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Summary
Background Comprehensive lipidomic studies have demonstrated strong cross-sectional associations between the
blood lipidome and late-onset Alzheimer’s disease (AD) dementia and its risk factors, yet the longitudinal
relationship between lipidome changes and AD progression remains unclear.

Methods We employed longitudinal lipidomic profiling on 4730 plasma samples from 1517 participants of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort to investigate the temporal evolution of lipidomes
among diagnostic groups. At baseline (n = 1393), participants were classified as stable diagnosis status
including stable AD (n = 243), stable cognitive normal (CN; n = 337), and stable mild cognitive impairment
(MCI; n = 413), or converters (AD converters: n = 329; MCI converters: n = 71). We developed a dementia risk
classification model to stratify the non-converting MCI group into dementia-like and non-dementia-like MCI
based on their baseline lipidomic profiles, aiming to identify early metabolic signatures predictive of
dementia progression.

Findings Longitudinal analysis identified significant associations between the change in ether lipid species
(including alkylphosphatidylcholine, alkenylphosphatidylcholine, lysoalkylphosphatidylcholine, and lysoalkenyl-
phosphatidylcholine) and AD dementia conversion. Specifically, AD dementia converters show a 3–4.8% reduction
in these ether lipid species compared to the non-converting CN and MCI groups, suggesting metabolic
dysregulation as a key feature of AD progression. Further, The Dementia Risk Model effectively distinguished
MCI from AD dementia converters (AUC = 0.70; 95% CI: 0.66–0.74). Within the MCI group, the model
identified a high-risk subgroup with a twofold higher likelihood of conversion to AD dementia compared to the
low-risk group. External validation in the ASPREE cohort confirmed its predictive utility, with the Dementia Risk
Score discriminating incident dementia from cognitively normal individuals (C-index = 0.75, 95% CI: 0.73–0.78),
improving prediction by 2% over the combination of traditional risk factors and APOE genetic risk factor.
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Additionally, the Dementia Risk Score was significantly associated with reduced temporal lobar fludeoxyglucose
uptake (β = −0.286, p = 1.34 × 10−4), higher amyloid PET levels (β = 0.308, p = 4.03 × 10−4), and elevated p-tau
levels (β = 0.167, p = 2.37 × 10−2), reinforcing its pathophysiological relevance in tracking neurodegeneration,
amyloid burden, and tau pathology.

Interpretation These findings highlight lipidomic profiling as a potential blood-based biomarker for identifying
individuals at high risk of AD progression, offering a scalable, non-invasive approach for early detection, risk
stratification, and targeted interventions in AD.
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Introduction
Late-onset Alzheimer’s disease (AD) is the leading
cause of dementia, characterised by the progressive
death of neurons and loss of brain structure, usually
presenting with memory loss.1,2 Many risk factors
have been identified to collectively modulate risk for

AD dementia with advanced age (≥65 years) being
the strongest risk factor. Moreover, common genetic
risk factors are associated with increased risk,3 such
as the APOE ε4 allele and sex, with females being
more likely to develop AD (especially at age ≥80
years).4

Research in context

Evidence before this study
A growing number of studies have defined an close link
between the plasma lipidome, measured at a single point in
time, and AD dementia and its risk factors. Nevertheless, the
temporal dynamics of the lipidomic alterations and their
relationship with the progression to AD dementia remains
unclear.
A Google scholar search was performed, using the key words
“Longitudinal analysis” OR “Alzheimer’s disease risk
prediction” OR “Dementia risk prediction” OR “AD
biomarkers” OR “Metabolomics” AND “Lipidomic”. We
observed that several studies had developed dementia risk
scores using specific lipid classes such as phospholipids or
sphingolipids. However, there is a lack of studies that
comprehensively evaluate AD risk using a broad lipidomic
profile to construct a more holistic and data-driven risk
model for dementia risk prediction.

Added value of this study
We performed comprehensive cross-sectional and
longitudinal analyses of lipidomic data in the ADNI cohort to
delineate the relationships between lipid metabolism and

progression to AD dementia. Cross-sectional associations are
consistent with previous observations, but we identified two
novel strongly associated lipid species driven by
anticholinesterase usage. Trajectory analysis revealed
differences between AD converters and non-converting CN
and MCI, with reduced ether lipid synthesis being a defining
characteristic of progression to AD. We further developed a
dementia risk classification model to stratify the non-
converting MCI group into dementia-like and non-dementia-
like MCI based on their lipidomic profiles at baseline. The
results demonstrated that the model can efficiently classify
MCI into low dementia risk and high dementia risk, with the
high AD dementia risk group having two times higher risk of
conversion to AD dementia than the low-risk group.

Implications of all the available evidence
These highlight the potential of lipidomic studies to improve
our understanding of the relationships between lipid
metabolism and progression to AD dementia. Lipidomic
profiling also show promise to serve as a blood-based test to
identify individuals at higher risk for progressing to AD
dementia.
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Spanning a period of 15–25 years, individuals pro-
gress from CN through MCI to overt dementia.2 As a
transitional state between CN and dementia, MCI has
mixed aetiologies with different pathologies, neuro-
psychological profiles, or biomarker anomalies, often
presenting with subtle to mild clinical symptoms.5,6 The
transition from MCI to dementia can take a varying
length of time, with some individuals remaining stable
or reverting to CN.2,7 The underlying mechanisms
contributing to this heterogeneity remain poorly
understood. Biomarker-based MCI stratification has
become essential for distinguishing high-risk individ-
uals by integrating fluid biomarkers,8,9 and neuro-
imaging.10 However, these biomarkers are often
invasive, time-consuming, and expensive, limiting their
widespread clinical application. Additionally, challenges
remain in standardising biomarker thresholds and
ensuring validation across diverse populations. As a
promising alternative, blood-based biomarkers such as
the lipidome11 offer a minimally invasive and potentially
scalable approach for MCI risk stratification. However,
existing predictive models face challenges such as study
design biases, overfitting issues, limited sample size,
and a lack of cross-cohort validation. A more accurate
and generalisable MCI stratification model, using
molecular level information (such as lipidomic profil-
ing), could significantly improve prognostic accuracy at
the early stages of disease,12 which is critical for
streamlining clinical trials to shorten drug development
cycle and avoiding negative results due to this
heterogeneity.

A growing number of studies have defined an inti-
mate link between the plasma lipidome, measured at a
single point in time, and AD dementia13–16 or its risk
factors.17–22 Further, lipidomic alterations in plasma,23,24

cerebrospinal fluid (CSF),25 and brain regions such as
the cerebral cortex and white matter26 have been
implicated in AD dementia progression, particularly in
the transition from MCI to AD. Hyunh et al. (2020)27

identified 71 plasma lipid species from ether lipids
and sphingolipids classes that were significantly asso-
ciated with future AD risk. Dakterzada et al. (2024)25

provided evidence that fatty acid dysregulations at
both CSF and plasma levels may contribute to the
pathogenesis and progression, while Obis et al. (2023)26

demonstrated that lipidome changes — especially in
ether lipids — are more pronounced in white matter
than in grey matter at disease progression. Despite
these findings, most previous studies have been con-
ducted using cross-sectional datasets, which do not
capture longitudinal changes in lipid metabolism. The
plasma lipidome is highly dynamic, varying in response
to environmental exposures (diet, physical activity)28–30

and over the longer term with age.31–34 Similarly, the
progression of cognitive impairment may predispose
individuals to lifestyle changes (unbalanced diet or
physical inactivity).35,36 These changes will influence

peripheral lipid metabolism and may therefore appear
to be associated with disease in a cross-sectional anal-
ysis (referred to as reverse causation). Longitudinal
studies can minimise the impact of reverse causation by
defining the relationship between changes in the
plasma lipidome prior to AD dementia, during the
progression to AD dementia, and following AD
dementia diagnosis.

In this study, we performed longitudinal analysis of
plasma lipidomic profiles in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI)-1, -GO and -2 cohorts
to delineate the relationships between peripheral lipid
metabolism and progression to AD dementia. Using
this complex data, we also assessed the utility of plasma
lipids to identify MCI individuals at high risk of con-
verting to AD dementia. This assessment was sub-
sequently validated in an external cohort, the Aspirin in
Reducing Events in the Elderly (ASPREE) study, to
stratify cases of incident dementia from CN individuals.

