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Abstract 

Memory T cells play an important role in mediating long-lasting adaptive immune 

responses to viral infections, such as SARS-CoV-2. In the context of the latter, much 

of our current knowledge stems from studies in vaccinated individuals or repeatedly 

infected individuals. However, limited knowledge is available on these responses in 

fully naive individuals in German communities. We performed immunophenotyping of 

a previously naive SARS-CoV-2 cohort in convalescent individuals after asymptom-

atic to moderate COVID-19. The samples were collected median 250 days post infec-

tion during the first wave of the COVID pandemic in Germany (March – May 2020). 

In this cohort of 174 individuals, we phenotyped different leukocyte cell populations 

in peripheral blood (B, T and Natural Killer cells). We then assessed the serostatus 

against the SARS-CoV-2 antigens Nucleocapsid (N) and Spike subunit (S1) with 

its receptor binding domain (RBD), as these are important correlates of protection, 

by testing for presence of immunoglobulin G (IgG) antibodies. We also measured 

IgG antibody responses against the N antigen of the common cold coronaviruses 

HCoV-OC43, HCoV-HKU1, HCoV-NL63 and HCoV-229E, to determine possible 

cross-reactivity. In a subset of the cohort (n = 76), we performed intracellular staining 

assays (ICS) after stimulation with SARS-CoV-2 and HCoV antigens. Key findings 
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are significant differences in frequency of CD4+ memory T cell populations, notably 

CD4+ T
EM

 and CD4+ T
EMRA

 cells, between the group of SARS-CoV-2 positive individ-

uals and the control group. These differences correlated with cytokine production 

(TNFα, IFNγ) after stimulation with SARS-CoV-2 peptides, indicating a specific T cell 

immune response. In conclusion, a clear memory T cell and humoral response can 

be detected up to 250 days post mild to moderate COVID-19 disease. Our results 

underline findings reported by others indicating a lasting cellular immune response 

even in a population which previously had not been exposed to SARS-CoV-2.

Introduction

Since 2019, the then newly emerged severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) [1] and the following coronavirus disease 2019 (COVID-19) 
pandemic have had a significant impact on daily life around the globe. Substantial 
research efforts have covered numerous aspects of the virus and its global spread. 
Research into generating and maintaining a long-lasting immune response through 
infection and/or vaccination was and still is playing an important role in understanding 
the COVID-19 pandemic [2,3]. In our study, we engaged in understanding the immu-
nological processes towards the wild-type virus in a SARS-CoV-2 naive population 
during the ‘pre-vaccination-period’. Nevertheless, this knowledge is of crucial impor-
tance to handle our current situation, where a globally endemic virus [4,5] and its new 
sub-lineages (i.e., beta, gamma, delta) with high evolving potential [6] are an ongoing 
challenge to the global population.

SARS-CoV-2 infection shows itself in a broad variety of clinical manifestations: 
While asymptomatic infections regularly occur, symptomatic infections mostly 
result in a mild to moderate disease. This includes flu-like symptoms such as fever, 
fatigue and dry cough [7]. Severe clinical courses of COVID-19 can lead to respi-
ratory failure and death, mostly reported in the elderly or persons with underlying 
health conditions and immunodeficiency [7,8]. Demographic factors including sex, 
ethnicity and socioeconomic status have also been discussed as contributing to 
disease outcome [9,10].

Recent findings concerning humoral and cellular immunity to SARS-CoV-2 provide 
insights into effectiveness of vaccines [11,12] and longevity of immune responses of 
convalescent individuals [13,14]. Others analysed possible cross-reactivity between 
variants or other coronaviruses [15,16]. The endemic human coronaviruses (HCoVs) 
categorized in alpha-coronaviruses NL63, 229E and beta-coronaviruses HKU1 
and OC43 (and now SARS-CoV-2) [6], have been investigated for their potential to 
mediate protection from severe SARS-CoV-2 infection via cross-reactive immune 
responses [17–19]. All coronaviruses share peptide sequence homologies between 
important immunological proteins including the spike (S) surface glycoprotein or 
the nucleocapsid (N) and membrane (M) proteins. The C-terminal epitopes in the 
spike protein show the highest homology between the coronaviruses [20,21]. The 
homology serves as an important factor in generating cross-reactive antibodies [22]. 
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Furthermore, these antigens can evoke T cell dominated responses, defined by two 
important types of cluster of differentiation molecules (CD4+ and CD8+) [23–25]. A 
mapping of cross-reactive T cell epitopes across the SARS-CoV-2 genome demon-
strated a range of reactive, pre-existing memory CD4+ cells in unexposed individuals. 
Most of these epitopes are derived from the spike antigen, especially the C-terminal 
epitopes, as mentioned above [20,24,25].

Neutralizing antibodies were widely acknowledged as the main correlate of protec-
tion from SARS-CoV-2 infection, especially during the early phase of the pandemic 
[26,27]. Nevertheless, the importance of T cells mediating long-lived and cross-reactive 
protection from COVID-19 has been recognized in the face of ever-changing viral vari-
ants [28,29]. This includes helper T cells (T

H
) expressing CD4-phenotypes coordinating 

adaptive immunity through synergy of various cytokines, as well as CD8+ cytotoxic-T 
(T

C
) cells necessary for the elimination of virus-infected cells [30,31].
In this project, we performed immunophenotyping including antigen-specific 

cytokine-release, memory T cell and serological responses against SARS-CoV-2 and 
the HCoVs 229E, HKU1, NL63 and OC43. Notably, our cohort consists of conva-
lescent individuals after their first SARS-CoV-2 infection during the first wave of the 
COVID-19 pandemic between March and May 2020 in Germany [32] and contrib-
utes to existing community research on SARS-CoV-2 in other countries [33]. In this 
timespan, the wild-type variant was dominant, preceding the B.1.1.7 (alpha) variant of 
concern (VOC) [34]. The goal of the study was to determine long-lasting immunologi-
cal impact after SARS-CoV-2-infection as well as potential correlations to pre-existing 
endemic coronavirus immunity.

