid identification 
using PlasFlow, and ARG annotation using Dee pARG. Alternati v el y, an y other tool could be used outside gSpreadComp and later used as input to 
estimate gene spr ead, micr obial r esistance-virulence risk, and gene plasmid-mediated HGT e v ents . T he gSpreadComp can use the Victors or the VFDB 
to annotate virulence potential on target genomes and the NCBI human Pathogens Species database as a reference to estimate potential pathogens. 
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Findings 

The gSpreadComp workflow 

The gSpreadComp w orkflo w is a UNIX-based integrated set of 
tools for genome analysis (Fig. 1 ). For such, it provides 6 modules 
to perform the following tasks: taxonomy assignment, genome 
quality estimation, ARG annotation, plasmid/c hr omosome classi- 
fication, VF annotation, and in-depth downstream analysis . T his 
downstr eam anal ysis includes tar get-based gene spr ead anal ysis,
plasmid-mediated HGT of target genes and VFs, and a prokaryotic 
r esistance-virulence risk-r anking within the anal yzed genomes.
It is important to note that gSpreadComp is essentially modu- 
lar, allowing for the integration of new advances in its component 
methods and tools as they become a vailable . 
The spread of target genes was calculated using the genes’
eighted av er a ge pr e v alence (WAP), whic h estimates the gene

pread at different taxonomical levels or target groups (e.g., omni-
or es, v egans, ketogenic). Mor e details can be found in the Meth-
ds section. For resistance-virulence risk-ranking, we defined the 
resistance-virulence potential factors” that consider target genes 
ARGs, by default), virulence, and their plasmid transmissibility 
otential. Reference potential pathogens were identified by com- 
aring genomes to the NCBI pathogens database [ 27 ]. Following,
e used the av er a ge of the r esistance-virulence factors fr om the
 efer ence potential pathogens, based on the NCBI Pathogens Or-
anism groups, as weights and quantified the resistance-virulence 
isk using the Technique for Order Pr efer ence by Similarity to
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deal Solution (TOPSIS) [ 28 ], with the resistance-virulence factors
erving as input vectors. After the complete downstream analysis,
Spr eadComp pr oduced an HTML r eport. 

The gSpreadComp w orkflo w includes an easy-to-use script that
ownloads and configures the required databases automatically.
onsequently, if the user is interested in ARG spread, the only
andatory inputs for gSpreadComp are the genomes and their

arget metadata. Suppose the user is interested in a different tar-
et gene group. In that case, they should provide the annotation
able formatted as described in the gSpreadComp documentation.
 database update is scheduled to happen every January and July.
Part of gSpreadComp is a wrapper of several bioinformatic ap-

r oac hes. Its modular nature makes it possible to use the tools
ndependently, allowing the use of the tools’ main analysis and
he r elated r eport without the need to annotate it within the soft-
ar e completel y. Additionall y, the modular nature of the software

acilitates its update and allows the more experienced user to
ntegr ate onl y pieces of gSpr eadComp into their pipeline. Conse-
uentl y, gSpr eadComp modularity can give the researcher flexibil-

ty in their analysis and facilitate the inv estigator’s softwar e man-
gement necessities . T he gSpreadComp w orkflo w w as designed to
upport Linux x64 systems . T he complete software installation
 equir es a ppr oximatel y 15 GB. The whole database curr entl y r e-
uir es ar ound 92 GB. 

ritical usage and key considerations 

efor e pr esenting the experimental r esults, it is crucial to addr ess
pecific methodological considerations and limitations in the
ethods . T he gSpreadComp w orkflo w can be used with both com-

lete genomes and MAGs. In our use case, we applied gSpread-
omp to MAGs, which are prone to higher potential bias [ 29 ]; for
xample, MAGs are subject to detection bias, particularly for low-
bundance or ganisms, whic h may lead to the underr epr esenta-
ion of certain species and their associated ARGs. Additionally,
 v en high-quality MAGs (completeness > 90% and contamination
 5%) may be exposed to contig binning error, causing contamina-

ion [ 30 ]. Finall y, ther e ar e sample size effects. To mitigate the im-
act of sample size, gSpreadComp employs normalization tech-
iques and weighted av er a ge pr e v alence for spr ead calculations
 31 ]. Ne v ertheless, users should note that the resulting resistance-
irulence risk-ranking is relative to the analyzed community and
ot an absolute measure across en vironments . 

The ARG annotation module provided within gSpread-
omp uses a machine learning–based classification tool named
ee pARG [ 32 ]. While Dee pARG has demonstrated high accuracy

n ARG prediction, its performance can vary according to the an-
ibiotic category and its r epr esentation in the training database.
or long sequences (DeepARG-LS), the tool ac hie v ed pr ecision and
 ecall v alues equal to 0.99 in the prediction of different categories
f ARGs. To minimize false positives, w e follo w ed benchmarked
ecommendations, including using a minimum 80% prediction
r obability, an e-v alue alignment lo w er than 1e-10, and a per cent

dentity of 35% or higher [ 33 ]. It is important to note that the
ser can alter the hyper par ameters (e.g., pr ediction pr obability,
-value alignment). Users should interpret results with these
onstr aints in mind. Similarl y, for plasmid detection, we cur-
 entl y use PlasFlow [ 34 ]. While effective, PlasFlow has limitations
n classifying shorter sequences. We increased the classification
hr eshold par ameter (0.7 > thr eshold) in our anal ysis to impr ov e
recision while maintaining the high sensitivity, or recall, offered
 y PlasFlo w’s models [ 34 , 35 ]. Ho w e v er, it m ust be observ ed
hat automatically classifying plasmids remains complex, with
ignificant adv ances curr entl y in de v elopment. Those a ppr oac hes
ere selected because of their ability to streamline large-scale
nnotation and detection while having higher r ecall, whic h is
articularly important when dealing with MAGs. 

The gSpreadComp w orkflo w w as designed to be modular and
xtendable, allowing a more straightforw ar d incorporation of ad-
itional features in its future versions as the field rapidly evolves.
or instance, ARG detection tools like ARG-SHINE [ 36 ] or CARD-
GI [ 37 ] or plasmid classification tools like PlasClass [ 35 ] or
LASMe [ 38 ] can be used, and their results are integrated into
Spr eadComp downstr eam anal ysis, pr ovided that the users for-
at their data according to the gSpreadComp documentation. We

ncour a ge users to consider the strengths and limitations of each
ool when inter pr eting r esults and to v alidate findings thr ough
omplementary experimental a ppr oac hes when possible. It is im-
ortant to note that gSpr eadComp’s downstr eam r esults r el y on
he tools’ annotations, and r esults for sim ulated comm unities
ould closely follow their benchmarked performance. 

se case: gSpreadComp in the human gut microbiome of
ubjects with different diets 
o show the potential of gSpreadComp to generate hypotheses,
e analyzed the spread of ARGs and virulence factors in the hu-
an gut microbiome from subjects with different diets. It is im-

ortant to mention that the primary objective of this use case is
ot to draw definitive conclusions about the relationship between
iet and antimicrobial resistance or virulence but to illustrate how
SpreadComp can be applied to complex metagenomic datasets
o generate insights that could inform more comprehensive risk
ssessments. 

We r ecov er ed MAGs of 17 ketogenic, 10 vegan, 40 vegetarian,
nd 140 omnivore subjects from the human gut. In addition, we
 ecov er ed MAGs from 24 palaeofeces samples dating from 1,300
nd 5,300 years old ( Additional File 1 : Supplementary Table S1 ).
e r ecov er ed 3,566 MAGs (1,806 high and 1,760 medium quality)

rom 231 samples ( Additional File 2 : Supplementary Table S2 ). The
axonomic assignment indicated that the MAGs came from 637
pecies of 12 phyla ( Additional File 2 : Supplementary Table S2a ).
ccording to GTDB-tk, 594 r ecov er ed species were assigned to pre-
iousl y r ecov er ed genomes, and 43 species gr oups found ar e po-
entiall y ne w. 