Methods
Participants
ADNI-1, -2 and -GO (http://adni.loni.usc.edu/) is a
longitudinal cohort study, randomly recruiting 1524
individuals over 55 years old at baseline. At intervals of
6–12 months, blood and clinical data were collected
from each individual, up to a maximum of 10 years.
Lipidomic profiling was performed on all blood sam-
ples, with 4873 plasma samples examined from base-
line up to the 13th time point (at 10 years followed up).
After removing 32 duplicate records, 39 samples that
did not match clinical data, 26 samples that did not
match clinical lipid measurements, and 46 samples
with missing BMI data (Supplementary Figure S1), we
retained a total of 4730 samples from 1519 participants.
Of these, 1393 participants had plasma lipidome
profiling since baseline, while 126 participants only had
lipidome profiling at later time points. The detailed
repeated measurements of these 1393 participants are
summarised in Supplementary Table S1. Most partic-
ipants had visits at baseline (n = 1393), 12 months
(n = 1188) and 24 months (n = 1089), with a decline in
participant numbers in other time points
(Supplementary Figure S2a). Additionally, most partic-
ipants had 3 repeated measurements, with fewer indi-
viduals having long-term follow-ups beyond seven visits
(Supplementary Figure S2b).

The definition of probable AD dementia in ADNI
followed the NINDS-ADRDA criteria.37 In brief, indi-
viduals with Mini-Mental State Exam (MMSE) scores
between 20 and 26 (inclusive) and a Clinical Dementia
Rating Scale (CDR) of 0.5 or 1.0 were classified as AD
dementia patients.38 MCI diagnosis was determined
based on a combination of criteria rather than any
single measure. Participants were defined as MCI if
they met all the conditions including MMSE scores
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between 24 and 30, a memory complaint, objective
memory loss measured by education-adjusted scores on
Wechsler Memory Scale Logical Memory II, a CDR of
0.5, absence of significant levels of impairment in other
cognitive domains, and essentially preserved activities
of daily living.39 To distinguish MCI from AD dementia,
we required that MCI participants did not exhibit
functional impairments that significantly affected their
ability to perform daily activities, which is a key feature
of AD dementia diagnosis. While an MMSE score of 24
and a CDR of 0.5 could also be observed in early-stage
AD, individuals classified as MCI did not meet the
threshold for significant impairment across multiple
cognitive domains and functional decline, which are
necessary for an AD dementia diagnosis. Additionally,
we used the ADAS-Cog13 (Total13) cognitive score, a
13-item extension of the original ADAS-Cog, to assess
cognitive performance across CN, MCI, and AD
dementia. This version includes tasks for delayed recall,
executive function, and attention, enhancing sensitivity
to cognitive decline.

We further defined the longitudinal status of AD
dementia diagnosis group in ADNI. Among the 1393
participants at baseline, we classified the AD diagnosis
status into stable diagnosis and AD dementia con-
verters: 1) Stable diagnosis: Individuals who were CN at
baseline and did not transition into MCI or AD were
defined as ‘stable CN’ (n = 337). Individuals that fell
within the MCI classification at baseline but did not
proceed into AD dementia within the study time frame
were classed as ‘stable MCI’ (n = 413). Similarly, indi-
viduals who remained with an AD dementia diagnosis
throughout the study was defined as ‘stable AD
dementia’ (n = 243). 2) MCI converters (ADNI): In this
study, 71 individuals converted from CN to MCI but did
not progress further were classified as MCI converters.
3) AD dementia converters: We defined individuals as
AD dementia converters if they were CN or MCI at
baseline but progressed to AD dementia at a follow-up
time point. A total of 29 CN and 300 MCI enrolled at
baseline later converted to AD dementia over the follow-
up period. Additionally, 34 participants who entered the
study at later time points were cognitively normal at
their initial assessment but were later diagnosed with
AD dementia. In total, 363 individuals transitioned
from either CN or MCI to AD dementia. The dis-
tribution of converters across the CN, MCI, and AD
groups at all time points is detailed in Supplementary
Table S2.

We additionally introduced three AD related bio-
markers in ADNI40: 1) “AmyPet” (n = 742) – a global
cortical amyloid deposition measured from amyloid
PET scans as biomarkers of β-amyloid; 2) “pTau”
(n = 1009) – CSF phosphorylated tau (p-tau) levels as
the biomarker of fibrillary tau; 3) “FDG_Temp” (tem-
poral lobar fludeoxyglucose uptake; n = 1059). In this
study, we analysed phosphorylated tau (p-tau)

biomarkers in CSF, specifically targeting p-tau181 and
p-tau217, which are well-established markers for AD
pathology. All the biomarkers are available in the LONI
online portal (https://ida.loni.usc.edu/).

The difference in clinical variables, risk factors and
AD related biomarkers used throughout this study
among diagnostic classifications are summarised in
Table 1 for baseline, and Supplementary Table S3
across baseline, 12 months and 24 months.

ASPREE is a large-scale randomised, double-blind,
placebo-controlled trial that aimed to evaluate the
effects of daily low-dose aspirin on prolonging
disability-free survival in 19,114 healthy older adults
(aged ≥70 years old).41–44 As detailed in Supplementary
Figure S3, we selected participants from the initial
ASPREE cohort who had imputed genotype data after
quality control and had no prior diagnosis of dementia.
After these criteria were applied, 13,349 participants
remained. From this group, we identified a case-cohort
subset (n = 3976) by selecting participants with incident
dementia (n = 463), coronary artery disease (CAD)
(n = 370), or who were homozygote for APOE ε4
(n = 168) or APOE ε2 (n = 59) with 3033 randomly
selected participants. For the analyses in this study, we
further refined the sub-cohort to include participants
aged 70 years or older of European descent, excluding
those genetically related to any other participants. After
these criteria were applied, the case-cohort subset
(n = 3495) contained incident dementia (n = 402) with
an average follow-up of 6.5 years, as well as APOE ε4
(n = 149) and APOE ε2 (n = 56) homozygotes. The
rationale for including CAD and genotype-based
enrichment was to align with the broader research
question investigating genomic and cardiovascular risk
factors in neurodegenerative processes. The differences
in clinical variables and risk factors by dementia-related
diagnosis group are presented in Table 2.

Several cognitive assessments were administered
to participants, including the Modified Mini-Mental
State (3MS) test to measure global cognition, the
Hopkins Verbal Learning Test-Revised (HVLT-R) for
episodic memory, the single letter (F) Controlled Oral
Word Association Test (COWAT) for language and
executive function, and the Symbol Digit Modalities
Test (SDMT) to measure psychomotor speed.42,45

Incident dementia was defined using a composite
set of criteria, rather than relying on a single meas-
ure. Participants were classified as having dementia if
they met one or more of the following conditions:
3MS score <78 (explaining ≈50% of the dementia
diagnosis); a drop of >10.15 points from the predicted
score based on their own baseline 3MS adjusted for
age and education; a report of memory concerns or
other cognitive problems to a specialist; clinician
diagnosis of dementia as indicated in the participant’s
medical records; and prescription of a cholinesterase
inhibitor.42,45
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Lipidomic profiling
The lipid extraction and liquid chromatography–
tandem mass spectrometry (LC-MS/MS) methodology,
using scheduled multiple reaction monitoring (MRM),
was conducted as previously described20 with the addi-
tion of approximately 200 additional lipid species from
17 lipid classes.33 Serum samples (10 μL) were extracted
using a single-phase process comprised of 90 μL of
butanol:methanol 1:1 and 10 μL of an internal standard
mix containing a mix of non-physiological and stable
isotope-labelled lipid standards (Supplementary
Table S4).46 In brief, samples were mixed with the
extraction solvent, vortexed and sonicated on a soni-
cator bath for 1 h. They were subsequently centrifuged,
and the supernatant was transferred into glass vials
with inserts for mass spectrometry analysis.

Lipidomic profiling in the ADNI study was per-
formed on all plasma samples (n = 4730) using our
recently expanded targeted lipidomic profiling strategy
comprising of reverse phase liquid chromatography in
tandem with a QqQ mass spectrometer (Agilent 6490)
operating under dynamic multiple reaction monitoring
(dMRM) mode. The solvent comprised of 50% H2O/
30% acetonitrile/20% isopropanol (v/v/v) containing
10 mM ammonium formate and 5 μM medronic acid
(Solvent A), and 1% H2O/9% acetonitrile/90% iso-
propanol (v/v/v) containing 10 mM ammonium for-
mate (Solvent B).

