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A B S T R A C T

Body movements and posture provide valuable insights into stress responses, yet their relationship with endo-
crine biomarkers of the stress response remains underexplored. This study investigates whether movement 
patterns during the Trier Social Stress Test (TSST) and the friendly-TSST (f-TSST) can predict cortisol reactivity. 
Using motion capturing, movement data from 41 participants were analyzed alongside salivary cortisol re-
sponses. Machine learning models achieved a classification accuracy of 65.2 % for distinguishing cortisol re-
sponders from non-responders and a regression mean absolute error of 2.94 nmol/l for predicting cortisol 
increase. Findings suggest that movement dynamics can serve as proxies of endocrine stress responses, 
contributing to objective, non-invasive stress assessment methods.

1. Introduction

Bodily movements carry valuable information about the inner state 
of an individual that goes beyond the observable physical actions, 
serving as a rich source of emotional and physiological cues. Subtle 
variations in gestures, posture, and gait can reflect underlying physio-
logical and psychological processes that can be recognized by other 
humans. This ability is considered fundamental for survival, as move-
ments are often detectable from greater distances than other signals such 
as vocalizations, allowing earlier anticipation and potential avoidance 
of threatening interactions (Dael et al., 2012; Ogren et al., 2019).

Previous research has shown that changes in inner states are 
measurable from the outside. For example, acute sickness can be 
detected from facial cues or body movements (Axelsson et al., 2018; 
Lasselin et al., 2020; Hansson et al., 2023). Furthermore, positive (e.g. 
happiness) and negative emotions (e.g. sadness, fear) can be detected 
through the observation of body posture and movements over time 
(Atkinson et al., 2004).

In the context of acute stress, body posture and movements have 
been described as promising indicators of pride and shame, which are 

associated with the origin of the stress response (Wallbott, 1998; Dick-
erson et al., 2004). Expansive postures, often associated with pride, and 
contracted postures, linked to shame, not only serve as social signals but 
also reflect underlying physiological states (Tracy and Matsumoto, 
2008). For example, individuals who adopted a subordinate posture 
during a social-evaluative stress paradigm exhibited lower cortisol re-
sponses compared to those who maintained a dominant posture (Turan, 
2015). Overall, changes in body posture and movements offer a prom-
ising window into the mechanisms of underlying stress responses. For 
that reason, researchers have proposed different approaches to leverage 
this information to gain insights into stress and stress-related constructs.

In the Trier Social Stress Test (TSST; Kirschbaum et al., 1993), 
thoracic movement is progressively reduced in healthy individuals, an 
effect that is more pronounced in individuals exhibiting a stronger 
cortisol response (Zito et al., 2019). This reduction is potentially asso-
ciated with the so-called “freezing behavior”, characterized by a 
reduction in heart rate and body sway, which can be experimentally 
triggered by presenting angry faces or threatening film scenes to in-
dividuals (Roelofs et al., 2010; Hagenaars et al., 2014). Similarly, 
exposing individuals to a social-evaluative stress test similar to the 
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Montreal Imaging Stress Task (Dedovic et al., 2005) led to reduced 
postural sway, indicating changes in postural control (Doumas et al., 
2018). While the defensive freezing behavior in response to a threat-
ening situation was reproduced in multiple studies (Buss et al., 2004; 
Mantella et al., 2008; Hagenaars et al., 2014; Noordewier et al., 2020), 
the connection to endocrine markers of stress remains unclear (Hashemi 
et al., 2021). Some studies found high basal cortisol levels in “strong 
freezers” (Buss et al., 2004; Mantella et al., 2008) while others showed 
that a delayed freezing recovery was linked to a low basal cortisol level 
(Niermann et al., 2017). Hashemi et al. (2021) found that threat-induced 
reductions in body sway were linked to a lower hair cortisol concen-
tration. Hence, the link between hypothalamic-pituitary-adrenal (HPA) 
axis (re)activity and body posture and movements, especially in the 
context of social-evaluative acute stress, remains to be explored in 
detail.

Characterizing body posture and movement requires integrating in-
formation from multiple joints and body segments, resulting in high- 
dimensional data. Traditional statistical methods often struggle to 
model such complexity effectively. In contrast, machine learning (ML) 
techniques are well-suited for processing and analyzing high- 
dimensional data, being able to capture subtle differences in move-
ment patterns with greater accuracy.