Our analysis included ancient DNA samples, which present
nique challenges. Ancient DNA is typically degraded and frag-
ented, potentially affecting gene annotation accuracy. More-

v er, these samples ar e highl y susceptible to contamination from
odern sources and postmortem microbial colonization. For in-

tance, DNA degradation and potential contamination may lead
o a skewed number of false negatives detected due to incom-
lete gene sequences or false positives due to modern contam-

nation [ 39 ]. While we have taken steps to address these issues,
istinguishing endogenous ancient DNA from contaminants re-
ains challenging. These factors do not invalidate our findings

ut underscore the need for cautious interpretation, especially
hen comparing ancient and modern microbiomes [ 39 ]. 
We annotated 356 ARG subtypes distributed in 24 different ARG

lasses ( Additional File 3 : Supplementary Table S3a ). In the an-
ient samples, we annotated 211 unique ARGs belonging to 22
nique ARG classes. In contrast, ketogenic had 234 and 18, om-
ivores had 320 and 22, vegans had 238 and 21, and vegetarians
ad 246 and 20, r espectiv el y, in their gut microbiome. We also
ormalized ARG class pr e v alence per sample ( Additional File 3 :
upplementary Table S3b ). We k e pt only the samples that recov-
r ed mor e than 6 genomes for further pr e v alence anal ysis. Fig-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
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Figure 2: gSpreadComp estimated target gene spread in given metadata. (A) Boxplot from normalized ARG class prevalence per sample colored by diet. 
The ARG classes are sorted left to right in ascending order according to av er a ge ARG class pr e v alence. (B) Heatma p color ed by WAP, used to estimate 
the spread at the phylum level across all analyzed diets. Values from 0 to 0.25 are considered sparse, 0.25 to 0.5 common, 0.5 to 0.75 widespread, and 
0.75 to 1 ubiquitous. (C) Boxplot from normalized bacitracin prevalence per sample colored by diet. A pairwise comparison between the diets was 
made using the Bonferroni-adjusted t -test. Statistically significant comparisons (adjusted P < 0.05) are indicated by ∗. The higher the number of ∗, the 
closer to 0 the adjusted P -value. 
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ure 2 A shows the normalized prevalence of the ARG classes per 
sample for all eating habits. In addition, we performed pairwise 
ARG class pr e v alence comparisons for all diets ( Additional File 3 : 
Supplementary Table S3c and Additional File 4 : Supplementary 
Fig. S1 ). The bacitracin resistance boxplot comparisons can be 
found in Fig. 2 C. 

Further, we estimated the ARG class spread at the phylum level 
in gut samples of subjects across the different diets ( Additional 
File 5 : Supplementary Table S4a ). We defined the following ranges 
to describe the distribution of ARG classes: sparse (0–0.25), com- 
on (0.25–0.5), widespread (0.5–0.75), and ubiquitous (0.75–1). A 

eatmap with the distribution at the phylum le v el v alue per ARG
lass for all diets can be found in Fig. 2 B. Multidrug and gly-
opeptide resistance were ubiquitous in all subjects, irrespective 
f the diet. For further analysis, we excluded ARG classes exhibit-
ng a distribution of less than 0.1 across all dietary patterns . T he
 esults r e v ealed that among the diets, omnivor es exhibited the
ighest spread in six ARG classes: multidrug, MLS (macrolides,

incosamides, str eptogr amins), phenicol, aminogl ycoside, tetr acy- 
line, and m upir ocin. In contr ast, v egans demonstr ated the high-
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st spread in 4 ARG classes: glycopeptide, bacitracin, diaminopy-
imidine , and fluoroquinolone . For the remaining dietary patterns ,
he ketogenic diet had the highest spread in 2 ARG classes (pleu-
 om utilin and beta-lactam), the vegetarian diet in 2 (peptide and
osmidomycin), and the ancient subjects in 1 (sulfonamide). How-
 v er, considering onl y the ARG classes with at least a 5% differ-
nce between all other diets, bacitracin is more spread in vegans,
etrac ycline in omniv ores, and sulfonamide in the ancient diet.

hen we compared ketogenic and omnivore (meat eaters) against
 egans and v egetarians (not meat eaters) according to the mean
pr ead v alue, we observ ed that meat eaters had a higher spr ead
or MLS, aminoglycoside, and mupirocin, and non–meat eaters for
iaminopyrimidine. 

Finall y, gSpr eadComp also allo w ed us to individually com-
ar e the spr ead of ARGs among phyla ( Additional File 5 :
upplementary Table S4b –f and Additional File 6 : Supplementary
ig. S2 ). The results are summarized in Table 1 . The subsequent
 esults that gSpr eadComp pr ovided wer e the annotation of VF
 Additional File 7 : Supplementary Table S5a ). The av er a ge num-
ers of unique VFs annotated per diet were 479.75 ± 116.41 for
ncient, 444.56 ± 88.03 for ketogenic, 444.54 ± 106.24 for omni-
ore, 475.86 ± 163.95 for vegan, and 438.13 ± 108.40 for vegetarian.
e also verified the av er a ge number of unique VFs per phylum

er diet ( Additional File 7 : Supplementary Table S5b ). Specifically,
acteroidota related to the ketogenic diet had statistically more
nique VFs than all the other diets (Fig. 3 C and Additional File 7 :
upplementary Table S5c ). Additionall y, gSpr eadComp calculated
ll the statistical significance comparisons associated with the
nique number of VFs ( Additional File 7 : Supplementary Table
5c ). We verified, as expected, that MAGs with high pathogenic
otential, irr espectiv e of the diet, have a higher number of unique
Fs in the gut samples ( Additional File 2 : Supplementary Table
2a and Additional File 8 : Supplementary Fig. S3a ). More inter-
stingl y, we observ ed that, irr espectiv e of the diet, highl y virulent
acteria had statistically more ARGs in the respective gut samples
Fig. 3 B and Additional File 7 : Supplementary Table S5d ). 

Finall y, we r ank the potential r esistance-virulence risk for all
 ecov er ed MAGs ( Additional File 2 : Supplementary Table S2a ). Fig-
re 3 A shows a graph where the nodes are sized according to the
isk criteria. For the risk criteria, we highlight the results found
or the Firmicutes phylum, where statistically significant differ-
nces were found between omnivores vs. vegetarians and veg-
ns, as well as between ketogenic vs. vegetarians and vegans,
ith an incr eased r ank observ ed for the v egetarian and v egan
AGs. Ho w e v er, ther e was no difference between omnivores and

etogenic, or between vegans and vegetarians ( Additional File 7 :
upplementary Table S5e and Additional File 8 : Supplementary
ig. S3b, c ). Finall y, gSpr eadComp compiled all potential plasmid-
ediated HGTs for the target gene (ARGs, in this use case)

nd the VFs at a defined taxonomical le v el ( Additional File 9 :
upplementary Table S6a for ARG HGT e v ents and Additional File
 : Supplementary Table S6b for VF HGT e v ents). We r emov ed the
ibraries that recovered fewer than 12 MAGs before the HGT analy-
is to reduce comparison bias due to limited MAG reconstruction.
fter filtering, all diets had an av er a ge of 26 MAGs per sample.
o w e v er, v egans and v egetarians had 12 ARG plasmid-mediated
GTs per sample, while omnivores had 3.88 and ketogenic 1.84

 Additional File 9 : Supplementary Table S6c ). We observed a signif-
cant increase in the ARGs and VFs involved in potential plasmid-

ediated HGT in the vegans and vegetarians compared to an-
ient, omni vore, and k etogenic. Then, we performed pairwise Bon-
erroni statistical comparisons related to the HGT events be-
ween the diets ( Additional File 9 : Supplementary Table S6c –e and
dditional File 8 : Supplementary Fig. S3b –e ). All pairwise compar-
sons against vegans or vegetarians were significant (adjusted P
 0.05), but there was no significant difference among any other
omparison, or between vegans and vegetarians. Similarly, veg-
ns and vegetarians had significantly more VFs plasmid-mediated
GT e v ents per sample ( Additional File 9 : Supplementary Table
6d, e ). Additionall y, gSpr eadComp allo w ed for the calculation of
he pairwise comparisons related to the occurrence of HGT events
er defined taxonomical le v el (famil y) per diet ( Additional File 9 :
upplementary Table S6f –h ). We identified HGT e v ents of VFs, and
 significant difference was observed for the cases in Table 2 . In
he HGT e v ents of ARGs, a significant differ ence was onl y accessed
or Ruminococcaceae in omnivores and vegans and Lachnospiraceae
n vegetarians and ketogenic. 

iscussion 

he gSpreadComp 

SpreadComp was designed for 2 main goals: (i) to facilitate com-
ar ativ e genomics and (ii) to integr ate high-thr oughput sequenc-

ng information into microbiome relative resistance-virulence
isk-ranking, with a focus on the potential presence of antimicro-
ial resistance genes and virulence factors. 