We utilised a dual column setup, with a stepped linear
gradient with a 12.9 min cycle time per sample and a
1 μL sample injection. The solvent analytical gradient was

as follows: starting with a flow rate of 0.4 mL/min at 15%
B and increasing to 50% B over 2.5 min, then to 57%
over 0.1 min, to 70% over 6.4 min, to 93% over 0.1 min,
to 96% over 1.9 min and finally to 100% over 0.1 min.
The solvent was then held at 100% B for 0.9 min before
the solvent was decreased to 15% B over 0.2 min and
held until a total of 12.9 min. The next sample was then
injected, and the columns alternated. In parallel, the

Stratified by AD dementia disease status p valuesa

Stable CN Stable MCI AD dementia
converters

Stable AD

n 337 413 329 243
Age (years) 74.14 (5.99) 71.85 (7.67) 74.22 (6.85) 74.93 (7.64) 1.32 × 10−08

Gender (% male) 202 (49.3) 234 (56.7) 195 (59.6) 137 (56.4) 3.04 × 10−02

HDL-C (mmol/l) 1.54 (0.38) 1.51 (0.37) 1.55 (0.37) 1.54 (0.36) 5.01 × 10−01

Chol (mmol/l) 4.91 (0.94) 4.98 (0.95) 5.02 (0.96) 5.03 (0.99) 3.70 × 10−01

Trig (mmol/l) 1.18 (0.56) 1.17 (0.53) 1.17 (0.52) 1.17 (0.48) 9.84 × 10−01

Fasting (% Yes) 393 (95.4) 398 (96.4) 311 (94.8) 230 (95.0) 7.50 × 10−01

BMI (kg/m2) 27.25 (4.85) 27.37 (4.77) 26.59 (4.73) 25.78 (4.12) 9.15 × 10−05

APOE 34 (%)b 2.81 × 10−36

0 302 (73.3) 240 (58.1) 120 (36.6) 77 (31.8)
1 99 (24.0) 140 (33.9) 161 (49.1) 115 (47.5)
2 11 (2.7) 33 (8.0) 47 (14.3) 50 (20.7)

Total13c 8.30 (3.94) 13.65 (5.75) 19.47 (6.74) 29.09 (7.78) 3.96 × 10−246

AmyPetd 0.79 (0.10) 0.84 (0.12) 0.98 (0.13) 1.01 (0.13) 1.45 × 10−61

Ptau (log10)e 2.95 (0.38) 3.05 (0.44) 3.44 (0.46) 3.51 (0.44) 2.40 × 10−52

FDG_Tempf 1.27 (0.11) 1.23 (0.12) 1.15 (0.12) 1.05 (0.14) 3.30 × 10−70

aP values were obtained using either Fisher’s exact test for categorical variables or ANOVA for continuous variable. bAPOE 34 = 0: Individuals with no ε4 allele (non-
carriers); APOE 34 = 1: Heterozygous carriers with one ε4 allele; APOE 34 = 2: Homozygous carriers with two ε4 alleles. cTotal13 is ADAS cog 13 score. dAmyPet is a global
cortical amyloid deposition measured from amyloid PET scans as biomarkers of β-amyloid. ePtau is CSF phosphorylated tau (p-tau) levels as the biomarker of fibrillary tau.
fFDG_Temp is temporal lobar FDG uptake.

Table 1: The basic characteristics of participants in the ADNI study (baseline).

Stratified by dementia disease status p valuesa

CN Incident dementia

n 3093 402
age (years) 74.84 (4.15) 77.85 (5.03) <2 × 10−16

Gender (% male) 1469 (47.5) 201 (50.0) 3.72 × 10−01

HDL-C (mmol/l) 1.58 (0.46) 1.60 (0.48) 4.93 × 10−01

Chol (mmol/l) 5.25 (0.96) 5.29 (0.97) 3.97 × 10−01

Trig (mmol/l) 1.33 (0.66) 1.25 (0.61) 2.77 × 10−02

Family history = Yes (%) 768 (24.8) 128 (31.8) 3.00 × 10−03

BMI (kg/m2) 28.05 (4.63) 26.76 (4.20) 1.17 × 10−07

Aspirin treatment = Yes (%) 1585 (51.2) 210 (52.2) 7.47 × 10−01

Hyperlipidaemia = Yes (%) 2066 (66.8) 270 (67.2) 9.27 × 10−01

APOE 34 (%)b 3.69 × 10−11

0 2268 (73.3) 219 (54.5)
1 695 (22.5) 164 (40.8)
2 130 (4.2) 19 (4.7)

aP values were obtained using either Fisher’s exact test for categorical variables or ANOVA for continuous
variable. bAPOE 34 = 0: Individuals with no ε4 allele (non-carriers); APOE 34 = 1: Heterozygous carriers with one
ε4 allele; APOE 34 = 2: Homozygous carriers with two ε4 alleles.

Table 2: The basic characteristics of participants in the ASPREE study.
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second column is washed with the following gradient,
starting at 15% B, increasing to 100% B over 1 min, held
for 4 min before returning to 15% B over 1 min. This was
held until a total run time of 12.9 min.

The mass spectrometry conditions were set to as
follows: gas temperature, 150 ◦C, gas flow rate 17 L/
min, nebuliser gas 20 psi, sheath gas temperature
200 ◦C, capillary voltage 3500 V, and sheath gas flow
10 L/min. The conditions for the lipid classes examined
are summarised in Supplementary Table S4, and the
list of lipid species and classes are in Supplementary
Table S5. Overall, there were 781 lipid species from
49 lipid classes reported for the ADNI studies. The
ASPREE study (n = 3495) used as the validation study
was run under identical chromatographic conditions,
but using an Agilent 6495C.

Triacylglycerol species were measured under two
sets of transitions, as single ion monitoring (SIM) and
neutral loss (NL). SIM measurements provide better
relative quantification while NL measurements are
more specific and sensitive. In modelling, SIM species
were excluded, resulting in 749 lipid species from 48
lipid classes in this study. Of these, 724 species over-
lapped between ADNI and ASPREE.

Both studies were conducted in batches of 486
samples. Quality control procedures included pooled
plasma samples every 20 samples, blanks every 40
samples, and National Institute of Standards and
Technology (NIST) Standard Reference Material (SRM)
1950 plasma every 40 samples to monitor instrument
performance and data consistency. To correct inter-
cohort discrepancies, we applied lipid-specific correc-
tion factors, calculated as the ratio between the NIST
SRM 1950 reference concentration — defined as the
median concentration of 1017 unique NIST SRM 1950
samples aggregated across 24 independent studies —
and the median concentration of NIST SRM 1950
samples within each separate cohort.

Additional technical details and instrument param-
eters are available on our lab website (https://
metabolomics.baker.edu.au/method/).

Statistics
In the following analysis, lipid species were log trans-
formed, and standardised to zero mean and unit var-
iance. We introduced the covariate set including age,
sex, BMI, APOE ε4, high-density lipoprotein cholesterol
(HDL-C), total cholesterol (TC), triglycerides (TG),
fasting status, study cohort (a categorical variable indi-
cating ADNI-1, ADNI-GO, and ADNI-2), omega-3, and
statin status for the following models. In the following
analysis, we included these lipoprotein measures (HDL-
C, total cholesterol, and triglycerides) as we are seeking
to identify lipid species association independent of lip-
oprotein metabolism. Additionally, to further rule out
medication-associated confounders, we identified 423
lipid species significantly associated with statin usage

(Supplementary Table S6) and 398 lipid species asso-
ciated with omega-3 usage (Supplementary Table S7),
both after multiple testing correction (linear regres-
sions with corrected p < 0.05). Therefore, both medi-
cations were included as covariates in our analysis.

ANOVA tests were performed to compare baseline
characteristics among different diagnostic groups, as
summarised in Table 1 (R package ‘tableone’ 0.13.2 in
R 3.6.2).

Development of a dementia risk model
We sought to use the normalised lipidomic data on
stable AD dementia subjects (n = 243) and stable cog-
nitive normal individuals (n = 337) at baseline to build a
classification model. The rational for selecting stable
CN individuals was to minimise potential confounding
from subclinical disease, thereby strengthening the
predictive power of the model, which was then tested in
an independent cohort. Further, we applied this model
to stratify non-converting MCI (n = 413) from AD
dementia converters (n = 329). To achieve this, ridge
regression models within 5-fold cross-validation
framework were created to stratify stable AD demen-
tia from stable CN, optimising C-statistic using the R
3.6.2 package ‘glmnet v4.1-4’ (Fig. 1). Specifically, we
randomly split ADNI data into five folds to create a 5-
fold cross-validation framework, iteratively selecting
one-fold as the validation set while using the remaining
four as the training set. Ridge regression was applied in
each iteration to construct two predictive models using
different sets of predictors: a) Base model: include age,
sex, BMI, APOE ε4, HDL-C, total cholesterol, trigly-
cerides, fasting status, cohort (a categorical variable
indicating ADNI 1, GO, and 2 phases), omega-3, and
statin status; b) Lipidome-based model: incorporate all
747 lipid species in addition to the predictors used in
the base model. Since two lipid species, deDE (18:2)
and deDE (20:4), were strongly associated with
dementia-related medications, these lipids were exclu-
ded from the predictor set, resulting in a final model
incorporating 747 lipid species (Supplementary
Table S8). The improvement in model performance of
the dementia risk model over the Base model reflected
the added value of the lipidome.