Previous research successfully employed ML techniques in the field 
of psychoneuroendocrinology by identifying complex relationships be-
tween physiological markers, behavioral indicators, and stress re-
sponses. For example, long-term ACTH (adrenocorticotropic hormone) 
increase or decrease was predicted with an accuracy of 81.2 % from self- 
reported quality of life and illness perception scores in a population of 
patients with breast cancer (Crumpei-Tanasă and Crumpei, 2021). 
Similarly, Dong et al. (2021) successfully used graph representation 
learning, a deep learning method, to predict salivary cortisol levels in 
pancreatic cancer patients based on wearable sensor data, including 
movement information. Baird et al. (2019) used speech features 
extracted during the TSST to predict sequentially measured cortisol 
levels, concluding that an acoustic-based approach is suitable for the 
prediction of cortisol as a stress marker. These studies underscore the 
potential of ML in capturing subtle, multivariate patterns in physiolog-
ical and behavioral data.

In our previous research, we investigated movement and postural 
changes in response to the TSST and a modified control condition, the 
friendly-TSST (f-TSST; Wiemers et al., 2013). We demonstrated that 
exposure to acute psychosocial stress leads to “stress-induced movement 
inhibition”, a state of reduced bodily movements that is primarily 
characterized by changes in movements of the head, the upper 

extremities, and the trunk (Richer et al., 2024b). The implemented ML 
models allowed the classification of stress and the respective control 
condition with a mean accuracy of 73.4 %. However, in this prior work, 
stress was defined solely based on the experimental condition (TSST vs. 
f-TSST), rather than individual variations in HPA axis reactivity.

Although cortisol peaks delayed after stress onset, HPA axis activa-
tion begins during the stressor itself in response to social-evaluative 
threat (Dickerson and Kemeny, 2004). Movement changes observed 
during the TSST, such as reduced body sway or more contracted pos-
tures, may reflect this early activation phase. These behavioral adapta-
tions can thus serve as external indicators of internal stress responses, 
providing insight into individual differences in cortisol reactivity.

To address this gap, we aimed to extend previous findings by 
examining whether movement patterns during the (f-)TSST can predict 
cortisol reactivity. By moving beyond condition-based classification and 
instead focusing on individual neuroendocrine responses, we want to 
gain deeper insights into how body posture and movements relate to 
different facets of the stress response. Specifically, we employed two 
complementary approaches: (1) classifying cortisol responders versus 
non-responders and (2) predicting the cortisol response using ML-based 
regression, as outlined in the overview Fig. 1. The first approach treats 
cortisol reactivity as a categorical outcome, dividing participants into 
responders (a cortisol increase of at least 1.5 nmol/l increase, according 
to Miller et al., 2013) and non-responders, which enables the identifi-
cation of general movement patterns linked to stress-related physio-
logical activation. Regression, in contrast, predicts the magnitude of 
cortisol increase, offering a more fine-grained analysis of how move-
ment dynamics relate to the intensity of the HPA axis response. Our 
approach leverages ML techniques to explore the predictive relation-
ships between movement dynamics and cortisol reactivity, contributing 
to the growing body of research at the intersection of computational 
behavioral science and biopsychology, ultimately advancing the devel-
opment of objective, non-invasive methods for stress assessment.

2. Methods

2.1. Data acquisition

We recruited 41 young healthy individuals (N = 18 women, Age 
24.0 ± 3.5 years, BMI 22.1 ± 2.0 kg/m2). Detailed descriptions of the 
recruitment process, inclusion, and exclusion criteria were described in 
a previous publication (Richer et al., 2024b; Main Study). Exclusion 
criteria followed established studies and HPA axis assessment guide-
lines, covering age (<18 or >40), BMI (<18 or >30 kg/m2), physical or 

Fig. 1. Graphical Abstract: Body posture & movement data from an (f-)TSST study were used to predict the cortisol response and reactivity.
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mental illness, medication use (e.g., beta-blockers, glucocorticoids, an-
tidepressants), substance use (including cigarettes), elevated 
self-reported depression scores, and prior stress test experience.

All participants gave written informed consent, and the study was 
approved by the ethics committee of Friedrich-Alexander-Universität 
Erlangen-Nürnberg (protocol #493_20 B), following the principles of the 
Declaration of Helsinki.