At its cor e, gSpr eadComp integr ates genome annotation, gene
r e v alence normalization, and sequence comparison into a
tr eamlined a ppr oac h, ther eby r educing the complexities often
ssociated with disparate tools . Furthermore , the tool introduced
 systematic methodology to quantify gene spread, a crucial as-
ect in understanding gene dispersion populations. 

Second, gSpr eadComp effectiv el y uses whole-genome se-
uencing (WGS) data by providing a standardized method to rank
otential microbial communities of concern using metagenomic
amples. Highlighting hotspots of resistance and virulence fac-
ors narrows the focus for subsequent hypothesis testing through
aboratory-based assessments. While not performing risk assess-

ents dir ectl y, gSpr eadComp may guide mor e tar geted and effi-
ient laboratory studies, ultimately improving resource allocation
nd pr e v entiv e measur es. Finall y, tr ac king plasmid-mediated HGT
an contribute insights into antimicrobial resistance, or any tar-
et gene, tr ansfer r outes that r emain lar gel y unc harted. gSpr ead-
omp also contributes to identifying k e y disseminating taxa and
otential pr opa gation pathwa ys . Such knowledge is vital for de-
 eloping str ategies to combat the rise of antimicr obial-r esistant
athogens and constructing more comprehensive microbial risk
ssessment models [ 40 ]. 

While gSpreadComp’s main strengths lie in its downstream
nalysis and unified w orkflo w, it has limitations and biases that
hould be considered when interpreting results . T hese ma y stem
rom genome recovery techniques, reference databases, or ma-
hine learning algorithms used in the tool. As with any bioinfor-
atic a ppr oac h, we r ecommend a critical usa ge. 

ritical usage and key considerations 

hile not a standalone risk assessment tool, gSpreadComp pro-
ides a fr ame work for comparing the r elativ e r ank associated
ith resistance and virulence genes acr oss micr obial populations.
hen used with established microbial risk assessment guidelines,

SpreadComp can enhance the depth and precision of risk-rank
 v aluations. By integr ating genomic data anal ysis with tr aditional
isk assessment a ppr oac hes, r esearc hers may gain mor e compr e-
ensive insights into potential microbial hazar ds, thereb y sup-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data


Genome risk ranking using gSpreadComp | 7 

Table 1: ARG class spread summary for the common phyla across the different diets . T he values represent ARG classes with a spread 

differ ence gr eater than 0.05 in the r espectiv e diet for the r espectiv e phylum compar ed to other diets. While measur es wer e taken to 
reduce false positives, some errors may still be present, particularly for ARGs underrepresented in databases (e.g., triclosan). Caution is 
advised when inter pr eting r esults fr om ancient samples due to potential DNA degradation and contamination issues. It is important to 
note that despite the 0.05 difference threshold used here, most ARG classes fell into the same spread category (e .g., sparse , common, 
widespread, or ubiquitous) across all diets, indicating a general consistency in ARG distribution patterns. 

Diet Phylum 

Bacteroidota Firmicutes Proteobacteria 

Omnivore MLS, beta-lactam, fluoroquinolone, 
m ultidrug, m upir ocin 

MLS, aminoglycoside, mupirocin, 
tetracycline 

Diaminopyrimidine 

Vegan Aminoglycoside, 
diaminopyrimidine, phenicol, 

pleur om utilin 

Bacitracin, diaminopyrimidine Aminogl ycoside, bacitr acin, 
fluor oquinolone, pleur om utilin, 

tetracycline 
Ketogenic Bacitr acin, gl ycope ptide, pe ptide — —
Vegetarian Fosmidomycin, tetracycline Fluoroquinolone Mupirocin, phenicol 
Ancient Sulfonamide Phenicol, sulfonamide MLS, beta-lactam, fosmidomycin, 

gl ycopeptide, m ultidrug, peptide, 
sulfonamide, triclosan 
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porting more informed decision-making in public health, environ- 
mental management, and food production contexts [ 1 ]. 

In particular, it is r ele v ant to notice the distinction between rel- 
ativ e r esistance-virulence risk-r anking, whic h gSpr eadComp pr o- 
vides, and risk assessment. While our tool offers insights into the 
compar ativ e potential r esistance-virulence risks within micr obial 
populations based on their genomic profiles, it does not account 
for all factors considered in a full risk assessment, such as ex- 
posur e r outes, dose–r esponse r elationships , and specific en viron- 
mental conditions [ 3 ]. Users should vie w gSpr eadComp’s output 
as a starting point for prioritizing further investigation. 

When considering ARG annotation using machine learning al- 
gorithms, one must know that ARG prediction accuracy varies 
per gene and class based on the r epr esentation and degree of 
similarity to known resistance genes in the training databases.
For sequences with high identity scores ( > 50%) to the train- 
ing data, both alignment-based methods, such as BLAST, and 

classification-based a ppr oac hes, suc h as DeepARG or ARG-SHINE,
perform well, with around 95% accurac y [ 36 ]. Ho w ever, classi- 
fication models tend to perform better for sequences with low 

identity scores. For instance, sequences conferring resistance to 
bacitracin, beta-lactams, and MLS are more represented in the 
databases and more accurately predicted by DeepARG than resis- 
tances such as triclosan or quinolone . T he mor e dr astic impr ov e- 
ment of classification-based methods is in reducing false-negative 
rates while maintaining overall high precision. For long ARG-like 
sequences, DeepARG-LS ac hie v ed 0.97 ± 0.03 pr ecision and 0.99 
± 0.01 recall for bacitracin, beta-lactamase, chloramphenicol, and 

aminoglycoside, while the best-hit approach achieved perfect pre- 
cision but 0.48 ± 0.2 recall [ 32 ]. This significant difference in re- 
call is particularly crucial when annotating MAGs, which are often 

fr a gmented. Importantl y, the pr esence of an ARG does not neces- 
sarily equate to phenotypic resistance but also depends on gene 
expression and host factors and potential bias in the resistance 
genotype–phenotype concordance on less c har acterized taxa [ 41 ].

Gener all y, using mac hine learning–based methods for the clas- 
sification of biological sequences, while promising, has challenges 
and limitations. Classifying plasmids can be particularly chal- 
lenging since they usually exhibit high genetic diversity [ 38 ] and 

shared sequence segments between plasmids and chromosomes. 
Tools like PlasFlow and PlasClass provide a pr omising alternativ e 
for detecting more diverged plasmids via learning patterns be- 
ond sequence similarity but tend to hav e decr eased pr ecision.
n the other hand, hybrid methods, like PLASMe, tend to be com-
utationall y mor e costl y. Consequentl y, users should be aware of
hese methodological differences when interpreting results and 

onsider the strengths and limitations of each approach in the
ontext of their specific r esearc h questions. For gSpr eadComp, as
n auxiliary tool for hypothesis generation, we decided to initially
eploy it with the machine learning–based method PlasFlow for 

ts compar ativ e r esults with PlasClass, but with slightly higher re-
all [ 35 ]. Ho w e v er, as the plasmid detection tools r a pidl y e volv e,
e expect to update the gSpreadComp plasmid detection module 

n the future. 
Similarl y, mac hine learning–based methods have been used for

F annotation [ 42–44 ]. Ho w e v er, to the best of our knowledge, less
ork has been done on the reliability of those tools when applied

o MAGs, specifically when looking for individual VF. Ther efor e,
or VF annotation, we implemented a best hit–based method in
Spr eadComp, potentiall y incr easing the number of false nega-
ives for the sake of precision. 