As a validation, we applied the model built on AD
and CN groups to the MCI and converters groups in
ADNI. Beta coefficients from each cross-validation fold
were averaged to create a single model. This model was
then applied to the non-converting MCI group to gen-
erate the probabilities of the MCI individuals being
“dementia-like” or “non dementia-like”. In addition, the
weights were separately applied to the whole dataset
across different time points to generate overall AD
dementia risk scores for each individual at each time.

To evaluate the model performance, the Receiver
Operating Characteristic–Area Under Curve (AUC) was
employed as an evaluation metric to access the
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discrimination ability of the models. Additionally, we
employed the Net Reclassification Improvement (NRI)
metric and Integrated Discrimination Improvement
(IDI) to evaluate the reclassification ability of the
lipidome-based risk model, compared to traditional risk
scores derived from base model. These metrics were
calculated using the R 3.6.2 packages ‘pROC’ 1.18.5 and
‘PredictABEL’ 1.2–4, respectively. The 95% confident
intervals were determined using bootstrapping, with
1000 resamples, ensuring robustness in performance
evaluation.

We also performed Kaplan–Meier survival analysis
(R 3.6.2 package ‘survival’ 3.1–12) to evaluate the sur-
vival rates (conversion rate to dementia) in high and low
dementia risk groups. Differences between groups were
evaluated using the log-rank test. In this analysis, the
time-to-event was defined as the duration (in months)
from baseline to the first recorded AD dementia diag-
nosis. Individuals who did not develop AD dementia by
their last follow-up were right-censored.

External validation of the dementia risk score on a
sub-cohort of the ASPREE study
We performed an external validation of the dementia
risk score developed in ADNI to access its general-
isability and predictive performance. To address
potential cohort-specific biases, all lipid data were
log10-transformed, and no within-cohort stand-
ardisation (e.g., z-scoring) was performed prior to
model development. This approach ensured that the
lipidomic features retained their absolute scale, thereby
avoiding biases introduced by cohort-specific
normalisation.

Due to the large mismatch in clinical covariates
available between ADNI and ASPREE it was not pos-
sible to transfer the lipidome-based model directly into
the ASPREE cohort. Thus, for external validation, we
first calculated a “Lipidome only risk score” using 722
lipid species shared between ADNI and ASPREE,
excluding the two deDE species. This score was derived
from all stable AD dementia and CN participants in the

Fig. 1: Study design. This study had two parts. Part 1 involved the development of a Dementia risk model, using baseline data, to characterise
the heterogeneity of the non-converting MCI group and to calculate lipidomic risk scores for individuals across different time points. A ridge
regression model, built within a five-fold cross-validation framework was used to stratify the non-converting MCI group into dementia-like
and non-dementia-like sub-groups. In the development of the model, we treated Dementia risk status as outcome with the predictors
including all the lipid species, age, sex, BMI, clinical lipids, fasting status, cohort, APOE ε4, omega-3, and statin status. Part 2 was the
longitudinal analysis on the repeated measurements across 13 time points to examine the associations of changes in lipid species and
lipidomic risk scores with AD dementia status. Associations of the trajectories of individual lipid species and disease outcomes were examined
using linear mixed models to undercover the difference of trajectories of lipid species between different groups. The covariates included age,
sex, BMI, fasting status, cohort, APOE ε4, omega-3, and statin status. Thereafter, global lipidomic scores combing all lipid species derived from
the Dementia risk model were fitted into a linear mixed model to define the associations with AD related biomarkers. Similarly, the covariate
set included age, sex, BMI, clinical lipids, fasting status, cohort, APOE ε4, omega-3, and statin status.
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full ADNI baseline dataset and did not include any
clinical covariates. The Lipidome only risk score was
then calculated in the ASPREE cohort by applying the
fixed beta coefficients derived from the ADNI-trained
model, without re-training or re-fitting the model in
ASPREE.

To assess the predictive performance of the Lip-
idome only risk score, in ASPREE, relative to traditional
risk factors, we compared two cox regression models: a)
Base model: including age, sex, BMI, clinical lipids,
statin use, aspirin treatment, family history, APOE ε2,
APOE ε4, SBP, DBP, living status, education, diabetes
status, smoking, alcohol intake, and depressive symp-
toms (Center for Epidemiological Studies-Depression-
10 [CES-D] scale); and b) Base + Lipidome only risk
score: included all variables from the base model, plus
the Lipidome only risk score. To assess the model’s
calibration, we generated calibration plots comparing
observed vs predicted dementia probabilities across
deciles of risk scores. Calibration was assessed using
the time-dependent calibration curves for survival
models, using the R 3.6.2 package ‘rms’ 7.0–0.

Given that the ASPREE study is an incident
dementia case-enriched dataset, we employed weigh-
ted time-to-event Cox regression model47 (R 3.6.2
package ‘survival’ 3.1–12) to assess the incremental
predictive value of the lipidome-based model over the
base model. Model performance was evaluated using
the concordance index (C-index), which, like the AUC,
measures discriminative ability but is tailored for
right-censored survival data.48–50 Additionally, hazard
ratios (HRs) were used to assess the association
between the Dementia Risk Score and incident
dementia, after excluding the covariates. Participants
were followed from baseline until AD dementia diag-
nosis, last follow-up, or censoring (due to loss to
follow-up or study completion). The time scale for
survival analysis was age. To correct for case enrich-
ment, we assigned a weight of 1 to all incident
dementia and CAD cases. The remaining cohort
samples were weighted based on the ratio of the total
eligible population to the number of individuals
included in the cohort subset. The proportional haz-
ards (PH) assumption was tested using Schoenfeld
residuals to ensure model validity.

We defined the optimal cutoffs for high- and low-risk
groups using the Youden Index to maximise discrim-
ination performance. Kaplan–Meier survival analysis
(R 3.6.2 package ‘survival’ 3.1–12) was then conducted to
compare survival rates between these groups regarding
incident dementia. In this analysis, age was treated as
the time scale, and the high- and low-risk groups were
used as predictors.

Longitudinal analysis using linear mixed models
We performed longitudinal analyses to examine
whether changes in lipid species could predict the AD

dementia, where we examined how lipid trajectories
differed across AD dementia conversion groups. The
analysis aims to characterise metabolic changes asso-
ciated with AD dementia progression. We applied lin-
ear mixed models using repeated measurements across
13 time points to examine the associations between AD
dementia diagnosis state and trajectory of lipid species
over time. In the model, we treated normalised indi-
vidual lipid species as the independent variables, and
AD dementia diagnosis state as the main predictor and
introduced a list of covariates of age (at baseline), sex,
BMI, HDL-C, total cholesterol, triglycerides, fasting
status, APOE ε4, cohort, time point (treated as con-
tinuous variable), omega-3, and statin status. The
model included an interaction term between time
points and AD dementia status, which served as the key
term for examining the trajectory of lipid species over
time among AD dementia states. The equation of the
model is as follows:

lipidi∼AD ∗ timepoint+ age + sex + BMI + HDL + TC

+ TG + fasting + APOEε4 + cohort + omega3

+ statin + 1|ID

Here, lipidi is the concentration of each lipid species i.
AD presents the AD diagnostic status, such as con-

verters vs non-converters (the combination of stable CN
and stable MCI).

timepoint is the continuous variable of time ranging
from 1 up to 13.

AD ∗ timepoint include three terms: AD + timepoint +
AD:timpoint. The interaction term of AD: timepoint
examines the trajectory of lipid species over time points
among AD diagnosis status.

age, sex, BMI, HDL, TC, TG, fasting (0/1), omega3
(0/1), statin (0/1), APOE ε4, and cohort (a categorical
variable indicating ADNI 1, GO, and 2 phases) are all
treated as covariates in the model.

1|ID is the random effects term, standing for the
random intercept for each participant ID.