Participants were exposed to the TSST and the f-TSST on two 
consecutive days in randomized order. Testing was conducted between 
13:00 and 21:00 to minimize the influence of circadian rhythms (Smyth 
et al., 1997).

After arrival at the laboratory, the first saliva sample (S0) was taken. 
All saliva samples were obtained using Salivettes (Sarstedt AG & Co. KG, 
Nümbrecht, Germany). Sample S0 was only used to exclude participants 
with high cortisol levels on arrival, and not in any of the following 
evaluations. After assessing the required body measurements, for the 
Xsens MVN Awinda motion capture suit (Movella, Henderson, NV, USA), 
participants were equipped with the 17 sensors of the Xsens system. 
Following this, participants answered a set of pre-stress state question-
naires, whose results are not in the scope of this work. After the Xsens 
system was calibrated, the second saliva sample (S1) was obtained right 
before the start of the (f-)TSST, which was conducted in a separate room.

The total duration of both tests was 15 min, split into three 5 min 
phases: Preparation, Speech and Mental Arithmetics. In contrast to the 
original f-TSST protocol, we modified the f-TSST to include a math task 
from the placebo-TSST (Het et al., 2009), where participants counted in 
steps of 15, starting from zero. During the (f-)TSST, the movement was 
recorded and subsequently exported as .mvnx files using the Xsens MVN 
Analyze software. The panel was equipped with a smartphone to log the 
timing of the (f-)TSST phases, allowing later separation of the Motion 
Capture recordings.

After finishing the (f-)TSST, participants were brought back to the 
first room, where six more saliva samples (S2-S7) were acquired at the 
respective time points (+15 min, +25 min, +35 min, +45 min, 
+60 min, +75 min relative to (f-)TSST start).

2.2. Cortisol assessment

The saliva samples were analyzed in the laboratory as described in 
previous publications (Janson and Rohleder, 2017; Ringgold et al., 
2024). Samples with insufficient volume for cortisol concentration 
analysis were excluded (n = 15; 2.23 %). From the resulting cortisol 
values, we computed the maximum cortisol increase as a measure to 
quantify HPA axis reactivity (Miller et al., 2013). The maximum cortisol 
increase (Δcmax) was computed as: 

Δcmax = max(Si)− S1, ∀i ∈ [2, …, 7],                                                   

where Si is the cortisol value of the respective sample in nmol/l. For 
the classification task, cortisol responders were defined by an increase of 
Δcmax of at least 1.5 nmol/l, as proposed by Miller et al. (2013). In the 
initial regression experiment, we predicted Δcmax values without any 
additional transformation. In a subsequent regression experiment, the 
law of initial value (Wilder, 1962; Benjamin, 1963) was considered by 
regressing the standardized residuals, following the approach outlined 
in previous literature (Jin, 1992; Ramsay and Lewis, 2003; Miller et al., 
2013). According to Dickerson and Kemeny (2004), who found cortisol 
peaks 21–40 min after stress onset, we set the cortisol values of S1 and S3 
as baseline and peak levels and computed the change score for these 
values. A significant negative correlation (r = -.25, p = .033) between 
the change score and the baseline values (S1) indicated that the change 
score is related to the baseline values, therefore the law of initial value 
should be considered (Miller et al., 2013). A regression model was then 
applied, with the change score as the dependent variable and the 
baseline value as the independent variable. The standardized residuals 
extracted from this model represent adjusted change scores, providing a 

refined measure of reactivity.

2.3. Body movement feature extraction

We extracted the same set of body movement features as utilized in a 
previous study (Richer et al., 2024b). To characterize movement during 
the (f-)TSST, raw motion data were aggregated over the entire test 
duration, and a range of features was computed. These features were 
derived from multiple data channels, including acceleration, velocity, 
angular velocity, and rotation, and were extracted for all individual 
body parts as well as predefined body part groups (e.g., Total Body, 
Upper Extremities).

The extracted features can be categorized into two main types. 
Generic features do not require prior domain knowledge and include 
statistical measures (e.g., mean, standard deviation) as well as signal 
characteristics, such as entropy. In contrast, expert features are designed 
to capture specific movement patterns identified in previous research or 
observed during data collection. Examples of expert features include 
static periods, which quantify episodes of little to no movement, and the 
distance of the hands to the face, which serves as an indicator of face- 
touching behavior. Static periods were obtained by computing the 
variance of the signal in a 1 s window (50 % overlap), if the variance 
was below a pre-defined threshold, we classified the window as static. 
Subsequently, neighboring windows were taken together to allow the 
computation of various metrics (e.g. maximum duration, mean duration, 
ratio, etc.). In total, we extracted 587 features (509 generic and 78 
expert features). A comprehensive overview of all extracted features is 
provided in Table A.1.