Materials and methods

Study design and cohort

In this study, we performed serological and cellular immunoassays on blood samples 
collected in 2020 and early 2021 after the first wave of SARS-CoV-2 infections. The 
subjects were part of a previously described cohort that included SARS-CoV-2 posi-
tive tested individuals and their household members, located exclusively in the city of 
Munich, Germany [35].

Individuals who had tested PCR positive during March and April 2020 were initially 
contacted by the local Health Department and invited to participate in COVID-19 
related studies. In total 216 households (567 participants) that showed interest were 
included between 29th September 2020 and 27th January 2021 by either house visit or 
at the study center, at the Institute of Infectious Diseases and Tropical Medicine, Uni-
versity Hospital, LMU Munich. To investigate immunological response, participants 
were asked to provide a venous blood sample. All participants gave their written con-
sent before the blood sample was taken or the questionnaire completed. During the 
first visit, they received an information sheet and were verbally informed about all  
the important aspects of the study. After clarifying any questions with the study team, 
the participants signed their consent. They were also given the option of refusing 
some aspects of the study and not having to provide all samples (venous blood, cap-
illary blood, sputum, nasopharyngeal swab).
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All minors between the ages of 8 and 17 who were willing to participate in the study had to obtain the consent of their 
parents or legal guardians. Adolescents between the ages of 13 and 17 were allowed to have a larger blood sample taken 
with their consent. Only a capillary blood sample was taken from children between the ages of 8 and 13.

Symptom and household related data was collected via the mobile data collection tool OpenDataKit (ODK) [36].
As a SARS-CoV-2 negative control group, we recruited 36 households (98 participants) from the related KoCo-19 

study. Members of these households had tested negative for SARS-CoV-2 specific antibodies multiple times and did not 
report any COVID-19 related symptoms during the first year of the pandemic [35,37,38]. We selected 15 households with 
33 control subjects, which demographically matched our index and exposed group, for further experiments.

PBMC and plasma isolation

For isolation of peripheral blood mononuclear cells (PBMCs), 30 mL CPDA (Citrate Phosphate Dextrose Adenine) blood in 
3 x 9 ml (Vacuette, Art. Nr.: 455056) and 1 x 5 ml tubes (BD Vacutainer®, Na-Heparin (17 IU/ml), Art.Nr.: 143427) was cen-
trifuged at 400 g for 10 minutes at room temperature. For each CPDA tube, 1 ml of plasma layer was collected and frozen 
in a −80 °C freezer.

The remainder of the blood mixture was divided equally into 2 falcon tubes of 50 mL and a Hanks Solution (HBSS 
Hanks solution, Sigma-Aldrich, Cat. No. H9394-500 ml +1% Glutamine (BioWhittaker, Lonza Cat. No.: BEBP17-605E) 
200mM in 0,85% NaCl, +1% Penicillin/Streptomycin (Sigma-Aldrich Cat. No.: P433 - 100 ml), +1% Hepes (Sigma-Aldrich, 
Cat. No.: H0887 - 100 ml)) was added until the 32 ml mark. The blood suspension was slowly filled into falcon tubes with 
a 15 ml Ficoll-Paque (Sigma-Aldrich, Cat. No.: Histopaque-10771) and centrifuged at 1000 g for 20 minutes at room 
temperature.

PBMCs were harvested, washed with 50 mL Hanks solution in a falcon tube and again centrifuged at 520 g for 15 
minutes at room temperature. Afterwards, the supernatant was discarded, and the cell pellets were re-suspended in 10 mL 
Hanks solution.

We used a CASY-1 (Schärfe System GmbH) for automated cell counting by adding 50µl of our Hanks cell pellet solu-
tion with 10 ml of Casyton (OLS OMNI Life Bioscience, Cat. No.: 5651808). The device can analyze the cells using electric 
current exclusion and pulse area analysis. Another 10 µl were pipetted into 10 µl of diluted Trypan Blue (1:4 in PBS) to 
check viability with a haemocytometer under our microscope (Leica, DM IL). We counted blue and white shining leuko-
cytes in one haemocytometer cell, sorting out red erythrocytes. All blue dyed leukocytes were considered dead due to 
their inability to discharge the dye. Then the ratio of living cells and all cells (living and dead) was formed to obtain a viabil-
ity percentage. After confirming viability and cell number, the cells were centrifuged again for 5 minutes, at 4°C, with 400g. 
Then the cells were diluted in a concentration of 10 million cells/ml (90% fetal calf serum (FCS), Sigma-Aldrich, Cat. No.: 
S0615-500ML + 10% DMSO, Roth, Cat: 4720.4) for cryopreservation in cryo-tubes (Nunc, Thermo Fisher Scientific, Cat. 
No.: 377267). The tubes were stored for one night in our −80° C freezer and then transferred in a liquid nitrogen tank.

All plasma and PBMC samples were isolated and frozen within 3.5 hours past their arrival and had a confirmed viability 
of >95% at the time of freezing.

Serological testing

To determine the seroprevalence of antibodies against SARS-CoV-2 and the common cold coronaviruses (CCCs), we 
used the Line-immunoassay recomLine SARS-CoV-2 IgG from Mikrogen GmbH, Neuried, Germany. The immunostrips 
contained the N antigen of SARS-CoV-2, HCoVs 229E, NL63, OC43, HKU1, the receptor-binding domain antigen (RBD) 
of the SARS-CoV-2 spike protein and the S1 subunit antigen. The binding of immunoglobulin (IgG) antibodies was visual-
ized by the apparition of dark strips, through binding of anti-human immunoglobulin-antibodies (IgG) with a horseradish- 
peroxidase reacting to the chromogenic substrate tetramethylbenzidine. The test was performed according to the  
manufacturer’s protocol (Art. Nr.: 7374, protocol: GARLCS002D_2020-08).
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A reaction-control and antibody-control strip provided proof of the right execution of the test. Sensitivity (96.3%) and 
specificity (98.8%) are reported as provided by the manufacturer.