In the model, we perform two sets of longitudinal
analyses on different subsets of the population to: 1)
examine the difference in the trajectory of lipid species
among AD dementia, CN, and non-converting MCI
group (dementia-like or non-dementia-like) using the
whole population (excluding the converters); 2) use the
changes in lipid species to predict the AD dementia
converters on the population excluding all prevalent AD
dementia cases. The lme4 package in software R 3.6.2
was used to perform the linear mixed models. Associ-
ations were corrected for multiple comparisons using
the false discovery rate method of Benjamini Hochberg
(BH),51 using the stats package in software R 3.6.2.
Further, verification of linearity assumptions for our
linear mixed models was performed using the per-
formance package in software R 3.6.2. Specifically, we
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assessed the linearity assumption using scatter plots of
residuals vs fitted values, tested Residual normality, and
evaluated the Constant variance (homoscedasticity).

Sensitivity analysis
We performed the sensitivity analysis to evaluate
whether the trajectories of lipid species within MCI
converters behaved similarly as those within AD
dementia converters. To do this, linear mixed models
were carried out to examine the associations of the
trajectory of lipid species with the combination of MCI
converters and AD dementia converters relative to non-
converting CN and MCI groups.

Ethics
Ethics approval was obtained from the Alfred Hospital
Ethics Committee for each cohort. For ADNI, all par-
ticipants gave written informed consent, and the
approval number was (#183/19). For ASPREE, all par-
ticipants gave written informed consent and the
approval number was (#523/21).

Role of funders
The funders had no role in the design and conduct of
the study; collection, management, analysis, and inter-
pretation of the data; preparation, review, approval of
the manuscript; or decision to submit the manuscript
for publication.

Results
As outlined in Fig. 1, we conducted a longitudinal
analysis of plasma lipid profiles in the ADNI cohorts to
investigate associations between lipidomic changes and
progression to AD dementia. Based on these findings,
we developed a lipid-based risk model to stratify indi-
viduals with MCI by their risk of conversion to AD
dementia. The model was externally validated in the
ASPREE cohort to assess its ability to predict incident
dementia.

Trajectories of lipid species varied between
converters and non-converting groups over time
We aimed to examine how individual lipid species
longitudinally affect dementia disease progression. To
deal with this, we conducted the longitudinal analysis to
assess the differences in the trajectories of individual
lipid species between AD dementia converters vs non-
converters (non-converting CN and MCI) using linear
mixed-effects model. The covariate set includes age,
sex, BMI, APOE ε4, HDL-C, total cholesterol, trigly-
cerides, fasting status, cohort, omega-3, and statin sta-
tus. The trajectories for 33 lipid species were found to
significantly differ between AD dementia converters vs
non-converters (Fig. 2a, Supplementary Table S9),
based on linear mixed-effects models (FDR-adjusted

p < 0.05). These lipids were primarily from the LPC(O),
LPC(P), and PC(O) classes. To evaluate the impact of
clinical lipids and omega3 on the models, we repeated a
similar analysis, excluding HDL-C, total cholesterol,
triglycerides, and omega-3 from the covariate set. We
observed highly consistent findings, with a correlation
of β coefficients between the two models of approx-
imately 0.96 (Supplementary Figure S4, Supplementary
Table S10). Additionally, we evaluated the key
assumptions of the linear mixed models, including
linearity, normality of residuals, and homoscedasticity
(constant variance of residuals). No major violations of
these assumptions were detected. Since 749 sets of
linear mixed models were performed for each individ-
ual lipid species, reporting all linearity checks is
impractical. Instead, we provide representative checks
for two key lipid species, LPC(O-18:0) and SM(34:3), as
shown in Supplementary Figure S5.

As a sensitivity analysis, we grouped MCI converters
with AD dementia converters and compared the tra-
jectories of lipid species against non-converters
(Supplementary Figure S6; Supplementary Table S9).
Compared to the AD dementia converters only analysis,
we observed similar number of lipid species (n = 34)
showing significantly altered trajectories in the com-
bined AD- and MCI-converter group, based on linear
mixed-effects models (FDR-adjusted p < 0.05).

When comparing stable AD dementia and CN, only
two sphingosine lipid species including Sph (18:1) and
Sph (d18:2) showed significantly different trajectories,
based on linear mixed-effects models (FDR-adjusted
p < 0.05) (Fig. 2b; Supplementary Table S11).

Additionally, we carried out linear mixed model
analysis for each lipid species to examine within-
individual changes over all time points. Of the 749
lipid species analysed, 11 were selected for focused case
study. These included lipids with statistically significant
longitudinal differences between AD converters and
non-converters (FDR-adjusted p < 0.05 from linear
mixed-effects models; e.g., PE (P-16:0/22:6), PC
(O-16:0/16:0)), as well as lipids with known putative
biological relevance to AD pathophysiology, such as
GM3 (d18:1/24:1), deDE (18:2), AC (12:0), Cer (d18:1/
18:0), PI (18:0_22:6), PC (36:4)[+OH], Dimethyl-CE
(18:1), dxCA, and CE (24:1). For these selected lipid
species, Fig. 3 presents predicted values from models
for individuals from AD dementia, CN, and AD con-
verters, demonstrating differential trajectories among
diagonal groups. AD dementia and CN showed tra-
jectories in the same direction for most of lipid species
(except GM3 (d18:1/24:1)), which is consistent with the
results shown in Fig. 2b. Interestingly, the trends of
these lipid species in the converter group transitioned
from CN concentrations at baseline to AD dementia
group concentrations by the end of the study.
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a b

Fig. 2: Trajectory of lipid species between different AD dementia diagnosis groups across all the time points. The linear mixed model
was performed to examine the association of the changes of individual lipid species with AD dementia diagnosis state. a) After excluding
AD dementia cases, we compared the converters (n = 363 with 1353 repeated measurements) vs non-converter groups (the combination
of non-converting CN and two non-converting MCI groups; n = 776 with 2283 repeated measurements). Beta coefficients represent the
interaction between time and conversion status, indicating how lipid trajectories differ between AD converters and non-converters. A
positive value suggests a greater increase (or slower decline) in converters; a negative value indicates a steeper decline (or slower increase)
relative to non-converters. b) After excluding the AD dementia converters, we compared trajectories of lipid species between: AD
dementia (n = 261 with 652 repeated measurements) vs non-converting CN (n = 396 with 1049 repeated measurements). Two-sided p-
values based on linear mixed model were calculated for each lipid species. In both panels, grey circles indicate non-significant results
(p > 0.05), orange circles indicate nominal significance (p < 0.05 before correction), and purple filled circles indicate significance after
Benjamini-Hochberg correction. Each point represents the estimated coefficient with error bars showing the 95% confidence interval.
Sphingosine (Sph), Sphingosine-1-phosphate (S1P), Dihydroceramide (dhCer), Ceramide (Cer(d)), Deoxyceramide (Cer(m)), Mono-
hexosylceramide (HexCer), Dihexosylceramide (Hex2Cer), Trihexosylcermide (Hex3Cer), GM3 ganglioside (GM3), Sulfatide (SHexCer),
Sphingomyelin (SM), Phosphatidic acid (PA), Phosphatidylcholine (PC), Alkylphosphatidylcholine (PC(O)), Alkenylphosphatidylcholine
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Development of a dementia risk model for
identification of dementia-like phenotypes in the
ADNI cohort
Our previous findings27 have identified well-defined
peripheral signatures associated with prevalent AD
dementia, particularly involving lipid pathways such as
ether lipids, sphingolipids (notably GM3 gangliosides),
phosphatidylethanolamines, and triglycerides. Con-
sistent with these findings, we conducted cross-
sectional analyses of lipid species in relation to AD vs
CN individuals, accounting for repeated measurements
across three time points (baseline, 12 months, and 24

months). Overall, we identified 181 significant associa-
tions between lipid species and AD dementia, relative to
CN, based on linear regression models (FDR-adjusted
p < 0.05) (Supplementary Figure S7, Supplementary
Table S12). These results further support the role of
the lipidome as a strong predictor of dementia
risk. Among the most significant associations, two pre-
viously unreported lipid species from the dehy-
drodesmosterol ester (deDE) class—the esterified form
of 7-dehydrodesmosterol, a precursor in cholesterol
synthesis—exhibited the strongest relationships with AD
dementia: deDE (18:2) (beta = 0.77, 95% CI = 0.65–0.88,

(plasmalogen) (PC(P)), Lysophosphatidylcholine (LPC), Lysoalkylphosphatidylcholine (lysoplatelet activating factor) (LPC(O)), Lysoalke-
nylphosphatidylcholine (plasmalogen) (LPC(P)), Phosphatidylethanolamine (PE), Alkylphosphatidylethanolamine (PE(O)), Alkenylphos-
phatidylethanolamine (plasmalogen) (PE(P)), Lysophosphatidylethanolamine (LPE), Lysoalkenylphosphatidylethanolamine (plasmalogen)
(LPE(P)), Phosphatidylinositol (PI), Lysophosphatidylinositol (LPI), Phosphatidylserine (PS), Phosphatidylglycerol (PG), Cholesteryl ester
(CE), Free Cholesterol (COH), Dehydrocholesterol ester (DE), Methyl-cholesteryl ester (methyl-CE), Methyl-dehydrocholesteryl ester
(methyl-DE), Dimethyl-cholesteryl ester (dimethyl-CE), Free fatty acid (FFA), Acylcarnitine (AC), Hydroxylated acylcarnitine (AC-OH), Bile
acid (BA), Diacylglycerol (DG), Triacylglycerol (TG [NL]), Alkyldiacylglycerol (TG(O)]), Ubiquinone.