se case: gSpreadComp in the human gut microbiome of 
ubjects with different diets 
r e vious studies hav e suggested potential links between diet and
ntibiotic resistance patterns, with some focusing on meat con- 
umption [ 45–47 ]. Sim ultaneousl y, gr owing e vidence shows that
ncooked produce could contribute to higher HGT events and 

otential antibiotic resistance spread [ 48–51 ]. While these find-
ngs pr ovide inter esting hypotheses, our use of gSpreadComp aims
o demonstrate a streamlined approach for analyzing resistance 
ene spread across diverse groups and draw attention to poten-
ial r esistance-virulence tr ansmissibility hotspots r ather than to
r aw definitiv e conclusions about diet–r esistance r elationships. 

ntimicrobial resistance spread 

e identified multidrug and glycopeptide resistance genes as 
biquitous in fecal samples from subjects of every diet, includ-

ng ancient. Glycopeptide antibiotics have been mainly used to 
r eat m ultidrug-r esistant Gr am-positiv e infections, and incr eased
 esistance occurr ence has alr eady become a cause of concern
 52 ]. Specificall y, its ov eruse in the liv estoc k industry was pointed
ut almost 20 years a go [ 53 ]. Gl ycopeptide r esistance genes wer e,
o w e v er, also found in permafr ost fr om > 10,000 years ago [ 54 ].
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Figure 3: gSpreadComp estimates the resistance-virulence risk from MAGs. (A) Network representation from the recovered MAGs (nodes) distributed 
according to the co-occurrence of ARGs for the 5 different diets . T he node size represents the resistance-virulence risk of a MA G . The node color 
r epr esents the phylum. As expected, the potential pathogens (identified based on the NCBI Pathogen detection database), marked with a star, 
systematicall y hav e a high risk, but in the ancient diet. The highest resistance-virulence MAG w as found in the omniv ore diet, follo w ed b y 
Proteobacteria MAGs from vegans. Interestingly, the number of ARGs in plasmids is the most significant metric to calculate the risk, follo w ed b y VFs in 
plasmids . T his result indicates that a higher resistance-virulence risk is associated with the presence of the observed genes in mobile elements . T his 
may be intuitive, as those MAGs are more likely to participate in plasmid-mediated horizontal transmission and contribute to a resistant microbiome. 
(B) Boxplot from MAGs grouped by pathogen potential on the x-axis and the number of unique ARGs annotated in the MAG on the y-axis. A “high”
pathogen potential indicates that the MAG is from a species present in the NCBI Pathogen Detection Database, and “medium” and “low” indicate a 
MAG from the same genus and family , respectively . The boxplot indicates high antimicrobial resistance from high potential pathogens compared with 
the other MAGs. (C) The density of MAGs from the Bacteroidota phylum, based on the total number of annotated unique VFs. The density plot shows a 
significant negative skew for the ketogenic diet, while the ancient diet has a positive skewness, and the other diets tend to have a normal distribution. 
This indicates that the ketogenic diet may potentially increase the resistance-virulence risk from Bacteroidota . 
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Table 2: Pairwise comparison of the number of plasmid-mediated HGT events involving VFs in which specific bacterial families partic- 
ipated. The comparison is made between samples from individuals following different diets . T he columns r epr esent the 2 diets being 
compared, the adjusted P -value for statistical significance, and the bacterial family involved. 

Diet 1 Diet 2 Adjusted P -value a Family 

Omnivore Vegetarian 0.0014 Lachnospiraceae 
Omnivore Vegan 0.0030 Lachnospiraceae 
Omnivore Vegan 0.0032 Ruminococcaceae 
Vegetarian Ketogenic 0.0051 Lachnospiraceae 
Omnivore Vegetarian 0.0136 Oscillospiraceae 
Vegan Ketogenic 0.0142 Ruminococcaceae 
Vegetarian Ketogenic 0.0204 Oscillospiraceae 
Vegan Ketogenic 0.0433 Lachnospiraceae 
Omnivore Vegetarian 0.0439 Ruminococcaceae 

a Bonferroni adjusted t -test. 
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In ad dition, an extensi v e meta genomic study of soil, ocean, and 

animal sources found that glycopeptide resistance–related genes 
wer e pr e v alent in all samples, accounting for 17% of global resis- 
tant sequences, second only to multidrug resistance efflux pumps 
[ 55 ]. 

When analyzing resistance with at least a 0.05 increase in the 
spread in one particular diet, we observed a specific increase in 

bacitr acin r esistance for v egans (0.7–widespr ead), follo w ed b y om- 
nivor es (0.64–widespr ead), and then the subjects fr om the other 
3 diets (0.55 on av er a ge). Inter estingl y, bacitr acin is not typically 
used or all y but instead a pplied topicall y in ointments [ 56 ]. In addi- 
tion, bacitracin has been extensively used as an animal feed addi- 
tive [ 57 ]. Although still under the “low” widespread category pre- 
viousl y established, tetr acycline r esistance genes wer e mor e dis- 
seminated in omnivores, 0.51, while subjects preferring the other 
diets had a similar spread of 0.40, considered “common.” Tetracy- 
cline is typically used for therapeutic purposes but is reportedly 
fr equentl y added to liv estoc k feed at doses below ther a peutic le v- 
els, and it has been used as a growth enhancer for s wine , poultry,
and aquaculture mainly in the past century [ 58 ]. 

When we grouped the subjects with diets exposed to animal 
meat (ketogenic and omnivor e) a gainst the nonexposed (vegans 
and vegetarians), we saw an increase in spread for the MLS,
aminogl ycoside, and m upir ocin r esistance. It is r ele v ant to notice 
that MLS was considered ubiquitous-widespread and aminogly- 
coside widespread-common in all diets. MLS has been used in Eu- 
ropean cattle and pig husbandry [ 59 ]. Similarly, a 2023 study has 
explor ed aminogl ycoside detection in se v er al animal m uscles, tis- 
sues, honey, milk, and other food sour ces. They w ere able to detect 
the antibiotic in 17% of the samples. Most of these samples were 
r etrie v ed fr om cattle and s wine [ 60 ]. T he m upir ocin r esistance was
less spread than the others mentioned. We considered mupirocin 

in the sparse-common range for all diets. 
In our investigation of ARG classes, we observed an elevated 

spread of diaminopyrimidines that exhibited a more pronounced 

distribution among vegetarians and vegans, closely follo w ed b y 
omnivores and a lower spread in the ketogenic diet group. A re- 
cent study found ubiquitously accumulating diaminopyrimidines, 
fluoroquinolones, and sulfonamides in rice farms [ 61 ]. The study 
found a higher accumulation of fluoroquinolones and sulfon- 
amide. Consistent with our results, the ancient subjects exhibited 

the highest pr e v alence of sulfonamide, 0.37, follo w ed b y vegans,
0.31, and vegetarians, 0.24. 

It is worth noticing that although there are specific differences 
in r esistance spr ead, all modern diets sho w ed a similar ov er all 
spread distribution. On the other hand, by calculating the aver- 
a ge ARG class spr ead in the modern diets, we saw a systematic in- 
r ease in spr ead in the modern samples compar ed to the ancient
iet (10%–20% increase). These findings exemplify gSpreadComp’s 
apacity to quantify and compare ARG spread across diverse sam-
les. Ho w e v er, it is crucial to emphasize that these observations
howcase the tool’s capabilities rather than draw definitive con- 
lusions about diet–r esistance r elationships . T he patterns identi-
ed by gSpreadComp can serve as starting points for more com-
r ehensiv e studies, incor por ating additional data sources and ex-
erimental validation to fully understand the complex interplay 
etween diet and antimicrobial resistance. 

irulence factor and resistance-virulence 

isk-ranking 

ur results revealed a nuanced relationship between diet, the dis-
ribution of VFs, and the calculated resistance-virulence potential 
isk in the human gut microbiome . T he a verage number of unique
Fs was statistically similar among the diets. Ho w e v er, Bacteroidota
ssociated with subjects from the ketogenic diet had a statistically
igher number of unique VFs than subjects with other diets. More-
ver, bacteria with high virulence potential consistently exhibited 

he highest number of unique antibiotic r esistances, irr espectiv e
f the subject’s diet. Although alarming, this might be expected,
s pathogenic bacteria should constantly be exposed to selective 
r essur e. 