In prior statistical analyses comparing conditions, we observed 
movement inhibition in the TSST condition compared to the f-TSST 
condition (Richer et al., 2024b). This effect was reflected in both generic 
features (e.g., a reduction in the mean velocity of the Total Body) and 
expert features (e.g., prolonged static periods of the Trunk) (Richer 
et al., 2024b).

2.4. Classification & regression analyses

We employed machine learning techniques to investigate associa-
tions between neuroendocrine markers and movement data. Two sepa-
rate analyses were conducted: (1) the classification of cortisol 
responders and non-responders in both conditions based on movement 
data, and (2) the regression of Δcmax and the adjusted change scores 
using movement data. ML offers the possibility of exploring the large 
feature space we are dealing with by inherently including only features 
in the model that are relevant for the prediction of the desired outcome. 
Furthermore, we can ensure the model’s predictive performance on 
unseen data through appropriate validation strategies, as described in 
detail in the following paragraphs.

Our ML model is constructed as a pipeline consisting of several steps 
for feature scaling, transformation, and selection before the final pre-
diction is performed:

First, we removed all features with zero variance. Next, we applied 
feature scaling using either Min-Max Scaling (rescaling features to a 
[0,1] range) or Standard Scaling (transforming features to have a mean 
of zero and unit variance). Next, we performed a feature selection step to 
remove irrelevant or redundant features, reduce computational costs, 
and improve generalization to new data. This is a crucial step for certain, 
but not all, ML algorithms due to the "curse of dimensionality," where 
having too many features can make models less effective and harder to 
train (Bellman, 1966). For feature selection, we utilized Select-k-Best 
(SkB) based on the ANOVA F-value and Recursive Feature Elimination 
(RFE) with a linear Support Vector Machine (SVM) as the base classifier.

In ML, according to the “no free lunch theorem” (Wolpert and 
Macready, 1997), no algorithm is inherently superior across all possible 
tasks. Therefore, systematically evaluating different algorithms and 
optimizing their internal hyperparameters are critical steps. For both 
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analyses, we evaluated seven machine learning models in their respec-
tive classifier and regressor variants: K-Nearest-Neighbors (kNN), Sup-
port Vector Machine (SVM), Decision Tree (DT), AdaBoost (Ada), 
Multi-Layer Perceptron (MLP), and Random Forest (RF). Hyper-
parameters were optimized using a grid search approach in which each 
hyperparameter combination is systematically compared. Due to the 
exceptionally large number of hyperparameters in Random Forest 
models, a randomized search strategy was applied instead, where 
n = 40,000 hyperparameter combinations are randomly selected.

To prevent overfitting during hyperparameter optimization, we 
implemented a cross-validation (CV) approach. Overfitting occurs when 
a machine learning model learns the training data too well, including 
noise and random patterns, instead of capturing the underlying trend. 
This leads to high accuracy on training data but poor performance on 
new, unseen data, reducing the model’s ability to generalize. In k-fold 
CV, the dataset is split into k equally sized subsets, where k-1 subsets are 
used as the training set and the remaining subset as the test set. This 
procedure is repeated k times (folds), and the final ML performance is 
determined by averaging across folds. This ensures that the model 
evaluation is always performed on unseen data, mitigating the risk of 
overly optimistic performance estimates. To prevent data leakage, 
which means the models learn patterns that are not associated with the 
target variable, movement data from the same participant (i.e., data 
from both conditions) was never included in both the training and test 
sets. The ML pipeline with the best-performing hyperparameter set (with 
regard to the target metric) is then retrained on the entire dataset to give 
the model as many data points to learn from as possible. This CV-based 
hyperparameter optimization is the most common approach in ML 
(Yarkoni and Westfall, 2017). The detailed hyperparameter grid can be 
found in Table A.2.