The conversion of the qualitative results of the serotest was performed by taking high resolution pictures of the test 
strips and subsequently measuring the strength of the answer using the RGB-value of the respective lines, similar to 
Dugas et al. [39], as a method to quantify immunological test strips [40,41]. The measurements of the RGB-values were 
performed with the software ImageJ [42].

Intracellular cytokine staining assay (ICS)

For the intracellular staining assay (ICS), an amount of 20–30 million PBMCs per patient was used. PBMCs were washed 
in a 15 ml falcon tube with 10 mL of R10 (RPMI 1640 medium, Sigma-Aldrich, Cat.No.: R5886 + 10% FCS, + 1% Strep-
tomycin/Penicillin, +1% vial L-Glutamine). Then, the PBMCs were centrifuged for 10 minutes at 1500 rpm at 4° C. The 
supernatant was discarded, the PBMCs re-suspended in 2 ml R10 solution and washed again as described above with a 
total of 10 ml R10. Centrifugation was then performed at room temperature. The supernatant was again discarded, a via-
bility check and cell counting was performed as previously described. PBMCs were resuspended in R10 with a 1,5 million 
PBMCs per 200 µl ratio (7.5 million cells/mL).

The PBMCs were plated into a 96 U well plate, each well containing 200 µl and incubated for 2 hours at 37 °C, 5% CO
2
 

humidified.
During the incubation period the peptide solution was prepared using PepTivator® SARS-CoV-2 (Miltenyi Biotec) for 

the Membrane (M) (Cat. No.: 130-126-703) and Nucleocapsid (N) (Cat. No.: 130-126-698) SARS-CoV-2 antigen and JPT 
PepMix SARS-CoV-2 for subunit 1 and 2 of the Spike Glycoprotein (S1 and S2) (JPT, Cat. No.: PM-WCPV-S-1/ -2), as 
well as the JPT PepMix antigens for the subunits 1 and 2 of the HCoVs 229E, OC43, NL63 and HKU1 (JPT Cat. Nrs.: 
PM-229E-S-1/-2, PM-OC43-S-1/-2, PM-NL63-S-1/-2, PM-HKU1-S-1/ -2) and a JPT PepMix positive control pool (CEF) 
(JPT Cat. No.: PM-CEF-S-1) with specific epitopes for cytomegalovirus, Epstein-Barr and Influenza virus. Each of the 
antigen kits was aliquoted beforehand according to the manufacturer’s guidelines with DMSO (0.2 µl = 1 µg/ml). Using  
the freely available blast website of the NIH [43] we could identify the homology between the peptide sequences used in 
the stimulation and the surface protein of the wild-type SARS-CoV-2 virus. We did find a homology percentage of 37.93% 
for HCoV OC43, 32.24% for 229E, 30.77% for NL63 and 35.82% for HKU1. For the Peptivator Nucleocapsid and Mem-
brane Protein, the homology showed 100%.

Each aliquot was re-suspended in 1 ml R10 and 200 µl added to each well (0.2 µl peptide per well). 2 µl SEB solution 
(Staphylococcal Enterotoxin B in PBS, 1 µg/mL, Sigma-Aldrich Cat. No.: S4881-1MG) was used as a positive control. 
After an incubation period of 2 h at 37 °C, 5% CO2, 95% humidity, we performed a washing step and added 0.6 µl of Golgi 
Plug (Brefeldin A, BD Biosciences, Cat. No.: 554724) to every well. An additional dual-negative control only contained 
0.2 µl of DMSO to mimic the DMSO the peptides were aliquoted in. After adding the Brefeldin A, the cells were incubated 
overnight for another 14 h hours (16 h peptide stimulation in total). After incubation, the PBMCs were centrifuged for 5 
minutes at 400 g, washed with 200 µl FACS-Buffer (PBS +2% FCS) and then stained with the antibody master-mix for 
extracellular stimulation. The master-mix contained 0.5 µl of every antibody per well. CD3 (= Alexa Fluor 700 anti- human 
CD3, BioLegend, Clone HIT3a, Cat. No.: 300324), CD4 (= PE/Dazzle 594 anti-human CD4, Clone A16.1A1, Cat. No.: 
357412), CD8 (= Brilliant Violet 510 anti-human CD8, BioLegend, Clone SK1, Cat. No.: 344732). Every well was then 
diluted in 100 µl FACS-buffer plus 1 µl TruStain (FcReceptorBlock, BioLegend, Cat. No.: 422302) and 0.1 µl Life-Dead-
solution (invitrogen eBioScience Fixable Viability Dye eFluor780, Cat. No.: 65-0865-14). After an incubation period of 
30 min in darkness and at 4 °C, the plates were centrifuged, washed with FACS Buffer and resuspended in 200 µl of 
Foxp3 Fixation/Permeabilization working solution (1:3 mix of Fixation/Permeabilization Concentrate, ThermoFisher, Cat. 
No.: 00-5123-43 and eBioSciences Fixation/Perm Diluent, ThermoFisher, Cat. No.: 00-5223-56). During this incubation 
period of 20 minutes, the Permeabilization Buffer (1:9 ThermoFisher, eBioscience™ Permeabilization Buffer 10 X, Cat. 
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No.: 00-8333-56 + distilled water) for the next washing steps was prepared. The plates were centrifuged, the supernatant 
discarded and again incubated for 20 min with a 200 µl Goat Serum buffer per well (20% Goat Serum, Sigma-Aldrich, 
Cat. No.: G6767 + 80% Permeabilization Buffer). After another instance of centrifugation, intracellular stimulation was 
performed using a 100 µl/well intracellular master-mix. The intracellular master-mix contained 100 µl Permeabilization 
buffer, 0.2 µl antibodies (IL-2 = PE Anti-human IL-2, BioLegend, Clone MQ1-17H12, Cat. No.: 500 306, IL4 = BV 421 anti- 
human IL-4 BioLegend Clone MP4-25D2, Cat. No.: 500825, TNFα = Anti-human TNFα BV 605 BioLegend, Clone MAb11, 
BD557647, Cat. No.: 502935, type II IFNγ = BV 785 Anti-human IFNγ BioLegend Clone 4S.B3, BD/557995, Cat. No.: 
502541) and 1 µl TruStain.