Fig. 3: The trajectory of selected individual lipid species among different dementia diagnosis groups. The x-axis denotes time points
ranging from baseline (0) to the 10th follow-up visit. The y-axis shows predicted lipid values (in standard deviations of log10-transformed
concentrations), estimated using linear mixed models adjusted for baseline age, sex, BMI, fasting status, HDL-C, total cholesterol, triglycerides,
cohort, APOE ε4, omega-3, and statin use. Predicted trajectories are shown for three groups: stable AD dementia (n = 261; 652 repeated
measurements; red line), converters to AD dementia (n = 363; 1353 repeated measurements; green line), and stable CN individuals (n = 396;
1049 repeated measurements; blue line). The slopes represent the change in lipid levels (standardised log10 concentration) over time within
each group. Shaded regions indicate 95% confidence intervals for each trajectory.
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p = 9.76 × 10−32, linear regression) and deDE (20:4)
(beta = 0.72, 95% CI = 0.59–0.85, p = 4.19 × 10−23, linear
regression). However, as outlined in the Methods sec-
tion, we observed substantial associations between
dehydrodesmosterol esters and anti-cholinesterase
medication use. Due to potential confounding effects,
this lipid class was excluded from subsequent modelling
analyses.

Extensive heterogeneity exists within the MCI
group, and not all individuals would proceed to develop
AD dementia. As we observed substantial lipid associ-
ations with prevalent AD dementia, we propose that the
plasma lipidome can be leveraged to identify individu-
als that exhibit an AD dementia like phenotype and
would subsequently convert to AD dementia. Using 5-
fold cross-validation, we developed a base ridge
regression model including demographic and clinical
covariates. We then constructed a lipidome-based risk
score by adding all lipid species (excluding deDE spe-
cies) to the base model predictors.

The lipidome-based model effectively distinguished
stable AD from cognitively normal (CN) individuals,
achieving an AUC of 0.84 (95% CI: 0.81–0.86; Fig. 4a).
When applied to the MCI subgroup, where conversion
to AD dementia within 10 years was treated as a positive
classification, the base model achieved an AUC of 0.65
(95% CI: 0.62–0.68; Supplementary Figure S8), while

the lipidome-based model improved discrimination
with an AUC of 0.70 (95% CI: 0.66–0.74; Fig. 4b).

To critically evaluate the effectiveness of the
lipidome-based risk score in re-stratifying AD dementia
converters from MCI individuals, we analysed both
categorical and continuous NRI based on the raw
counts of the reclassifications, which have direct clinical
implications. We evaluated the NRI using different
cutoff points ranging from 0.2 to 0.7 (Supplementary
Figure S9) and identified that the dementia risk
model has the best performance at the cutoff point of
0.6. Relative to the base model, the lipidome-based
dementia risk model showed improved reclassification
performance. At a cut-off of 0.6, 39% of all AD
dementia converters who were initially labelled as low-
risk were correctly reclassified to the high-risk group (as
shown in Table 3). In contrast, only 0.3% of converters
originally classified as high-risk were moved to low-risk.
This results in a net reclassification improvement (NRI)
of 38.7% for converters, calculated as the proportion of
converters moving up minus those moving down.
However, for non-converters, the lipidome-based risk
model doesn’t show improvement over base model:
only 1% of all non-converters initially labelled as high-
risk were moved down to low-risk, while up to 15% of
non-converters initially labelled as low-risk were moved
up to high-risk, resulting in a reduced net

a b

Fig. 4: Performance of the dementia risk score on the training (the combination of stable AD dementia and CN) (a) and testing set (the
combination of stable MCI and AD dementia converters) (b). Ridge regression model was developed under a 5-fold cross validation
framework using stable AD dementia and stable CN groups as the training set and prevalent AD dementia as the outcome. Predictors
included the lipidomics measurements, age, sex, BMI, APOE ε4, HDL-C, total cholesterol, triglycerides, fasting status, cohort, omega-3, and
statin status. a) The performance of the model to classify prevalent AD dementia (n = 243) from stable CN (n = 337) in the training set under
five-fold cross validation framework was assessed. b) The performance of the sample model to classifying risk of AD dementia converters
(n = 329) from stable MCI (n = 413) was assessed. The x-axis represents 1–specificity and the y-axis represents sensitivity. Area under the curve
(AUC) values were used to quantify model performance.
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reclassification ability of −14% (the proportions of cases
moving down minus those moving up).

Overall, the lipidome-based dementia risk score
yielded a category NRI of 0.24 (95% CI: 0.18–0.31,
p < 1.0 × 10−05, z-test) which included both reclassifi-
cation of converters and MCI, at the cut-off point of 0.6,
and a continuous NRI of 0.51 (95% CI: 0.37–0.65,
p < 1.0 × 10−05, z-test). Furthermore, there was an
increase in the risk differences between the lipidome-
based dementia risk score and base score with an IDI
of 0.12 (95% CI: 0.09–0.15, p < 1.0 × 10−05, z-test).

We then estimated the likelihood of being a
dementia-like phenotype using the predicted scores
from the lipidome-based risk score in each individual.
Using a cut-off point of 0.37 (Youden index as illus-
trated in Supplementary Figure S10), we classified
stable MCI and converters into a high or low AD
dementia risk category. A greater proportion of partic-
ipants converted to AD dementia in the high AD
dementia risk group relative to the low AD dementia
risk group (59%, Fisher’s exact test, p = 1.37 × 10−15,
Odd Ratio = 3.37, 95% CI = 2.46–4.62; Fig. 5a and b).

Lastly, we investigated classifying the 413 stable
MCI individuals into two phenotypic categories. Using
the same dementia risk classification cut-off point of
0.37, 276 of the stable MCI individuals were classified
into ‘non-dementia-like MCI’ and 137 individuals were
classified into ‘dementia-like MCI’.

Comparing dementia-like and non-dementia-like
MCI groups, more than 121 lipid species from 26
lipid classes showed signficantly different trajectories,
based on linear mixed-effects models (FDR-adjusted
p < 0.05) (Supplementary Figure S11; Supplementary
Table S13). A majority of these were from the SM,
GM3, acylcarnitine (AC), alkylphosphatidylcholine (PC
(O)), alkenylphosphatidylcholine (PC(P)), LPC, LPC(O),
LPC(P), and dehydrocholesterol ester (DE) classes. Of
these lipid species, we observed 13 lipid species from

the lipid classes of GM3, LPC(O), AC, SM, CE and DE
also appeared in the top 50 predictors in the dementia
risk model.

Temporal performance of dementia risk model
validated across time points in the ADNI cohort
We further applied the dementia risk model built on
the baseline AD dementia and CN data to the whole
data set across three major time points. We first eval-
uated the prediction performance of the model to
stratify prevalent dementia from CN on each single
time point. The predictive performance at the three
main time points was AUC: 0.83 (95% CI: 0.80–0.86) at
baseline, AUC: 0.898 at 12 months, and AUC: 0.913 at
24 months (Fig. 6a). We further evaluated the ability of
the models to stratify converters from MCI across three
time points, yielding AUCs of 0.70 (95% CI: 0.66–0.74)
at baseline, 0.71 (95% CI: 0.67–0.75) at 12 months, and
0.73 (95% CI: 0.68–0.77) at 24 months (Fig. 6b).
The model demonstrated consistent and robust pre-
diction performance at each time point. The dis-
tributions of the risk score were described in
Supplementary Figure S12.