To ensure a robust model evaluation, we repeated this process by 
embedding the hyperparameter optimization CV into another 5-fold CV, 
where the dataset is split into an 80 % training and a 20 % test set before 
performing the hyperparameter optimization. This means that the 
hyperparameter optimization in the “inner” CV was performed exclu-
sively on the training set of the “outer” CV loop. The ML pipeline with 
the best-performing hyperparameter set, which was retrained on the 
entire dataset of the “inner” hyperparameter optimization CV, was then 
evaluated on the training set of the “outer” model evaluation CV for each 
fold, ensuring that final evaluations were conducted on completely un-
seen data.

Integrating these two levels of “nested” CV minimizes overfitting, 
prevents data leakage, and allows for an unbiased evaluation of ML 
pipelines. This makes it particularly valuable for models with complex 
hyperparameter spaces, providing a robust estimate of model general-
ization performance.

Model performance was assessed using accuracy for classification 
tasks (responder vs. non-responder) and mean absolute error (MAE) for 
regression tasks (Δcmax). Accuracy, defined as the proportion of 
correctly classified samples out of the total samples, was used because it 
is easy to interpret and well-suited for balanced datasets as in our case 
(36 responders vs. 37 non-responders after the exclusion of incomplete 
measurements). MAE is one of the standard measures for regression 
tasks and was chosen to enable comparison with previous work.

The metrics were averaged across the outer model evaluation CV 
folds to estimate the model’s generalization ability reliably. To further 
assess model performance on the entire dataset and to compare to pre-
viously reported results, we computed Spearman’s correlation coeffi-
cient between predicted and actual cortisol values for the regression 
tasks.

To interpret model predictions and identify key features influencing 
classification and regression outcomes, we analyzed SHAP (SHapley 
Additive exPlanation) values using the SHAP Python package (v0.44.0; 
Lundberg and Lee, 2017). SHAP values quantify the contribution of each 
feature to model predictions, offering insights into their relative 
importance. Features with higher absolute SHAP values are considered 

to have a stronger influence on model decisions. A positive SHAP value 
indicates an increased likelihood of a positive classification, whereas a 
negative value suggests a lower probability. Analogously, for regression 
models, SHAP values indicate if a feature pushes the predicted output 
above or below the average prediction.

2.5. Availability of data and code

Raw data is available on OSF (https://osf.io/va6t3/; Richer et al., 
2024a). The source code for data processing, feature extraction, and 
reproducing all results, figures, and tables is available on GitHub (http 
s://github.com/empkins/movement-cort-prediction). All analyses 
were performed in Python (v3.9.8), using the packages BioPsykit 
(v0.12.2; Richer et al., 2021), pingouin (v0.5.5; Vallat, 2018), and 
scikit-learn (v1.2.2; Pedregosa et al., 2011).

3. Results & discussion

Two participants were excluded from the study: one due to incom-
plete participation in the TSST, and the other due to corrupted motion 
capture data. The final dataset comprised 73 data points from 37 par-
ticipants (N = 16 women, Age 23.8 ± 3.6 years, BMI 22.0 ± 1.9 kg/m²), 
with one f-TSST condition missing. A data point was defined as one 
condition (TSST or f-TSST) with complete cortisol and motion capture 
data from a single participant.

The maximum cortisol increase ranged from − 3.5 to 18.9 nmol/l, 
and the range of the adjusted change scores was between − 1.5 and 2.8. 
The distribution per condition for both measures can be seen in Fig. 2a 
and 2b. As shown in Fig. 2c, 29 % of the participants were classified as a 
cortisol non-responder in the TSST condition, similarly, 27 % of the 
participants in the friendly control condition were classified as cortisol 
responders. This highlights the need for a predictive model that does not 
rely on the condition to assess whether a stress reaction is present, as in 
our previous piloting work (Richer et al., 2024b), but one that can 
predict the actual physiological response, as performed in our following 
experimental analyses.

3.1. Classification cortisol responders vs. non-responders

Classification results showed a maximum accuracy of 65.2 ± 7.3 % 
using MinMaxScaler for scaling, SelectKBest for feature selection, and 
RandomForestClassifier as the classification model. The corresponding 
confusion matrix (Fig. 3), indicates that the classification of the two 
classes was equally possible. Detailed results for each model combina-
tion are listed in Table A.3. The accuracy is slightly lower than the 
previously reported 73.4 % for the condition classification (Richer et al., 
2024b), which is expected given that there are various factors influ-
encing the cortisol response, which will be discussed in detail in the 
limitation section.