In r anking r elativ e r esistance-virulence potential risk in our
ataset, the tool consistently ranked higher risk to known po-
ential pathogenic species. Inter estingl y, the subtle effects of diet
n risk are evidenced in the Firmicutes phylum. A risk difference
merged between omnivores and vegetarians/vegans, and simi- 
arly between those on the ketogenic diet and v egetarians/v egans.
o w e v er, no significant risk disparity was observed when com-
aring meat-consuming and nonmeat diets . T hese observations 
emonstr ate gSpr eadComp’s ability to detect nuanced patterns 
hat could inform more targeted in vestigations . 

Finally, our data indicated that vegans and vegetarians have 
ignificantl y mor e ARGs and VFs involv ed in potential plasmid-
ediated HGT than ancient, omnivore, and ketogenic groups.

pecifically, a higher HGT potential was observed for the Ru-
inococcaceae and Lachnospiraceae families . T hese findings echo 

ome of the discoveries by Reid et al. [ 49 ], which highlighted the
redilection of produce from supermarkets to harbor Escherichia 
oli strains endo w ed with virulence plasmid carriage, thereby pro-
iding a potential conduit for HGT. Reid et al. [ 49 ] also discussed
he possibility of producing drug-resistant E. coli from animal 

anure fertilizers, contaminated irrigation water, and wildlife.
pecificall y, they c har acterized r esistant E. coli fr om supermarket-
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ought, r eady-to-eat cilantr o, arugula, and mixed salad from 2
erman cities [ 49 ]. Another study underscored produce as a reser-
oir of tr ansfer able antibiotic r esistance genes, further elucidating
he plausible link between plant-based diets and amplified inci-
ences of ARG in plasmid-mediated HGT owing to higher expo-
ure to the transferable resistome inherent in produce [ 48 ]. Blau
t al. [ 48 ] found an impr essiv e div ersity of self-tr ansmissible m ul-
iple resistance plasmids in bacteria associated with produce that
s consumed r aw. Finall y, Blau et al. [ 48 ] discussed the possibility
f multiple resistance plasmids being exogenously captured by E.
oli and tr ansferr ed to gut bacteria, thus spreading resistance. 

Although, to the best of our knowledge, no direct study com-
aring the abundance of plasmids in the human gut and soil was
ade, se v er al studies indicated the potential increase in the abun-

ance of plasmids in soil environments [ 62 , 63 ]. Ther efor e, we hy-
othesize that gut microbiomes from plant-based diets have a
igher chance of participating in plasmid-mediated HGT and in-
icate that targeted research should be performed to confirm or
eny this hypothesis. 

ools comparison 

n compar ativ e genomics, gSpr eadComp giv es a step forw ar d as a
ool that integrates genome annotation, gene spread calculation,
irulence factor identification, plasmid-mediated HGT detection,
nd antimicrobial resistance-virulence risk-ranking. While previ-
usly mentioned existing tools ha ve limitations , such as applica-
ility to single taxa or reliance on r efer ence genomes, gSpr ead-
omp offers a compr ehensiv e a ppr oac h to a ppl ying compar ativ e
enomics to the entir e micr obiome . To our knowledge , PathoFact
 42 ] and MetaCHIP [ 25 ] are the closest counterparts to gSpread-
omp; ho w e v er, they hav e differ ent focal points (Table 3 ). Patho-
act focuses on virulence and resistance gene prediction, while
etaCHIP can detect HGT e v ents dir ectl y in a micr obiome com-
unity in a reference-independent way. gSpreadComp focuses on

hese a ppr oac hes, while offering a compr ehensiv e anal ysis plat-
orm for microbial genomic studies. 

gSpreadComp and PathoFact both target ARG, VF, and MGE an-
otation in microbial genome analysis, sharing similar objectives.
oth a ppr oac hes use k e y tools lik e PlasFlow for plasmid identi-
cation, DeepARG for antimicr obial r esistance gene annotation,
nd the Virulence Factors Database (VFDB) for annotating viru-
ence factors, which yield similar results in these aspects. How-
 v er, gSpr eadComp adds a unique dimension with its resistance-
irulence risk-ranking using TOPSIS, gene spread calculation, and
etailed downstr eam anal ysis. P athoFact, on the other hand, em-
hasizes precision in virulence and toxin prediction through a
lend of HMM profiles and machine learning approaches. 

Against MetaCHIP, gSpreadComp focuses on plasmid-mediated
GT. While MetaCHIP provides robust HGT detection by combin-

ng similarity and phylogenetic a ppr oac hes, gSpr eadComp adds
 alue by dir ectl y linking these e v ents to sample metadata, which
s crucial for compar ativ e genomics and useful for nonspecial-
st users like clinicians. Natur all y, the HGT e v ents detected by
SpreadComp should be present in the results from MetaCHIP. 

gSpr eadComp’s str eamlined a ppr oac h makes it a versatile tool
hat addr esses ga ps left by existing methodologies . T he a ppr oac h
s particularl y adv anta geous for non-bioinformaticians, as it sim-
lifies complex analyses, making the data accessible and action-
ble for a br oader audience. While gSpr eadComp offers a compre-
ensiv e a ppr oac h, it is not intended to r eplace specialized tools.

nstead, it aims to complement existing methodologies by pro-
iding an integrated approach for microbial genomic analysis.
sers should consider their specific r esearc h questions and re-
uirements when choosing the most appropriate tool or combi-
ation of tools for their studies . T he analyses performed using
Spr eadComp ar e not conclusiv e but serv e to r aise testable hy-
otheses and focus subsequent laboratory experimentation. By

dentifying potential antimicr obial r esistance and virulence fac-
ors, along with their likely bacterial hosts, gSpreadComp narrows
he search space for targeted experimental validation. 

onclusion 

SpreadComp combines genome annotation, gene pr e v alence
ormalization, and target (i.e., diet) anal ysis into a compr ehen-
ive w orkflo w for quantifying gene spread and assessing po-
ential r esistance-virulence risk-r anking in micr obial comm uni-
ies . T he tool’s modular design allows for flexibility and future
pdates . T he tool’s application to explore dietary impacts on
ut microbiome antibiotic resistance demonstrated its ability to
dentify complex patterns across different dietary groups. More-
v er, nuanced e vidence suggested that meat and uncooked pro-
uce influence r esistance-virulence spr ead, particularl y concern-

ng plasmid-mediated HGT, emphasizing the intricate relation-
hip between diet and microbial dynamics in the human gut.
o w e v er, it is crucial to emphasize that these findings are in-

ended to showcase gSpreadComp’s capabilities rather than draw
efinitive conclusions about diet–resistance relationships. 

The patterns identified by gSpreadComp can serve as valu-
ble starting points for more comprehensive studies, incorporat-
ng larger sample sizes or focused experiments, additional data
ources, and experimental validation. As with any bioinformatics
ool, results should be interpreted cautiously and used to guide
ypothesis generation and further investigation. gSpreadComp
ims to complement existing methodologies by providing an inte-
rated platform for microbial genomic analysis, potentially bene-
ting a wide range of users. 

ata and Methods 

mplementation 

 he gSpr eadComp 

SpreadComp is designed for UNIX-based systems . T he user can
efer to the manual [ 64 ] for detailed instructions. Fundamentally,
ur a ppr oac h works in 6 modular steps: (i) pr okaryotic genome
axonomy assignment, (ii) genome quality estimation, (iii) ARG
nnotation, (iv) plasmid and c hr omosome classification, (v) VF
nnotation, and (vi) downstr eam anal ysis, whic h involv es tar get-
ased gene spread analysis, plasmid-mediated HGT of the target
ene and VF, prokaryotic resistance-virulence risk-ranking, and
 eport gener ation. 

Each module can be applied separately . Consequently , as new
equence classification tools sur ge, gSpr eadComp downstr eam
nalysis can continue to be used independently. Another advan-
age of a modular implementation is that the a ppr oac h can be
asil y updated. Figur e 1 indicates the gSpr eadComp structur e . T he
 ppr oac h was written in Bash and R (version 4.2.2) [ 65 ]. Finally,
e use conda [ 66 ] (conda 22.11.1) environments to install all nec-
ssary software dependencies and third-party softwar e wher e v er
ossible. Using conda allows softwar e mana gement with differ ent
nd potentially conflicting dependencies in the same system. In
he future, we will develop a Singularity container [ 67 ] to facilitate
nstallation and ensure reproducibility across diverse computing
nfr astructur es. 
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Table 3: Feature comparison of gSpreadComp , PathoF act, and MetaCHIP across 4 k e y dimensions. Eac h tool offers distinct ca pabili- 
ties: gSpr eadComp pr ovides integr ated metadata anal ysis with r esistance-virulence risk-r anking, compar ativ e genomics, and plasmid- 
mediated gene transfer detection; PathoFact specializes in antimicrobial resistance, virulence factors, toxins, and mobile genetic ele- 
ments annotation; and MetaCHIP focuses on robust horizontal gene transfer detection within microbial communities . T his comparison 

highlights complementary strengths that researchers can select based on their specific research questions. 