Dementia risk model can predict incident dementia
in a sub-cohort of the ASPREE study
The Dementia Risk Score was externally validated in the
ASPREE sub-cohort using a weighted time-to-event Cox
regression model to evaluate its predictive performance.
Specifically, we assessed the discriminatory ability of
the lipidome-based Dementia Risk Score, originally
derived from ADNI, to stratify individuals who devel-
oped dementia from those who remained cognitively
normal in ASPREE. To quantify this, we calculated the
C-index, a measure comparable to the area under the
curve in survival analysis. We evaluated two cox
regression model with different sets of predictors: 1)
the Base model including all the conventional risk
factors (age, sex, BMI, Statins, aspirin treatment, APOE
ε4, education, diabetes status, smoking, alcohol intake,
and depressive symptoms) and APOE genotypes; 2) the
Base model + the lipidome only risk score. The C-index
of the base model is 0.73 (95% CI = 0.71–0.76). The
addition of dementia risk scores to the base model
improved the C-index up to 0.75 (95% CI = 0.73–0.78),
demonstrating a moderate enhancement in predictive
accuracy. Since both cox regression models were built
in ASPREE itself, the calibration plot (Supplementary
Figure S13) shows strong agreement between pre-
dicted and observed dementia risk across all risk score
deciles, confirming the reliability of both base model
and our dementia risk model.

Additionally, the lipidome only risk score showed a
significant association with incident dementia risk with
a HR = 1.21 (95% CI = 1.08–1.36) and p = 9.85 × 10−04

(Cox regression) (Fig. 7). Assessment of the propor-
tional hazard assumptions of the Cox model revealed

Raw counts and NRI stats Events Non-events

n 329 413
Downward reclassification, n 1 3
Unchanged classification, n 200 347
Upward reclassification, n 128 63
Proportion upward 0.39 0.15
Proportion downward 0.003 0.01
NRI (events or non-events) 0.387 −0.14

Total NRI p value

Category NRI 0.24 [0.18–0.31] <1.0 × 10−05

Continuous NRI 0.51 [0.37–0.65] <1.0 × 10−05

IDI 0.12 [0.09–0.15] <1.0 × 10−05

Table 3: The reclassification performances of lipidome-based AD risk
model (relative to base model) to classify incident AD from MCI (NRI
and IDI) using the cutoff point of 0.6 in the ADNI cohort.
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no violations for any of the variables included in the
model (Supplementary Table S14).

We stratified the population into high- and low-risk
groups, with their respective risk score distributions
presented in Supplementary Figure S14a. Further,
Kaplan–Meier survival analysis (Supplementary
Figure S14b) revealed that individuals in the low-risk
group experienced dementia onset approximately 2–3

years later than those in the high-risk group. The sur-
vival rate difference between the groups was statistically
significant (p = 3.7 × 10−03, log-rank test).

Associations of dementia risk scores with AD
related biomarkers in the ADNI cohort
The inclusion of the key AD biomarkers including
amyloid deposition measured from AmyPET, CSF p-

a

b

c

Fig. 5: The converters non-converting MCI are stratified by the dementia risk score. a) Kaplan–Meier curves were plotted to compare the
cumulative incidence of AD dementia conversion over time between individuals in the high-risk (n = 343) and low-risk (n = 399) dementia
score groups. Time (in months) is shown on the x-axis, and the cumulative proportion of individuals who converted to AD dementia is shown
on the y-axis. This analysis illustrates the temporal dynamics of disease progression and the predictive value of the lipid-based dementia risk
score, with divergence between curves indicating stratification performance. b) The exact numbers of converters out of the total number of
individuals at each time point were detailed in brackets. c) Fisher’s exact test was used to assess whether the proportion of AD dementia
converters differed significantly between the high (n = 343) and low (n = 399) risk groups.
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tau, FDG_Temp, and TOTAL13, is essential for
understanding how lipidomic alterations reflect estab-
lished AD pathology or represent independent meta-
bolic risk factors. By integrating these biomarkers, we
aim to determine the pathophysiological relevance of
the lipidome-based Dementia Risk Score.

To explore these relationships, we conducted a lin-
ear mixed-effects model to examine the association
between the Dementia Risk Score and AD-related bio-
markers, incorporating repeated measurements from
baseline, 12 months, and 24 months. The Dementia
Risk Score showed significant associations with all AD-
related biomarkers. Notably, the strongest association
was observed with TOTAL13 cognitive score
(beta = 0.489, 95% CI = 0.361–0.617; p = 8.36 × 10−14,
linear mixed effects) (Fig. 8). Additionally, the score was
negatively associated with FDG_Temp (beta = −0.286,
95% CI = −0.432 to −0.139, p = 1.34 × 10−04, linear
mixed effects) and positive associations with AmyPet
(beta = 0.308, 95% CI = 0.138–0.478, p = 4.03 × 10−04,
linear mixed effects) and p-tau (beta = 0.167, 95%
CI = 0.022–0.311, 2.37 × 10−02, linear mixed effects).

Discussion
We performed comprehensive cross-sectional and lon-
gitudinal analyses of lipidomic data in the ADNI cohort
to delineate the relationships between lipid metabolism
and progression to AD dementia. Cross-sectional
associations are consistent with previous observations,
though we identified two novel strongly associated lipid

species driven by anticholinesterase usage. Trajectory
analysis revealed minor differences between sub-
groups, with reduced ether lipid synthesis being a
defining characteristic of progression to AD. Of note,
there were many MCI in the ADNI study. While some
of these MCI progressed to AD dementia over the
follow-up period, others appeared to be stable but dis-
played heterogeneity in their plasma lipidome, and this
was used to stratify these individuals into dementia-like
and non-dementia-like MCI. This dementia risk score
showed robust performance in predicting risk of AD in
ADNI and in external validation. Together, these find-
ings suggest that lipidomic profiling has potential
clinical utility as a risk assessment tool.

We investigated the longitudinal changes in the
plasma lipidome to gain a deeper understanding of how
lipid metabolism evolves in relation to AD development
and progression. Lipid trajectories (calculated over 10
years) revealed distinct changes in the plasma lipidome
over time. Indeed, multiple lipid species showed dif-
ferent longitudinal trajectories that associated with AD
dementia converters relative to the non-converting CN
and MCI groups. We identified that 33 lipid species
from LPC(O), LPC(P), LPC, and PC(O) classes
decreased in concentration in the converter group.
There was consistent evidence of decreasing ether lip-
ids for participants in the transition to AD dementia,23,27

which may reflect changes in the biosynthetic pathway
i.e. a gradual deterioration in peroxisome function,
leading to decreased ether lipids in circulation.52 Pre-
vious studies have highlighted the role of ether lipids in

a b

Fig. 6: The performance of the dementia risk score in AUC across different time points. ROC AUC curves of the risk score to stratify
groups across baseline (red, n = 1393), 12 months (blue, n = 1188), and 24 months (green, n = 1089). a) Stratifies prevalent AD dementia
from CN. b) Stratifies converters from MCI across three time points.
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biofluids and brain tissues in the pathophysiological
processes of AD dementia and AD progression. Nota-
bly, CSF ether-linked TG (O-52:5) was identified as the
most influential lipids on the rate of progression from
MCI to AD (25). Interestingly, genetic analysis also
identified TG (O-52:2) as a mediator for the effects of
APOEε2 on AD risk.22 In addition to biofluids, ether
lipid alterations in brain tissues have been linked to
dementia progression. A decade ago, researchers iden-
tified reduced plasmalogen content in mid-temporal
cortex,53 frontal cortex54 and white matter55 as contrib-
utors to the AD dementia progressions. In particular, a
severe plasmalogen deficiency was observed in white
matter across cerebral (temporal, frontal, and parietal)
and cerebellar regions at the MCI stage. Consistent
with these findings, Obis et al. (2023)26 reported a
downregulation of ether lipids in both grey and white
matter, with a more pronounced reduction in white
matter as AD progressed.