To assess whether classification accuracy is influenced by the sex of 
the participants, we analyzed the accuracy for men and women sepa-
rately. There was only a small difference in classification accuracy be-
tween male and female participants (61 % vs. 68 %), indicating that 
there is no sex-specific bias in the classification of cortisol (non-) 
responders.

Analyses of SHAP values revealed that out of the 40 top features, 31 
were expert features (9 generic features). Previously reported results for 
the condition classification found notably fewer expert features in the 
top 40 (11 expert / 29 generic features; Richer et al., 2024b). This might 
be an indicator that the expert features are better suited at capturing the 
physiological response instead of the condition than the generic fea-
tures. The body parts contributing most to the model output were upper 
extremities (12 features), head (10 features), as well as trunk and lower 
extremities (9 features each). When comparing this to the features 
contributing to the condition classification, notably more features from 
the Trunk (9 vs. 1) and Lower Extremities (9 vs. 2) were selected for the 
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cortisol responder/non-responder classification, which is a starting 
point for further investigations. An overview of the SHAP values of the 
top 20 features is shown in Fig. 4, notable observations are: A reduced 
head movement could be associated with the responder class, showing 
for example in the feature ratio of static periods. A high distance of the 
hands seems to be associated to the non-responder class (negative SHAP 
values).

3.2. Prediction of the cortisol response

The best results for predicting the maximum cortisol increase (Δcmax) 
with ML-based regression were obtained using a pipeline consisting of 
StandardScaler for feature scaling, SelectKBest for feature selection, and 
RandomForestRegressor as the regression model. This model achieved an 
MAE of 2.95 ± 0.47 nmol/l averaged over all model selection folds.

A moderate correlation was achieved when evaluating the model 
performance for the prediction on Δcmax on the dataset level (r = .36, 
p = .001). This indicates that the cortisol response can be explained to 
some degree by body posture and movements during a stress event.

For the second regression analysis, predicting the adjusted change 
scores (standardized residuals) a mean absolute error of 0.70 ± 0.09 was 
achieved over all folds using a pipeline with MinMaxScaler, SelectKBest 
(k = 18), and MLPRegressor. 17.0 % of the variability of the adjusted 
change scores was explained by this model. The predicted vs. true 
adjusted change scores for the best-performing model can be found in 
Fig. 5a, and an overview of the performance of all pipeline combinations 

can be found in Table A.4.
We additionally recomputed the adjusted change scores while con-

trolling for age, gender, and BMI. Hormonal contraceptive use and 
menstrual cycle phase were not included in this re-analysis, as partici-
pants using hormonal contraceptives were excluded and all female 
participants were tested during the luteal phase, thereby keeping these 
factors constant. Importantly, the newly computed scores were highly 
correlated with the original adjusted scores that corrected only for 
baseline levels (r = .96, p < .001), indicating minimal influence on the 
outcome. The results of our machine learning-based regression analysis 
remained stable when predicting these newly adjusted cortisol scores 
(r = .45).

The correlation coefficient (r = .45, p < .001) is notably higher 
(r = .36 vs r = .45; Z = -2.61, p < .001) than in the first analysis. Given 
that the adjusted change scores account for baseline differences (Ramsay 
and Lewis, 2003), this result indicates that the movement data during 
the (f-)TSST carries information about the true cortisol reactivity. The 
following in-depth analyses refer to the second regression experiment 
predicting the adjusted cortisol change scores.

Compared to previous research by Baird et al. (2019) who sequen-
tially predicted cortisol samples using speech-based features, the cor-
relation coefficient is slightly higher (.45 vs .42), which was obtained for 
the cortisol sample + 20 min after TSST start. These results indicate that 
movement and posture may encode information about HPA axis reac-
tivity similar to that conveyed by speech features.

Analyses of the SHAP values of the 18 selected features (Fig. 5b) 
revealed that the body parts contributing the most to the prediction were 
head (9 features), upper extremities (7 features), and lower extremities 
(2 features). Selected features are similar to the classification task, with 
the 4 most contributing features in both models being different measures 
of static periods of the Head (maximum duration, mean duration, ratio, 
and standard deviation of the duration).