Tool Inputs Analysistypes Key outputs Interpretability 

gSpreadComp MAGs/genomes with 
target metadata 

ARG/VF annotation, 
plasmid detection, gene 

spread calculation, 
resistance-virulence 

risk-ranking 

ARG and VF 
annotation, target gene 

spread calculation 
within the metadata 

groups; potential 
plasmid-mediated HGT 

e v ents of ARG/VF in the 
community, 

resistance-virulence 
risk-ranking 

Integrates metadata 
context, statistical 
comparison among 
metadata groups, 
pr ovides r elativ e 

risk-ranking within 
communities, HTML 

visual reports 
accessible to 

nonspecialists 
PathoFact Assembly FASTA files ARG/VF, bacterial 

toxins genes, plasmid 
and phages detection 

ARG/VF/toxin 
predictions with 

confidence le v els, 
secretion status 

Detailed annotation 
table ready for further 

analysis 

MetaCHIP MAGs/genomes with 
taxonomic 

classifications 

Robust 
comm unity-le v el HGT 

identification 

HGT e v ents within the 
community 

Focuses on technical 
HGT outputs 
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In step (i), the user can dir ectl y assign taxonomy using GTDB-tk 
[ 68 ] and format the result table automatically. In step (ii), gSpread- 
Comp orc hestr ates Chec kM [ 69 ] to estimate pr okaryotic genome 
quality and format the resulting files. Following step (iii), the user 
can automatically annotate ARG and format its resulting files. To 
minimize the risk of false-positive ARG prediction, gSpreadComp 

uses the DeepARG-LS [ 32 ] with the following parameter values: 
a minimum of 80% prediction probability, an e-value alignment 
lo w er than 1e-10, and a percent identity of 35% or higher [ 33 ]. 

In ste p (i v), plasmids ar e pr edicted using PlasFlow with default 
parameters (i.e., 0.7 probability threshold) [ 34 ]. PlasFlow uses only 
genomic signatures to identify bacterial plasmids using a neural 
network model with increased performance compared to similar 
tools [ 34 ]. In addition, this tool is also optimized for metagenomic 
data, the type of data we expect to use mainly with gSpread- 
Comp. Then, in step (v), we use the Victors VF database (down- 
loaded in December 2022) [ 70 ] and the Virulence Factors Database 
(downloaded in December 2022) [ 71 ] to annotate VF on provided 

genomes. We use the protein sequences from both databases from 

their core dataset associated with experimentall y v erified viru- 
lence factors. We use BLASTX [ 72 ] with an e-value of 1e-50 as the 
cutoff to locate the VFs. 

Finally, in step (vi), gSpreadComp starts by optionally filtering 
out genomes based on the quality (Completeness – 5 ∗ Contami- 
nation > 50). It can then r emov e samples based on the total num- 
ber of genomes per sample (by default, no sample is r emov ed).
Next, we calculated the normalized pr e v alence of the target gene 
in a defined group ( P group , gene ). It considers the presence or absence 
of the target gene in a genome divided by the total number of 
genomes in a group, similar to the definition used by Danko et 
al. [ 4 ]. A Bonferroni-adjusted t -test is used pairwise to compare 
the target gene prevalence across the groups. When the adjusted 

P -value was less than 0.05, we assigned a significant difference 
between the groups . T he user can refer to the manual [ 64 ] for a 
detailed description of the intermediate files generated. 

P group , gene = 

∑ 

Genom e group , gene ∑ 

Genom e group 
We use the defined WAP to estimate the gene spread per tax-
nomical le v el per tar get metadata gr oup, as described by Ma g-
úsdóttir et al. [ 31 ]. P i is the gene pr e v alence per specified taxo-
omical group, and T is the number of unique taxa in the defined
axonomical le v el. 

WAP = 

∑ T 

i =1 

P i × ∑ 

Genom e i 
T 

Finall y, gSpr eadComp extr acts what we defined as “resistance-
irulence risk factors” for each genome . T hose are the genetic
otential related to the target gene, represented by the number
f unique target genes; the virulence potential, represented by 
he number of unique VFs; the potential of transmitting the tar-
et gene, r epr esented by the number of unique target genes lo-
ated in plasmids; and the potential of transmitting virulence 
otential, r epr esented by the number of unique VFs located in
lasmids. We use the taxonomical distances to the species in
he NCBI pathogens database [ 27 ] to define the r efer ence po-
ential pathogens. Finally, we use the TOPSIS [ 28 ] to rank the
esistance-virulence risk from the genomes. Essentially, we ex- 
r act fr om eac h genome ( g i ) its r esistance-virulence risk factors
 f j ), g i = { f i , 1 , f i , 2 , . . . , f i , n } , with n resistance-virulence risk fac-
ors. 

Follo wing this, w e normalized the resistance-virulence risk fac-
ors using 

f i j = 

f i j √ ∑ m 

i =1 f 
2 
i j 

here f i j is the value of the j th risk factor for the i th genome,
nd m is the total number of genomes . T hen, we computed
he weighted normalized decision matrix. The defined weights,
 = { w 1 , w 2 , . . . w n } , ar e the av er a ge of the r esistance-virulence

isk factors extracted from the reference potential pathogens . T he
eighted normalized decision matrix is r epr esented by 

v i j = w j × r i j 
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We defined the ideal, A 

∗ = { v ∗1 , v ∗2 , . . . v ∗n } , and the negative-ideal,
 

− = { v −1 , v −2 , . . . v −n } , solutions as v ∗j = max 
i 

( v i j ) and v −j = min 

i 
( v i j ) .

Next, for each genome, we calculated the separation from the
deal solution ( S ∗i ) and from the negative-ideal solution ( S −i ) as 

S ∗i = 

√ √ √ √ 

n ∑ 

j =1 

(
v i j − v ∗j 

)2 

S −i = 

√ √ √ √ 

n ∑ 

j =1 

(
v i j − v −j 

)2 

Finall y, the pr okaryotic risk ( R i ) is the r elativ e closeness to the
deal solution. 

R i = 

S −i 
S ∗i + S −i 

The genome with the highest R i value ranks higher in the mi-
r obial comm unity r esistance-virulence risk scale. We used the
OPSIS implementation in the MCDA R pac ka ge. 

To extract the plasmid-mediated HGT events, we implemented
 similar heuristic in gSpreadComp, as defined by Smillie et al. [ 73 ].
riefly, 1 recent HGT event could be identified between 2 distantly
elated genomes (from a defined taxonomical level) through the
har ed r egion of DNA corr esponding to an annotated sequence
ith 99% or greater similarity. 
Lastl y, gSpr eadComp uses the files , metrics , and figures to gen-

r ate an HTML r eport automaticall y fr om the rmarkdown [ 74 ]
ac ka ge. 

se case: gSpreadComp in the human gut microbiome of
ubjects with different diets 
he gSpreadComp approach requires genomes or MAGs in fasta
ormat; the genomes metadata table, including the identification
f its source sample and the target feature to be compared; a
enome taxonomic assignment table; a genome quality assign-
ent table; and a target gene annotation table. 

etagenome data selection 

nitially, we selected metagenomic samples from the human
ut of subjects over 18 years old containing information about
he host diet using the HumanMetagenomeDB (HMgDB) [ 75 ].