This step was followed up by a 30 min incubation period at 4 °C. After a washing step with the Permeabilization Buf-
fer, the PBMCs were diluted in 200 µl of 1% PFA solution (Thermo Fisher, Cat. No.: J19943.K2) for each well. For flow- 
cytometry-analysis, the plates were centrifuged for 5 minutes at 400 g, room temperature, the supernatant discarded, and 
the cells re-suspended in 200 µl PBS in a FACS tube.

Analysis and interpretation of the ICS-panel were done after performing a background subtraction by using the results 
from the no peptide/Brefeldin A/DMSO stimulation as background.

An internal control was performed using a stimulation with SEB/GolgiStop/DMSO as positive control and a dual- 
negative stimulation (no peptide/no Brefeldin A/DMSO), which returned an overall strong reaction for SEB stimulation and 
a nearly zero to zero reaction in our dual-negative control.

Immunophenotyping

The phenotype panels were performed specifically for B, natural killer (NK) and T cells using antibodies targeting surface 
markers by cluster of differentiation. PBMCs were used after thawing and performing a viability check using the same 
process described for the ICS panel. As a second step, the PBMCs were washed and stained using the same master-mix 
for extracellular staining as described above in the methods for the ICS. The T cell panel consisted of different antibodies 
targeting CD38 (= PE anti-human CD38 Antibody, BioLegend, Clone HB7, Cat. No.: 356604), CD57 (= APC anti-human 
CD57 Antibody, BioLegend, Clone HNK1, Cat. No.: 359610), CD45RA (= FITC anti-human CD45RA Antibody, BioLeg-
end, Clone HI100, Cat. No.: 304106), CD185 (= PE/Cyanine7 anti-human CD185 (CXCR5) Antibody, BioLegend, Clone 
J252D4, Cat. No.: 356924), HLA-DR (= Brilliant Violet 421™ anti-human HLA-DR Antibody, BioLegend, Clone L243, Cat. 
No.: 307636), CD8 (d), CD279 (= Brilliant Violet 605™ anti-human CD279 (PD-1) Antibody, BioLegend, Clone EH12.2H7, 
Cat. No.: 329924), CD25 (= Brilliant Violet 650™ anti-human CD25 Antibody, BioLegend, Clone BC96, Cat. No.: 302634), 
CD197 (= Brilliant Violet 711™ anti-human CD197 (CCR7) Antibody, BioLegend, Clone g043H7, Cat. No.: 353228), 
CD127 (= Brilliant Violet 785™ anti-human CD127 (IL-7Rα) Antibody, BioLegend, Clone A019D5, Cat. No.: 351330), 
CD27 (= PerCP/Cyanine5.5 anti-mouse/rat/human CD27 Antibody, BioLegend, Clone LG3A10, Cat. No.: 124214), CD3, 
CD4 and a Life/Dead-stain. The B-Cell panel included antibodies targeting CD38, CD138 (= APC anti-human CD138 
(Syndecan-1) Antibody, BioLegend, Clone DL-101, Cat. No.: 352308), CD19 (= FITC anti-human CD19 Antibody, Bio-
Legend, Clone SJ25C1, Cat. No.: 363008), IgD (= PE/Cyanine7 anti-human IgD Antibody, BioLegend, Clone IA6-2, Cat. 
No.: 348210), IgG (= Brilliant Violet 421™ anti-human IgG Fc Antibody, BioLegend, Clone M1210G05, Cat. No.: 410704), 
CD24 (= Brilliant Violet 510™ anti-human CD24 Antibody, BioLegend, Clone ML5, Cat. No.: 311126), IgM (= Brilliant Violet 
605™ anti-human IgM Antibody, BioLegend, Clone MHM-88, Cat. No.: 314524), CD20 (= Brilliant Violet 785™ anti-human 
CD20 Antibody, BioLegend, Clone 2H7, Cat. No.: 302355), CD27, CD3, CD21 (= PE/Dazzle™ 594 anti-human CD21 
Antibody, BioLegend, Clone Bu32) and Live/Dead. For these phenotype panels an amount of at least 1 million PBMCs 
was used.

The NK panel was stained using CD159c (= PE anti human antibody CD159c (NKG2C), BioLegend, clone S19005E, 
Cat. No.: 375004), CD57, CD158 (= FITC anti-human CD158 (KIR2DL1/S1/S3/S5) Antibody, BioLegend, clone HP-MA4, 
Cat. No.: 339504), CD158b (= PE/Cyanine7 anti-human CD158b/j (KIR2DL2/L3/S2) Antibody, BioLegend, clone DX27, 
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Cat. No.: 312610), CD158e (= Brilliant Violet 421™ anti-human CD158e1 (KIR3DL1, NKB1) Antibody, BioLegend, clone 
DX9, Cat. No.: 312714), CD56 (= Brilliant Violet 510™ anti-human CD56 (NCAM) Antibody, BioLegend, clone 5.1H11, 
Cat. No.: 362534), CD16 (= Brilliant Violet 605™ anti-human CD16 Antibody, BioLegend, clone 3G8, Cat. No.: 302040), 
CD186 (= Brilliant Violet 711™ anti-mouse CD186 (CXCR6) Antibody, BioLegend, Clone SA051D1, Cat. No.: 743601), 
CD90 (= Brilliant Violet 785™ anti-human CD90 (Thy1) Antibody, BioLegend, clone 5E10, Cat. No.: 328142), CD314 (= 
PerCP/Cyanine5.5 anti-human CD314 (NKG2D) Antibody, BioLegend, clone 1D11, Cat. No.: 320818), CD3, CD159 (= PE/
Dazzle™ 594 anti-human CD159a (NKG2A) Antibody, BioLegend, clone S19004C, Cat. No.: 375122) and Live-Dead.