Interestingly, the distance between the hands, as well as the distance 
between the left hand and the head, were in the 18 selected features. In 
our previous work, these features did not show a significant difference 
for the conditions and were not in the top 18 features for the ML model 
predicting the condition (Richer et al., 2024b). A greater distance be-
tween the left hand and the head was associated with a positive SHAP 
value, indicating higher cortisol levels. This finding aligns with previous 
research by Turan (2015), which demonstrated that dominant postures – 
described as being “expansive, taking up more space with open limbs” – 
are linked to an increased cortisol response.

The paired boxplot (Fig. 6) suggests a systematic bias in the model’s 
predictions of cortisol reactivity to acute psychosocial stress, where 
lower cortisol reactivity values tend to be overestimated, while higher 

Fig. 2. (a) Maximum cortisol increase (Δcmax) per condition (Resp. Thres.: Responder Threshold). (b) Adjusted change scores per condition. (c) Cortisol responders/ 
non-responders per condition.

Fig. 3. Confusion matrix of responder vs. non-responder classification.
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values are underestimated. This pattern may reflect a regression-to-the- 
mean effect, potentially arising from an imbalanced distribution of 
cortisol responses in the training data. Such bias might indicate that the 
model struggles to capture extreme stress responses accurately, possibly 
due to individual variability in HPA axis activation.

3.3. Limitations

Several limitations should be considered when interpreting the re-
sults of the current study. First, the relatively small sample size restricts 
the generalizability of the findings. However, a key strength of the study 
design lies in the inclusion of a control condition and the use of a within- 
subject design, which effectively doubled the number of data points. 
However, it also increases the complexity of the prediction task 

compared to previous studies that focused solely on predicting cortisol 
responses to a stress task (e.g. Baird et al., 2019). This enhances the 
generalizability of the results, especially because the f-TSST protocol is 
less strict in its standardization compared to the TSST. Despite these 
strengths, future research involving larger and more diverse populations 
is needed to assess the robustness of the observed relationships between 
movement and cortisol.

Importantly, the generalizability of the findings is further limited by 
the homogeneity of the sample, which consisted exclusively of young, 
healthy, German-speaking university students. While this approach re-
duces confounding variables and increases internal validity, it restricts 
applicability to broader populations with more diverse sociodemo-
graphic and cultural backgrounds. Future studies should include par-
ticipants across different age groups, health statuses, and cultural 

Fig. 4. SHAP values showing the 20 most important features for classifying cortisol responders versus non-responders. Features names are defined as in the following 
example: “Head - Ang. Vel. - SP - Max. Duration” represents the maximum duration of a static period (SP) in the angular velocity (Ang. Vel.) of the head. I.e., the 
longest continuous time interval during which the head’s angular velocity remained very low, indicating a prolonged moment of little to no rotational movement.

Fig. 5. (a) Predicted and true standardized change scores. (b) SHAP values for the selected features in the regression task. Feature names can be read as follows: 
“Head - Ang. Vel. - SP - Ratio” represents the ratio of total static periods (SP), during which the head’s angular velocity (Ang. Vel.) is very low, to the overall 
measurement duration, reflecting the proportion of time spent with minimal rotational head movement.
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contexts to better understand how individual and contextual factors 
shape the relationship between movement and cortisol responses.

The complexity of the physiological stress response presents a 
notable limitation, as cortisol secretion is modulated by various factors, 
including genetic predisposition, hormonal fluctuations, environmental 
stressors, and age (Russell and Lightman, 2019). Additionally, the 
cortisol response to repeated acute stressors is known to be subject to 
habituation effects (Petrowski et al., 2012). Although our protocol did 
not include repeated stress exposure per se, we showed that some par-
ticipants had a substantial cortisol response to the friendly control 
condition, which potentially led to the aforementioned habituation ef-
fects. If the body posture and movement changes show similar habitu-
ation effects should be a topic for future investigations. The models 
employed in this study did not account for these factors, instead focusing 
exclusively on posture and movement data. This limitation may have 
contributed to individual differences in observed cortisol levels and 
movement patterns, which we were unable to fully predict. Future 
research should consider incorporating these factors into predictive 
models to enhance their accuracy and reliability.