e selected only WGS libraries available in the Sequence Read
rc hiv e (SRA) [ 76 ]. After filtering, we had metagenomic samples

rom the following BioProjects: PRJN A340216, PRJN A397112, PR-
N A324129, and PRJN A529487. Afterw ar d, w e examined the sam-
le’s metadata information on the original studies and assigned
he libraries in “omnivore, ” “vegetarian, ” “vegan, ” and “ketogenic”
iet types according to the original studies’ definitions. Addi-
ionally, we included metagenomic libraries from the Ancient-
eta genomeDir v20.12 [ 77 ]. Fr om the libr aries pr ovided on the

ncientmetagenome-hostassociated file, we selected those with
he following parameters: “sample_host” equal to “Homo sapi-
ns , ” “community_type” equal to “gut, ” and “arc hiv e” equal to
ENA” or “SRA.” We assigned libraries that originated from the
ncientMetagenomeDir as “ancient.” The complete table of li-
raries and accompanying metadata used is in Additional File 1:
upplementary Table S1 . Finally, we downloaded the libr ary r eads
rom the SRA using the SRAtoolkit version 2.10.9 [ 78 ]. 

a ta prepar a tion 

he MAGs were recovered using the Multi-Domain Genome Re-
o very tool (MuDoGeR) [ 79 ]. T he ra w reads were quality-controlled
sing metaWr a p [ 80 ] with default parameters . T he reads trim-
ing was performed using TrimGalore ( RRID:SCR _ 011847 ) [ 81 ]
ith the default settings. After, BMTagger ( RRID:SCR _ 014619 ) [ 82 ]
as used with the human build 38 patch release 13 (GRCh38.p13

 83 ]) to r emov e potential host genomes using default par ameters.
hen, r eads wer e assembled using metaSpades [ 84 ] from within
he MuDoGeR a ppr oac h. Once assembled, the sequence contigs
ere binned using Metabat2 [ 85 ], Maxbin2 [ 86 ], and CONCOCT

 87 ]. Next, the r ecov er ed bins wer e r efined and der eplicated using
uDoGeR. The bins were quality-checked using CheckM ( RRID:

CR _ 016646 ) [ 69 ] and taxonomically assigned using GTDB-tk
 RRID:SCR _ 019136 ) [ 68 ], and assembly statistics were calculated
ith BBTools [ 88 ]. Finally, the bins were filtered for MAGs based
n the following criteria: at least 50% completeness, less than
0% contamination based on Chec kM r esults, and a quality score
igher than or equal to 50, where quality score = completeness −
 ∗ contamination [ 89 ]. High-quality MAGs were defined as com-
leteness > 90% and contamination < 5%. Medium-quality MAGs
ere defined as completeness ≥50% and contamination < 10%.
hen, we used the ARG annotation workflow from gSpreadComp
o annotate ARGs in each MA G . This annotation step means we
sed DeepARG-LS with a minimum of 80% prediction probability,
n e-value alignment lo w er than 1e-10, and a percent identity of
5% or higher to minimize the risk of false positives. Next, we used
he gSpreadComp methods described earlier to classify plasmid
equences and annotate and format VFs . We remo ved samples
ith fewer than 6 genome r epr esentativ es to calculate the gene
r e v alence per sample, as a lo w er number of r ecov er ed genomes
ypically indicates insufficient sequencing depth [ 29 ], which can
ntroduce statistical bias and skew prevalence analyses to values
ignificantl y differ ent fr om those that would be obtained with ad-
quate genome r epr esentation. Finall y, we integr ated the r ecov-
red MAGs and the following tables into the gSpreadComp ap-
r oac h: formatted taxonomic assessment, the prokaryotic qual-

ty estimation, the ARG annotation, the plasmid identification, the
F annotation, and the library metadata. In addition, we also used

he gSpreadComp approach to estimate the spread of the ARG an-
ibiotic r esistance gr oup (e.g., bacitr acin and gl ycopeptide), her e-
fter r eferr ed to as ARG classes. 

vailability of Source Code and 

equirements 

roject name: gSpreadComp 

r oject homepa ge: https:// github.com/ mdsufz/ gSpreadComp/ 
perating system(s): Linux 
r ogr amming langua ge: C, Shell, R, Python 

ther r equir ements: Bash, Conda, Mamba, and other pac ka ges au-
omatically installed with gSpreadComp 

icense: GNU GPL v3.0 
RID: SCR_026,798 
 v ersion of r ecord sna pshot of the GitHub repository
as been arc hiv ed in the Softwar e Herita ge Libr ary (PID
wh:1:dir:26ba1978f7b6cf8eb968e3728d4adee62fa4034e [ 90 ]). 
he tool is also available via WorkflowHub [ 91 ]. 

dditional Files 

dditional File 1. 01_Kasmanas_gSpread_AddFile1_Table_S1.xlsx
dditional File 2. 02_Kasmanas_gSpread_AddFile2_Table_S2.xlsx
dditional File 3. 03_Kasmanas_gSpread_AddFile3_Table_S3.xlsx
dditional File 4. 04_Kasmanas_gSpread_AddFile4_Fig_S1.docx 
dditional File 5. 05_Kasmanas_gSpread_AddFile5_Table_S4.xlsx
dditional File 6. 06_Kasmanas_gSpread_AddFile6_Fig_S2.docx 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giaf072#supplementary-data
https://scicrunch.org/resolver/RRID:SCR_011847
https://scicrunch.org/resolver/RRID:SCR_014619
https://scicrunch.org/resolver/RRID:SCR_016646
https://scicrunch.org/resolver/RRID:SCR_019136
https://github.com/mdsufz/gSpreadComp/
https://scicrunch.org/resolver/RRID:
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Additional File 7. 07_Kasmanas_gSpread_AddFile7_Table_S5.xlsx 
Additional File 8. 08_Kasmanas_gSpread_AddFile8_Fig_S3.docx 
Additional File 9. 09_Kasmanas_gSpread_AddFile9_Table_S6.xlsx 
Supplementary Fig. S1. Boxplots from the ARG class prevalence 
per sample (y-axis) colored by Target Diet. The boxplot title is the 
ARG class . T he statistically significant pairwise comparisons are 
indicated with the ∗ symbol. 
Supplementary Fig. S2. Heatmaps containing the spread, calcu- 
lated as weighted av er a ge pr e v alence (WAP) of the antimicr obial 
resistance gene (ARG) classes (rows) per phylum (columns) per 
target diet (title). The number within parentheses after the phy- 
lum indicates the number of genomes used for the calculation 

from that phylum. The number within parentheses from the ARG 

classes is the av er a ge spr ead for that ARG class. 
Supplementary Fig. S3. (a) Boxplots colored by target diet. The 
x-axis is grouped by pathogenic potential defined by the taxo- 
nomical distance to potential pathogens from the NCBI pathogen 

database . T he y-axis is the number of unique virulence factors 
(VF) per sample. (b) Group of boxplots per phylum that are com- 
mon to all target diets . T he x-axis is grouped and colored by 
target diet. The y-axis has the calculated resistance-virulence 
risk metric. (c) Density plots of the resistance-virulence risk for 
each common phylum colored by target diet. The y-axis indicates 
the estimated probability density of the r espectiv e r esistance- 
virulence risk on the x-axis. Density plots are calculated using the 
seaborn.kdeplot in Python 3.9. (d) Boxplot for the number of an- 
timicr obial r esistance genes (ARGs) involv ed in plasmid-mediated 

horizontal gene transfer (HGT) events found per sample on the y- 
axis . T he x-axis is grouped and colored by target diet. (e) Boxplot 
for the number of VFs involved in plasmid-mediated HGT e v ents 
found per sample on the y-axis . T he x-axis is grouped and colored 

by target diet. 
Supplementary Table S1. Metadata table from the selected 

whole-genome sequencing (WGS) samples. Columns are stan- 
dardized as described by Kasmanas et al. [ 75 ]. Samples col- 
lected from the AncientMetagenomeDir had the host_diet as- 
signed as “Ancient.” The “sample” column is equivalent to the SRA 

project_id. 
Supplementary Table S2. (a) Summary information r etrie v ed 

from the recovered metagenome-assembled genomes (MAGs). 
Completeness, Contamination, and Str ain.heter ogeneity ar e as- 
signed with Chec kM thr ough MuDoGeR [ 79 ]. Quality and qual- 
ity.scor e ar e determined as described in Methods . T he Target col- 
umn refers to the source patient’s diet. The taxonomical informa- 
tion was assigned with GTDBtk through MuDoGeR. Pathogen po- 
tential is determined based on the taxonomical distance to ref- 
erence potential pathogens from the NCBI pathogen database. 
The risk_criteria ranks the r elativ e r esistance-virulence risk cal- 
culated as described in Methods . T he columns named “unique_ ∗”
are defined as “Resistance-virulence Risk Factors” and are used 

to rank the relative resistance-virulence risk. The Factors are sys- 
tematically named as follows: “unique_,” virulence factors (vf) or 
target gene (ARGs in our use case), “_in_,” sequence type location 