We performed flow cytometry analysis on the PBMCs treated in the ICS and phenotyping protocols. The samples were 
acquired on BD LSRFortessa Cell Analyzer and analysed with FlowJo™ v10.8 Software (BD Life Sciences).

Data analysis

Data analysis was performed using the programming language ‘python’ and data analysis packages ‘pandas’ [44] and 
‘scipy’ [45]. Visualization of the data was performed using python packages ‘matplotlib’ [46], ‘seaborn’ [47] and ‘statan-
notations’ [48]. Correlations between the ICS response and the serostatus as well as correlations between the serosta-
tus and the phenotyping results were computed using the spearman coefficient [49]. Group-wise differences in the ICS 
response and phenotyping data were tested for significance using the Kruskal-Wallis test [50]. The results were then inter-
preted using Dunne’s post-hoc analysis [51]. Correction for multiple testing was performed using the Benjamini- Hochberg 
correction [52].

Results

Cohort characteristics

The full cohort consisted of a total of 174 participants from 78 households. 105 participants had a confirmed positive PCR 
test between March and April 2020 and/or a positive response in the serological testing against SARS-CoV-2. House-
hold members of positive participants with a negative PCR-result and a negative antibody test were defined as exposed 
subjects. The control group consisted of 15 households with 33 members. All members of the control group had multiple 
negative SARS-CoV-2 specific PCR tests over the course of the first pandemic year and were also tested negative for 
SARS-CoV-2 antibodies several times. The details of the study cohort are listed in Table 1.

It depicts the three groups (SARS-CoV-2 positive, exposed and controls) of comparable age (median = 39), comparable 
BMI (median = 21.3) and comparable biological sex distribution. The median age and weight are lower than the German 
median age and mean weight [53,54]. The seropositive group is larger than both the exposed and control group. Out of 
all positive participants, 77.1% reported symptoms during their infection. Only 5.6% of the exposed participants reported 
symptoms during the infection of the index patient in their household. As there were no hospitalizations among the partic-
ipants, all cases are considered mild or moderate in accordance with the ‘Coronavirus Disease 2019 (COVID-19) Treat-
ment Guidelines NIH’ guideline [55]. Distribution and frequency of reported symptoms are shown in Fig 1, demonstrating 
the wide range of clinical symptoms of COVID-19. The most reported symptoms are those of a mild viral infection, includ-
ing headache, fever, fatigue and sore throat. Some individuals reported dyspnea, indicating a moderate infection [55].

The ICS assay, utilizing SARS-CoV-2 specific peptides for in-vitro stimulation, was conducted on a subset of 76 partic-
ipants, who provided a sufficient amount of blood samples. The ICS sub-cohort, shown in Table 1, is representative of the 
full cohort in terms of age, BMI, distribution of sex and reported symptoms. While all samples were collected more than 6 
months post-infection, the median duration between infection and blood sample collection was greater in the ICS sub-
set, compared to the full cohort (median = 294.1 days vs. 243.6 days). The distribution in number of group members was 
slightly different between the full cohort and the ICS cohort. This applied to the control group members in the full cohort 
(33/174 = 19%) vs the ICS cohort (10/76 = 13.2%), as well as the positive members in the full cohort (105/174 = 60.3%) vs 
the ICS cohort (50/76 = 65.8%).
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Serological testing reveals congruent response to SARS-CoV-2 antigens among convalescent individuals and 
limited cross-reactivity between different coronaviruses

The serostatus for HCoVs and SARS-CoV-2 in the full cohort (n = 174) is presented in Table 1 and Fig 2. The distri-
bution of the serostatus in the full cohort is comparable to the distribution observed in the ICS sub-cohort (n = 76; S1 
Fig). More than 70% of samples from recovered patients showed a clear positive result for at least one of the SARS-
CoV-2 antigens.

The seroprevalence of antibodies against HCoVs was less distinct than that against SARS-CoV-2. This observation 
applies to all HCoVs, with prevalence rates ranging from a high of 31.4% for HCoV-NL63 to a low of 8% for HCoV-229E 
across all samples. The seroprevalence of HCoV antibodies also varied among the positive, exposed and control groups, 
with the highest rates observed in the SARS-CoV-2 positive group. Clustering the serological response – as shown in Fig 
2 – revealed that the majority of samples in the convalescent group exhibited detectable responses to all tested SARS-
CoV-2 antibodies (RBD-SARS-2, NP-SARS-2, S1-SARS-2). The cluster of SARS-CoV-2 positive samples could be 
further subdivided into three groups: one subgroup displaying responses to each of the tested SARS-CoV-2 antigens, a 
second subgroup showing a stronger response specifically to RBD and S1, and a third subgroup with a more pronounced 
response to NP compared to RBD and S1. A preservation of IgG antibodies against SARS-CoV-2 was therefore detect-
able in this cohort > 250 days after initial infection. Additionally, we identified a cluster of samples that responded to both 
beta-coronaviruses HCoV-HKU1 and HCoV-OC43. Notably, HCoV-NL63 and SARS-CoV-2 did not form a cluster with any 
of the other coronaviruses.

Table 1. Cohort characteristics.