In our longitudinal analysis, AD dementia con-
verters also showed a downward trajectory in the

concentration of lysophospholipids species (containing
16:0, 18:0, 18:1, 20:0, 22:0, 22:1 and 24:0 fatty acids). In
support of this observation, several cross-sectional
studies have reported that plasma levels of LPC were
decreased in the AD dementia patients compared with
the healthy group56 and the LPC-to-PC ratio was also
inversely associated with AD dementia,57,58 suggesting
decreasing phospholipase activity as the disease pro-
gresses. In humans, LPC(O) and LPC(P) species are
metabolised through two distinct mechanisms: they are
synthesised as ether lipids via a de novo biosynthetic
pathway in peroxisomes, where ether bonds are intro-
duced at the sn-1 position; alternatively, they can arise
from the cleavage of plasmalogens by plasmalogen-
specific phospholipase A2 (PLA2), which removes the
fatty acid from the sn-2 position. Therefore, we
hypothesise that both pathways—peroxisome dysfunc-
tion52 and decreased PLA259,60—result in the scarcity of
ether-lysophospholipids in participants transitioning to
AD dementia. Increased PLA2 activity has been found
in many inflammatory diseases,61 and as

Fig. 7: The Cox regression model treating incident Dementia as the outcome in the ASPREE cohort. This figure presents hazard ratios (HRs)
from a weighted Cox proportional hazards model assessing the association between the standardised lipidome-based dementia risk score (AD risk
score; per 1 SD increase) and incident dementia in the ASPREE cohort (n = 3495). The model was adjusted for age, sex, body mass index (BMI),
statin use, aspirin treatment, living status, education, diabetes, smoking, alcohol intake, and depressive symptoms measured by Center for
Epidemiological Studies-Depression-10 [CES-D] scale (“CesdOverall score”). Hazard ratios are shown with 95% confidence intervals in brackets. p-
Values were derived from Wald tests. Significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001. The number of events
(“#Events:402”) is provided. Weights corrected for case-enrichment: dementia/CAD cases were weighted as 1, while non-cases were scaled to
reflect their frequency in the full cohort. Model performance was assessed using the concordance index (C-index).
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neuroinflammation is a hallmark of AD, excessive
PLA2 activation may accelerate plasmalogen depletion
and impair membrane integrity. Additionally, plasmal-
ogens are particularly susceptible to oxidation which
relates to their proposed role as antioxidants, thus loss
of plasmalogens may be a response to the elevated
oxidative stress in AD.62 Since peroxisomes regulate
lipid metabolism and oxidative balance, their dysfunc-
tion may exacerbate oxidative stress and inflammation,
further accelerating neurodegeneration.63 A better
understanding of the altered activity of PLA2, perox-
isomal dysfunction and ether lipid metabolism could
help to identify novel therapeutic targets in AD
dementia.64

In this study, we developed a dementia risk score
using plasma lipidomic profiles which was built using
ridge regression within a 5-fold cross validation
framework and on the large training dataset (AD
dementia and healthy groups; n = 651). The prediction
accuracy of the lipidomic model was assessed within
the cross-validation framework and gave an AUC of
0.83 for the separation of CN and AD dementia. When
applied to participants with MCI (including AD
dementia converters), it efficiently classified them into
low AD dementia risk and high AD dementia risk, with
the high AD dementia risk group having two times
higher risk of conversion to AD dementia than the low
AD dementia risk group. External validation of the
dementia risk model in the APSREE cohort showed that
the dementia risk score improves the prediction of
incident AD dementia risk. Compared to a traditional
but comprehensive dementia risk prediction model
(combining conventional risk factors and APOE

genotype), the dementia risk score led to a 2%
improvement in the C-index. These results suggest that
the lipidome-based dementia risk model demonstrates
potential for blood-based risk assessment of incident
AD dementia, but further validation is needed to con-
firm its clinical utility, particularly given the moderate
improvement in C-index in ASPREE.

Recent advancements in AD biomarker research
highlight the potential of fluid-based biomarkers8,9

including p-tau and neuroimaging,10 in tracking dis-
ease progression. Several advanced studies have also
developed dementia risk scores using AD related
biomarkers.65–68 Specifically, Palmqvist et al.65 and
Cullen et al.66 carried out logistic regression models
using a combination of plasma p-tau and other acces-
sible biomarkers to predict incident Alzheimer’s dis-
ease dementia in BioFinder (n = 340) and ADNI
(n = 543; validation cohort). For the subgroup of 106
subject cognitive decline (SCD) and 437 MCI (including
102 Converters) of tADNI, Palmqvist et al.65 reported an
AUC of 0.78 using plasma p-tau181 only and an AUC of
0.91 when combining plasma p-tau181 with traditional
risk factors such as APOE, sex, etc. Similarly, Cullen
et al.66 also reported an AUC of around 0.90 to stratify
incident AD from others in ADNI, using plasma bio-
markers of β-amyloid, tau and neurodegeneration.
Another study by Planche et al.67 validated the per-
formance of blood biomarkers to predict incident
dementia risk in the MEMENTO cohort (n = 2323 with
subjective cognitive complaint or MCI, and 257 of these
converted to dementia during follow-up). This study
employed a Cox regression model and identified that
blood p-tau181 alone was the best predictor with c-

Fig. 8: Associations of dementia risk scores with AD dementia related biomarkers. Linear mixed-effects models were used to assess associations
between the standardised lipid-based dementia risk score (per 1 SD increase) and four AD biomarkers: amyloid PET (AmyPET; n = 742), CSF
phosphorylated tau (pTau; n = 1009), temporal lobe FDG uptake (FDG_Temp; n = 1059), and ADAS-Cog13 cognitive score (TOTAL13; n = 1310). The
x-axis shows standardised effect sizes (βeta), indicating change in each biomarker per 1 SD increase in risk score. Models were adjusted for age (at
baseline), sex, BMI, HDL-C, total cholesterol, triglycerides, fasting status, APOE ε4, cohort, time point, omega-3, and statin status. p-Values were
obtained from fixed effects of the linear mixed models. Significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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index = 0.83. The C-index increased to 0.88 when
combined with traditional risk factors. Further, a study
by Mattsson-Carlgren et al.68 implemented linear
regression to predict rates of longitudinal cognitive
change using a range of CSF biomarkers and uptake of
Pittsburgh Compound B Positron Emission Tomog-
raphy, across two cohorts–BioFINDER-1 cohort and
WRAP cohort (n = 564 in total). The study demon-
strated that p-tau217 was the best marker to predict
mPACC slope and MMSE slope. All of these studies
demonstrated high performance of these biomarkers in
predicting dementia risk. However, due to the limited
sample size of the training and validation cohorts, the
performance of Cullen et al.,66 Palmqvist et al.65 and
Mattsson-Carlgren et al.68 is challenged with heavy
overfitting problems. Although Planche et al.67 has a
relatively large sample size, it lacked external validation.
In this study, we used a large clinical cohort with 1393
individuals at baseline, and up to 4730 longitudinal
plasma samples within 10 year time frame. To avoid
overfitting, we carried out five-fold cross validation
when reporting performance. We also externally vali-
dated our model in a separate large cohort, ASPREE,
which included 3495 participants with 402 incident
dementia cases. Additionally, while established bio-
markers of AD pathology (e.g., tau and amyloid mark-
ers) are widely studied, lipidomics presents distinct
advantages, including greater accessibility (non-invasive
blood-based testing), cost-effectiveness (compared to
CSF and PET imaging), and early sensitivity to meta-
bolic changes that may precede amyloid and tau path-
ology. Additionally, lipid alterations may capture
neuroinflammation and membrane integrity loss,
offering complementary insights beyond tau bio-
markers. Although p-tau 217 remains a leading plasma
biomarker, integrating lipidome-based risk scores with
tau and neuroimaging markers could enhance pre-
dictive accuracy and personalised risk stratification.
Future research should explore multi-modal biomarker
approaches to optimise AD risk assessment and early
intervention strategies.

There are several limitations in this study. Although
the study extends up to 10 years, the majority of records
are from baseline to 24 months, limiting the statistical
power of longitudinal analyses within this shorter
follow-up period. Additionally, there is a potential study
bias due to the loss of follow-up for some stable CN
individuals at later time points. Given that their con-
version rate is approximately 9%, it remains uncertain
whether some of these individuals would have even-
tually converted to MCI or AD. To address this limi-
tation, extended follow-up visits are needed for more
comprehensive tracking of disease progression. Fur-
thermore, while the lipidomic risk score showed pre-
dictive value, its added utility beyond the genetic
marker APOE ε4 is modest. Future studies integrating
lipid-based risk scores with established AD biomarkers

may enhance prediction accuracy and enable more
robust risk stratification.

In conclusion, we have performed comprehensive
lipidomic analyses using the longitudinal ADNI -1, −2
and -GO cohorts. We developed a novel dementia risk
classification model to effectively differentiate high- and
low-risk individuals, demonstrating the potential of
lipidomics for early risk stratification. The subsequent
longitudinal analysis highlighted significant changes in
the lipidome over time in individuals who progressed to
AD dementia, particularly in ether-lipid metabolism.
These highlight the potential of lipidomic studies to
improve our understanding of the relationships
between lipid metabolism and progression to AD
dementia. Lipidomic profiling also shows potential to
improve clinical risk assessment and management of
older individuals at risk of AD dementia.
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