(i.e., c hr omosome, plasmids, or unclassified). The last 19 columns 
ar e assembl y statistics extr acted using BBTools [ 88 ]. (b) Distribu- 
tion of the number of MAGs per diet per quality. 
Supplementary Table S3. (a) DeepARG [ 32 ] antimicrobial resis- 
tance gene (ARG) annotation table. gSpreadComp expects to re- 
ceive a gene annotation csv table in a similar format, indicat- 
ing the Genome column as “Genome,” the target gene column as 
“Gene_id,” and the sequence name from the fasta file where the 
gene was annotated as “Gene_sequence_location.” The probabil- 
ity and identity columns are defined by DeepARG. The “probabil- 
ty” column is the probability that the gene annotation is correct
ccording to their highl y accur ate ARG pr edicting model. (b) Tar-
et gene pr e v alence normalization table per sample (Library). The
arget gene was the ARG class (Gene_class) from the DeepARG
nnotation table . T he pr esent.gene column indicates how man y
etagenome-assembled genomes (MAGs) in that Library had the 

pecified Gene_class annotated. The Target column indicates the 
iet from the Library. The t_mags column indicates the total num-
er of MAGs r ecov er ed, and the gene.genome.pr e v column indi-
ates the pr e v alence of the Gene_class. (c) Bonferroni-adjusted t -
est pairwise comparison from the ARG class (Gene_class) preva- 
ence per diet. The y column shows the variable’s name used in
omparing group1 and group2. The n1 and n2 columns show the
umber of samples compared. The statistic column is the result-

ng t -test statistic, and df is the degrees of freedom associated with
he test. The p is the P -value from the comparison, p.adj is the
onferr oni-adjusted r esult, and p.adj.signif is an indication of sig-
ificance ( P < 0.05). 
upplementary Table S4. (a) Antimicrobial resistance gene (ARG) 
lass, as assigned by DeepARG [ 32 ], spread at the phylum level per
arget diet. The spread was calculated using the weighted av er a ge
r e v alence (WAP). (b) The ARG class spread, calculated using WAP
er phylum for the Ancient diet. (c) The ARG class spread, calcu-

ated using WAP per phylum for the ketogenic diet. (d) The ARG
lass spread, calculated using WAP per phylum for the omnivore
iet. (e) The ARG class spread, calculated using WAP per phylum
or the vegan diet. (f) The ARG class spread, calculated using WAP
er phylum for the vegetarian diet. 
upplementary Table S5. (a) Virulence factors (VFs) from the 
ictors virulence factors database [ 70 ] (downloaded in Decem-
er 2022) annotated on the Genomes (Genome column) r ecov er ed
rom the whole-genome sequence (WGS) samples (Library) using 
LASTX. Sequence_id indicates the sequence header where the 
F (Victor_VF_found) was aligned. Victor_VF_class is the class of 

he VF given by Victors database . T he e-value and bitscore are
ligning metrics provided by BLASTX. (b) The av er a ge number of
nique VFs per phylum per target diet (column avg_unique_VFs).
he n column indicates the number of samples used for the cal-
ulation, and the column sd_unique_VFs shows the standard de- 
iation from the calculated metrics. (c) All statistically signifi- 
ant Bonferroni-adjusted t -test pairwise comparisons from the 
nique number of VFs grouped per phylum per target diet. The
omparison was made between the diets indicated in group1 
nd group2. The n1 and n2 columns show the number of sam-
les compared. The p is the P -value from the comparison, p.adj

s the Bonferroni-adjusted result, and p.adj.signif is an indica- 
ion of significance ( P < 0.05). The unique number of VFs per
enome can be found in Supplementary Table S2a. (d) All statisti-
all y significant Bonferr oni-adjusted t -test pairwise comparisons 
rom the unique number of antimicrobial resistance genes (ARGs) 
rouped per pathogenic potential based on the NCBI pathogens 
atabase . T he comparison was made between the pathogenic po-
ential indicated in group1 and group2. The n1 and n2 columns
how the number of samples compared for group1 and group
, r espectiv el y. The p is the P -value from the comparison, p.adj
s the Bonferroni-adjusted result, and p.adj.signif is an indica- 
ion of significance ( P < 0.05). Values equal to 0 were extremely
lose to 0. The unique number of ARGs per genome can be
ound in Supplementary Table S2a. (e) All statistically signifi- 
ant Bonferroni-adjusted t -test pairwise comparisons from the 
esistance-virulence risk per phylum grouped per target diet. The 
omparison was made between the target diets indicated in diet
 and diet 2. The p.adj is the Bonferroni-adjusted P -value result.
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he resistance-virulence risk value per genome can be found in
upplementary Table S2a. 
upplementary Table S6. (a) List of identified antimicrobial re-
istance gene (ARG) plasmid-mediated horizontal gene transfer
HGT) e v ents . T he library is the sample where the event was
ound, and Family1 and Famil y2 ar e the taxonomical families in-
olved in the event. The Gene_id column identifies the ARG name
nvolved, and the Target column identifies the target diet from
he r espectiv e libr ary. (b) List of identified virulence factor (VF)
lasmid-mediated HGT e v ents . T he Libr ary is the sample wher e
he e v ent was found, and Famil y1 and Famil y2 ar e the taxonom-
cal families involved in the event. The Gene_id column identi-
es the VF name from the Victors database [ 70 ] involved, and
he Target column identifies the target diet from the respective
ibr ary. (c) Summary fr om the HGT e v ents per libr ary per tar-
et diet after removing the libraries that recovered fewer than
2 metagenome-assembled genomes. (d) Bonferroni-corrected t -
est pairwise comparison between the number of ARG HGT e v ents
rouped by the target diet after removing the libraries that re-
ov er ed fe wer than 12 meta genome-assembled genomes. Tar get
 and Target 2 are the diets compar ed. T -statistic, P -v alue, and
djusted P -value are the statistical test results. (e) Bonferroni-
orrected t -test pairwise comparison between the number of VF
GT e v ents gr ouped by the target diet after removing the libraries

hat r ecov er ed fe wer than 12 meta genome-assembled genomes.
arget 1 and Target 2 are the diets compared. T -statistic , P -value ,
nd adjusted P -value are the statistical test results. (f) Summary
rom the HGT events per family target diet after removing the
ibr aries that r ecov er ed fe wer than 12 meta genome-assembled
enomes. (g) Bonferr oni-corr ected t -test pairwise comparison be-
ween the number of ARG HGT e v ents per famil y gr ouped by
he target diet after removing the libraries that recovered fewer
han 12 metagenome-assembled genomes. Target 1 and Target
 are the diets compared for the respective family. T -statistic, P -
 alue, and adjusted P -v alue ar e the statistical test r esults. Sam-
le sizes indicate the number of samples used for eac h tar get,
 espectiv el y. (h) Bonferr oni-corr ected t -test pairwise comparison
etween the number of VF HGT e v ents per family grouped by the
arget diet after removing the libraries that recovered fewer than
2 metagenome-assembled genomes. Target 1 and Target 2 are
he diets compared for the respective family. T -statistic , P -value ,
nd adjusted P -value are the statistical test results. Sample sizes
ndicate the number of samples used for each target, respectively.

bbreviations 

MR: antimicrobial resistance; ARB: antimicrobial-resistant bac-
eria; ARGs: antimicr obial r esistance genes; HGT: horizontal
ene tr ansfer; MAGs: meta genome-assembled genomes; MLS:
acrolides , lincosamides , streptogramines; SRA: Sequence Read
rc hiv e; TOPSIS: Tec hnique for Order Pr efer ence by Similarity to

deal Solution; VGT: vertical gene transfer; WAP: weighted average
r e v alence; WGS: whole-genome sequencing. 
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