Cohort SARS-CoV-2 Positive Exposed Controls All

All ICS All ICS All ICS All ICS

(n) 105 50 36 16 33 10 174 76

Age (median, 
range)

38, 14-76 38, 14-70 36, 14-73 33, 14-66 41, 13-73 41, 17-63 39, 13-76 38, 14-70

Female sex 51 [48.6%] 27 [54%] 19 [52.8%] 8 [50%] 18 [54.5%] 7 [70%] 88 [50.6%] 42 [55.3]

Male sex 54 [51.4%] 23 [46%] 17 [47.2%] 8 [50%] 15 [45.5%] 3 [30%] 86 [49.4%] 34 [44.7%]

BMI (median, 
range)

21.4, 14.2-38.3 21.4, 16.4-38.3 20.9, 14.7-29.5 19.5, 14.7-26.5 21.3, 15-38.5 20.8, 15-29.4 21.3, 
14.2-38.3

20.9, 14.7-38.3

Days since infec-
tion (median, 
range)

243.6, [19] 
186-318

294.1, 
186-301

NA NA NA NA

Symptoms 
during acute 
infection

81 [77.1%] 37 [74%] 2 [5.6%] 1 [6.3%] 0 0 83 [47.7%] 38 [50%]

SEROSTATUS

229E 11 [10.5%] 6 [12%] 1 [2.8%] 0 2 [6.1%] 1 [10%] 14 [8%] 7 [9.2%]

NL63 39 [37.1%] 21 [42%] 13 [36.1%] 5 [31.3%] 3 [9.1%] 1 [10%] 55 [31.4%] 27 [35.5%]

OC43 29 [27.6%] 15 [30%] 9 [25%] 5 [31.3%] 3 [9.1%] 2 [20%] 41 [23.4%] 22 [28.9%]

HKU1 33 [31.4%] 17 [34%] 6 [16.7%] 4 [25%] 6 [18.2%] 3 [30%] 45 [25.7%] 24 [31.6%]

NP-SARS-2 74 [70.5%] 38 [76%] 0 0 0 0 74 [42.5%] 38 [50%]

S1-SARS-2 90 [85.7%] 41 [82%] 0 0 0 0 90 [51.7%] 41 [53.9%]

RBD-SARS-2 88 [83.8%] 39 [78%] 0 0 0 0 88 [50.6%] 39 [51.3%]

Demographic and serological details are shown across three groups: SARS-CoV-2 positive, exposed and controls. Additionally shown are the subgroups 
of participants with enough material for conduction of Intracellular Cytokine Staining (ICS) assays.

https://doi.org/10.1371/journal.pone.0325923.t001

https://doi.org/10.1371/journal.pone.0325923.t001
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Fig 1. Overview of symptoms reported. (A) shows the distribution of symptoms reported by the participants in the SARS-CoV-2 positive (red, n = 105) 
and the exposed (blue, n = 36) group. Members of the control group did not report any symptoms. The dendrogram on the left side of the heatmap 
depicts two clusters of symptoms. The top cluster features symptoms commonly associated with COVID-19 disease, such as loss of smell/taste and 
fatigue; the bottom cluster indicates nonspecific symptoms of common respiratory infections like fever, cough, shivering or muscular pain. (B) illustrates 
the number of participants reporting a specific symptom. The symptoms are grouped according to the affected functional system, represented by differ-
ent colours.

https://doi.org/10.1371/journal.pone.0325923.g001

Fig 2. Coronavirus serostatus clustering. Shown are the results of the serological tests for SARS-CoV-2 and HCoVs clustered by the strength of 
response (seropositivity). The exposed (blue, n2 = 36) and control (yellow, n3 = 33) groups did – by definition – not show a serological answer against 
SARS-CoV-2. The positive (red, n1 = 105) group prominently features the bottom right cluster of samples that had a strong serological answer against the 
N, RBD and S1 SARS-CoV-2 antigens. This cluster is subdivided into smaller clusters separated by their answer to the different SARS-CoV-2-antigens.

https://doi.org/10.1371/journal.pone.0325923.g002

https://doi.org/10.1371/journal.pone.0325923.g001
https://doi.org/10.1371/journal.pone.0325923.g002
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Persistent CD4+ T cell memory subset alterations are detectable >250 days post SARS-CoV-2 infection

Next, we performed immunophenotyping across the three groups (positive, exposed and control) to assess persisting 
immunological alterations more than 6 months after mild to moderate SARS-CoV-2 infection. We detected a relevant 
increase in the population sizes of effector memory (T

EM
) and terminally differentiated (T

EMRA
) CD4+ T cells in the positive 

convalescent group compared to the control group (S2 Fig). A similar increase also arose between the exposed group 
and the control group (Fig 3A). This difference in population size was reflected in the expression of CD4+ T

EM
 CD27+ cells 

(Fig 3B) and CD4+ T
EM

 CD127+ (IL-7 receptor) cells (Fig 3C) as well. Differences in the CD4+ T
EMRA

 CD27+ subset did not 
reach statistical significance (Fig 3E).

Fig 3. CD4+ T cell memory subset alterations after SARS-CoV-2 infection. Shown are differences in frequency of T cell subsets between the 
positive (red, n = 50), exposed (blue, n = 16) and control (yellow, n = 10) groups, generated by analyzing the phenotype-FACS-data. (A) to (E) depict five 
different subsets of effector memory CD4+ T cells: (A) CD4+ T

EM
 (CD45RA-/CCR7-) with its subsets CD4+ T

EM
 CD27+ (B) and CD4+ T

EM
 CD127+ (C) and 

(D) CD4+ T
EMRA

 (CD45RA+ /CCR7-) T cells with its subset CD4+ T
EMRA

 CD27+ (E). Statistics were performed using the Kruskal-Wallis-test and Dunne’s 
post hoc test and adjusted using the Benjamini-Hochberg-correction.

https://doi.org/10.1371/journal.pone.0325923.g003

https://doi.org/10.1371/journal.pone.0325923.g003
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SARS-CoV-2 specific recall cytokine responses were generally low within our cohort (e.g., for IFNγ mean 0.011% of 
CD4 T cells (IQR 0–0.15) after background subtraction). Nevertheless, the frequencies of terminally differentiated CD4+ T 
cell populations (Fig 3D, 3E) positively correlated with the frequencies of SARS-CoV-2 specific CD4+ T cell responses 
as measured by ICS assay (Fig 4). Additionally, we found significant positive correlations between the CD4+ T

EMRA
 

CD27+ population and double-positive (IFNγ+ /TNFα+) CD4+ T cell responses, when stimulated with SARS-CoV-2-S1 and 
N peptide-pool. In summary, we observed alterations in CD4+ T cell memory subsets that were associated with SARS-
CoV-2 specific T cell responses more than 250 days post-infection.