We used inertial sensor-based motion capture technology to measure 
movement patterns, which brings several advantages. These systems are 
portable and cost-effective, operating without external cameras or line- 
of-sight constraints, though they come with certain challenges. Tech-
nical issues, such as data corruption or sensor malfunctions, led to the 
exclusion of some participants, thus reducing the amount of usable data. 
Additionally, the attachment of the sensors might interfere with the 
natural movement of the participants (Jeon et al., 2023). To address this 
limitation, future research should explore contactless motion capture 
using camera-based or radar technology. Camera-based tracking 
methods, in particular, show significant potential, as recent advance-
ments have introduced numerous pose estimation frameworks with 
promising accuracy and robustness. Furthermore, the TSST protocol 
already incorporates camera recordings, providing an opportunity to 
develop a large and diverse dataset for motion analysis.

Furthermore, our evaluation was based exclusively on features 
aggregated over the entire (f-)TSST duration. While this approach en-
hances simplicity and interpretability, it inevitably omits part of the 
information present in the raw movement data. Future research might 

leverage temporal data, examining how the body posture and move-
ments change throughout the stress task, potentially improving the 
prediction of the neuroendocrine response.

4. Conclusion & outlook

We investigated in this study the relationship between body posture, 
movement patterns, and cortisol reactivity following the (f-)TSST. Using 
machine learning techniques, we classified cortisol responders and non- 
responders with a moderate accuracy of 65.2 % and predicted the 
maximum cortisol increase with a mean absolute error of 2.95 nmol/l. 
Additionally, we achieved a correlation of.45 for the prediction of 
adjusted change scores. These findings reinforce the idea that movement 
patterns encode valuable information about physiological stress re-
sponses, highlighting the potential of body posture and motion as non- 
invasive markers of stress reactivity.

Despite the mentioned limitations, body posture and movements 
provide valuable insights into the stress response. To the best of our 
knowledge, we are the first to present full body motion as a potential 
digital biomarker, complementing traditional measures. By integrating 
multimodal approaches, including heart rate variability, speech anal-
ysis, and facial expressions, the predictive power of stress assessment 
models could be enhanced. Especially speech analysis is a promising 
candidate, as we were able to show in previous work that the classifi-
cation of (f-)TSST conditions from speech features was possible with 
80 % accuracy (Oesten et al., 2023).

Given the temporal alignment of movement changes with the 
stressor, future work should also investigate associations with auto-
nomic indices such as heart rate, skin conductance, or vagally mediated 
heart rate variability. These markers, reflecting sympathetic and para-
sympathetic activity, may be more closely related to arousal and motor 
inhibition than cortisol and could yield improved prediction accuracy. 
Such integration could offer a more comprehensive view of the physi-
ological correlates of stress-related movement.

Additionally, future work should also examine the extent to which 
the most informative movement features identified by our models can be 
perceived and interpreted by human observers. Preliminary findings 
from an ongoing study, in which human raters view motion capture 
recordings to classify stress conditions, will help clarify this. Notably, 
some features, such as reduced hand movement or a downward-tilted 
head during the TSST, were based on prior observational insights, sug-
gesting that at least a subset of these patterns may be accessible to 
trained observers. However, more subtle or high-dimensional features 
likely require computational approaches to be reliably detected.

Beyond stress detection, body movement patterns may also reflect 
broader physiological processes. For example, acute sickness is associ-
ated with a low-grade inflammatory response, which can be detected 
through alterations in movement patterns (Lasselin et al., 2020). Simi-
larly, acute psychosocial stress elicits an inflammatory response, rep-
resenting a potential pathway linking stress to disease progression 
(Rohleder, 2019). Given this association, further research is needed to 
systematically investigate the relationship between body movements 
and inflammation to enhance our understanding of stress-related health 
outcomes.

Future research should also explore real-world applications of 
movement-based stress detection. Wearable technologies, such as ac-
celerometers and smart clothing, offer the potential to continuously 
monitor body movements in naturalistic settings. Implementing such 
technologies might pave the way for real-time stress assessment in 
workplace environments, healthcare settings, and everyday life, facili-
tating early stress detection and personalized intervention strategies.

In conclusion, our findings contribute to the growing field of 
computational behavioral science by demonstrating the feasibility of 
using body movements as a non-invasive stress marker. By refining these 
approaches and integrating additional physiological and behavioral in-
dicators, the development of objective and scalable stress assessment 

Fig. 6. Paired boxplot for true and predicted adjusted cortisol change scores 
(yellow lines indicate a smaller predicted value, and blue lines indicate a larger 
predicted value compared to the true values).
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tools might be possible, which ultimately improve stress management 
and mental health interventions.
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