Further, we conducted extensive immunophenotyping including T cell exhaustion and activation markers, CD8+ T cells, 
B cells and NK cells. We did not detect relevant differences between the three groups in the non CD4+ T cells. Alterations 
in mature, CD19+ /20+ memory B cell populations were observed partially in the CD27+ CD21+ and CD27- CD21+ subsets 
(S3 Fig). Consequently, for further analyses of adaptive immunity, we decided to focus on the antigen-specific antibodies 
and T cells.

Discussion

This study presents results of a previously SARS-CoV-2 naive, pre-vaccination [56] and thus historic COVID-19 cohort. 
A cohort with these characteristics is not readily available at present time after administration of 980 million doses of 
COVID-19-vaccine in the European Union [57] and an estimated 775 million SARS-CoV-2 infections worldwide [58]. 
Consequently, research concerning this early stage of the COVID-19-pandemic can give insight into longevity of immune 
response, unbiased by later developments.

The serostatus of the participants in our cohort showed a ‘cluster of responsiveness’ between two to three SARS-CoV-2 
directed antibodies (NP-SARS-2, RBD-SARS-2, S1-SARS-2), which distinguished the group of individuals with confirmed 
SARS-CoV-2 infection from the other groups. This is in line with previous reports of broad induction of antibodies tar-
geting different SARS-CoV-2 antigens by natural infection [2,59]. We detected higher antibody titers against RBD- and 

Fig 4. Correlation between CD4+ T
EMRA

 subsets and SARS-CoV-2-specific CD4+ T cell responses. Shown are correlations between frequency of 
CD4+ T

EMRA
, CD4+ T

EMRA
 CD27+ T cell subsets and SARS-CoV-2 specific CD4+ T cells responses after stimulation with one of the following peptides: 

S1 (Spike glycoprotein subunit 1), S2 (Spike glycoprotein subunit 2), N, M within all positive samples in the ICS sub cohort (n = 50). Antigen-specific 
responses are shown for: interleukin 2 and 4 (IL-2, IL-4), IFNγ, TNFα, double positive TNFα/IFNγ and the sum of TNFα and IFNγ responses (“reac-
tive”). The upper part of both subsets shows the spearman correlation coefficient, the lower part visualizes the strength of said spearman correlation 
coefficient. The empty boxes for CD4+ T

EM
 cells had a correlation coefficient of 0.00 and were removed for better readability. The boxes bordered in red 

highlight a significant correlation coefficient (p < 0.05).

https://doi.org/10.1371/journal.pone.0325923.g004

https://doi.org/10.1371/journal.pone.0325923.g004
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S1 antigen than against the N (nucleocapsid) antigen, indicating a shorter persistence for the latter, as was reported 
previously [60]. The shorter half-life of N antibodies could explain the observed sub-clusters: Participants with a more 
recent infection at the time of sample collection could show a positive response against all three SARS-CoV-2 antigens. 
In contrast, those with a less recent infection did exhibit no or a weak reaction to the N antigen, indicating a decline in 
antibody levels over time [60–63]. There is also evidence that “natural” SARS-CoV-2 infections before vaccination lead to 
higher N antibodies, as reported by Dhakal et al. [64]. Other groups reported a half-life of N antibodies of around 85 days 
[65] or a correlation of antibody titre and disease severity [66]. In our cohort of “naturally” infected and mildly to moderately 
ill participants, we are limited in our range to estimate behaviour of antibody decline over time and thus argue for further 
research on this topic.

In summary, a detectable serological response against SARS-CoV-2 persists even after an extended period (median 
243 days post-infection), which fits into a reported half-life of approx. 250 days [67]. Notably, our cohort consists of indi-
viduals with mild or moderate symptoms and antibody levels have been reported [66,68–70] to correlate positively with 
disease severity. This may further strengthen the observation of a persisting antibody response, as it is detectable even 
in a cohort of mildly/moderately ill individuals. It is unlikely that re-infections occurred between the initial positive test for 
SARS-CoV-2 and blood sampling, given the low risk of re-infection within the first six months post-infection [68,69]. How-
ever, this cannot be formally excluded. In any case, we do not regard the detected responses as robust enough to sug-
gest a secondary, more recent infection with SARS-CoV-2 within the cohort studied.

The serostatus for the seasonal 'common cold coronaviruses (CCCs) or HCoVs (229E, HKU1, NL63, OC43) indicates 
a lower seroprevalence than previously reported in other cohorts from Japan [70], Canada [71] and the USA [72]. While 
the cited data vary by region and are not easily comparable to German demographics, the overall prevalence rates of the 
four HCoVs (approx. 70% to 90%), are considerably higher than the prevalence rates observed in our study (8% 229E to 
31.4% NL63). Studies from Germany report a PCR-based prevalence of HCoVs of less than 10% in late 2019 and early 
2020. They also show a notable decline after the onset of non-pharmaceutical interventions (NPIs), though the infre-
quency of such analyses in Germany renders a proper benchmark difficult [73,74].

The low seroprevalence observed here may be attributed to a combination of two factors: First, the antibody response 
against the HCoVs is reported to be volatile and relatively short-lasting [75,76]. Second, a reduction in infections with 
other seasonal respiratory viruses occured, including influenza and HCoVs, attributable to NPI [77,78] which were imple-
mented in Bavaria as early as March 2020 [79].

A previously reported weak cross-reactivity between antibodies targeting SARS-CoV-2 and HCoV-OC43 [80] could not 
be replicated in this cohort. Similarly, we did not detect cross-reactivity between antibodies against any of the CCCs and 
SARS-CoV-2. This may be attributed to the low prevalence of antibodies against CCCs in this cohort. It may also add up 
to the conflicting results regarding evidence of cross-reactive antibodies [81]. While Sealy et al. [82] reported mixed results 
on cross-reactivity, Murray et al. [83] found cross-reactivity not influencing the clinical outcome of a SARS-CoV-2 infection. 
Other groups like Ortega et al. [84] or Sagar et al. [85] reported a protective effect of pre-existing HCoV antibodies on an 
infection with SARS-CoV-2. Population groups with a reportedly higher level of cross-reactivity, such as children and ado-
lescents were not included in this study [86,87].

CD4+ T cells can be divided into naïve (CD4+ CD45RA+ CCR7+), effector memory (CD4+ CD45RA- CCR7-), central 
memory (CD4+ CD45RA- CCR7+) and T

EMRA
 (CD4+ CD45RA+ CCR-) cells [16,67]. Effector memory populations, 

including CD4+ T
EM

 and CD4+ T
EMRA

 cells expressing the IL-7 receptor CD127 [88], are important components of the 
adaptive immune system in mediating recall antiviral immunity [89–92]. We observed alterations in CD4+ cell mem-
ory populations in our cohort correlating with SARS-CoV-2 specific cytokine responses of IFNγ and TNFα. IFNγ is an 
effector cytokine secreted by T cells and NK cells mediating antiviral function, including in respiratory infections like 
SARS-CoV-2 [1,16]. These cytokines are known to be key effectors in the context of SARS-CoV-2 immune response 
[93–95]. Even though this correlation provides an indirect detection of SARS-CoV-2-specific T cells they suggest a 



PLOS One | https://doi.org/10.1371/journal.pone.0325923 June 11, 2025 13 / 19

detectable SARS-CoV-2 specific CD4+ T cell response up to 300 days after an acute infection (median of the ICS 
cohort: 294.1 days). However, due to the indirect detection our results may approximate the real effect. These results 
fit into the reported timeframe of 6–10 months of robust to detectable T cell responses after SARS-CoV-2 infection as 
outlined by various studies [14,35,62,96]. The changes observed in the distribution of CD4+ T cell populations also 
apply to the exposed group, suggesting that household exposure to the virus can induce an immune response even 
in healthy individuals, as other studies have suggested [97,98]. In view of the development of vaccines targeting the 
S antigens [99], our results – showing a significant correlation of increased IFNγ and TNFα secretion and increased 
T cell response, when stimulated with SARS-CoV-2-S1 (Fig 4) – are fitting as a potential mechanism for induction of 
immunity through vaccination.

In contrast to other studies reporting prolonged immune responses for CD8+ T
EMRA

 cells [67,100–102], B cells Dan et al. 
[62] or NK cells [103], SARS-CoV-2-specific immunity in our cohort was limited to CD4 memory populations. This might 
be due to our cohort only containing participants with mild to moderate disease, as others have found expanded NK cell 
subsets in severely ill patients [104]. Therefore, we think further research is needed to further distinguish NK cell answers 
against SARS-CoV-2 while correcting for disease severity. Regarding potential differences in B cell populations (S3 Fig) 
and their role in antibody secretion after infection or vaccination [99] further research is needed.

Limitations of this study are the imbalance in the number of samples between the positive versus the exposed and 
controls group as well as the smaller sample size in the ICS panel compared to the full cohort. This was due to sample 
availability and may have compromised the statistical comparison between the groups. This could lead to over- or under-
estimations of the real values. Nevertheless, we observed similar results in the overall cohort and the smaller ICS subset, 
supporting the reliability of our findings and interpretations.

Supporting information

S1 Fig.  Coronavirus serostatus clustering ICS cohort. Shown are the results of the serological tests for SARS-CoV2 
and HCoVs clustered by the strength of response (seropositivity) in the ICS subset. The exposed (blue) and control 
(yellow) groups did – by definition – not show a signally serological answer against SARS-CoV-2. The positive (red) group 
prominently features the bottom right cluster of samples that had a strong serological answer against SARS-CoV-2. This 
cluster is subdivided into smaller clusters separated by their answer to the different SARS-CoV-2-antigens.
(TIF)

S2 Fig.  Example of FACS-gating strategy. Example of the FACS-gating strategy used to determine the extents of the 
T cell populations. Shown is the gating procedure, used to determine subpopulations of the PBMC population (lympho-
cytes - > single cells - > alive cells - > CD3+ cells) (A). Subfigure (B) shows the differentiation for CD4+ T cells. Subfigure (C) 
shows the differentiation between CCR7 and CD45RA CD4+ T cell populations used in the phenotyping protocol. Sub-
figures (D) show the IFNγ and TNFα producing CD4+ T cell subsets. (D) depicts results of stimulation with SARS-CoV-2 
peptides M, N, S1 and S2 as well as the stimulation controls (SEB and control).
(TIF)

S3 Fig.  Selected B cell memory subset alterations after SARS-CoV-2 infection. Shown are CD27+ CD21+ (A) and 
CD27- CD21+ (B) subsets of mature (CD19+ /CD20+) B cells in comparison between the positive (red), exposed (blue) 
and control group (yellow). Statistics were performed using the Kruskal-Wallis-test and Dunne’s post hoc test and adjusted 
using the Benjamini-Hochberg-correction.
(TIF)

S1 File.  Data Sheet: ICS-, Phenotyping, Symptom- and Serodata. 
(XLSX)

http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325923.s001
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0325923.s002
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