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A B S T R A C T

Objectives: Prompt diagnosis of giant cell arteritis (GCA) with ultrasound is crucial for preventing
severe ocular and other complications, yet expertise in ultrasound performance is scarce. The
development of an artificial intelligence (AI)-based assistant that facilitates ultrasound image
classification and helps to diagnose GCA early promises to close the existing gap. In the projec-
tion of the planned AI, this study investigates the minimum image resolution required for human
experts to reliably classify ultrasound images of arteries commonly affected by GCA for the pres-
ence or absence of GCA.
Methods: Thirty-one international experts in GCA ultrasonography participated in a web-based
exercise. They were asked to classify 10 ultrasound images for each of 5 vascular segments as
GCA, normal, or not able to classify. The following segments were assessed: (1) superficial com-
mon temporal artery, (2) its frontal and (3) parietal branches (all in transverse view), (4) axillary
artery in transverse view, and 5) axillary artery in longitudinal view. Identical images were
shown at different resolutions, namely 32 × 32, 64 × 64, 128 × 128, 224 × 224, and 512 × 512
pixels, thereby resulting in a total of 250 images to be classified by every study participant.
Results: Classification performance improved with increasing resolution up to a threshold, pla-
teauing at 224 × 224 pixels. At 224 × 224 pixels, the overall classification sensitivity was 0.767
(95% CI, 0.737-0.796), and specificity was 0.862 (95% CI, 0.831-0.888).
Conclusions: A resolution of 224 × 224 pixels ensures reliable human expert classification and
aligns with the input requirements of many common AI-based architectures. Thus, the results of
this study substantially guide projected AI development.
INTRODUCTION

Giant cell arteritis (GCA) is the most common form of sys-
temic vasculitis in adults and typically affects large and
medium-sized arteries, such as the aorta and temporal and axil-
lary arteries. Signs and symptoms of GCA demand urgent action
to verify or exclude a diagnosis in order to prevent severe com-
plications, such as permanent vision loss, which occurs in an
average of 20% of all cases [1,2], ischaemic stroke [3−5], and
arterial aneurysm and/or dissection [6]. Temporal artery biopsy
(TAB) has historically been the diagnostic gold standard but is
increasingly being replaced by ultrasound of the temporal and
axillary artery as the first-line diagnostic modality in many parts
2

of the world, a practice supported by the latest European Alli-
ance of Associations for Rheumatology (EULAR) recommenda-
tions on imaging for GCA [7]. Ultrasound offers widespread use
and rapid availability, patient-friendliness, and cost-effective-
ness [8], but also excellent image resolution of less than 0.1 mm
for superficial arteries with modern ultrasound transducers and
the ability to evaluate the entire temporal artery and its
branches [9]. This is in contrast to TAB, which may miss GCA
detection due to patchy involvement of the artery by vasculitis.
The arrival of modern handheld ultrasound devices, character-
ised by high affordability (<€3000), could further expand future
access to point-of-care diagnostic imaging, particularly in
resource-limited settings [10]. While their image quality still



WHAT IS ALREADY KNOWN ON THIS TOPIC

� Vascular ultrasound is clinically considered the method of
choice for the rapid detection of giant cell arteritis (GCA); how-
ever, expertise in ultrasound performance is scarce.

� Artificial intelligence (AI) could assist in image classification,
thereby simplifying the examination process.

� However, to develop such an AI, as many AI architectures are
constrained by an upper limit of processable image resolution,
it is necessary to define the minimum resolution of ultrasound
images required to ensure the detection of disease-specific
abnormalities.

WHAT THIS STUDY ADDS

� A total of 7750 classification decisions made by 31 interna-
tional experts were analysed, and 224 × 224 pixels were found
to be the minimum image resolution required for the reliable
classification of vascular ultrasound images by human experts.

� As this result aligns with the identical critical processing limit
for many AI architectures, it allows a wide variety of AI archi-
tecture options to be considered for AI development.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR
POLICY

� The findings of this study lay the essential foundation for devel-
oping an AI system to assist in ultrasound-based detection of
GCA, an approach that holds great potential in allowing rapid
diagnosis before ischaemic complications occur and improving
examination accessibility even in resource-limited regions.
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has some limitations that depend on the specific application,
these constraints are expected to decrease with ongoing techno-
logical advancements. As a result, these advancements also have
the potential to create new educational opportunities for train-
ing both specialists and nonspecialists in scanning and interpret-
ing arterial findings in the context of GCA.

GCA ultrasound has proven its excellent reliability [11−16]
among experts using appropriate ultrasound equipment, defined
as a linear probe ≥7 MHz for axillary artery assessment and a
linear probe ≥18 MHz for cranial artery evaluation [17]. How-
ever, the examination, especially the interpretation of findings,
requires experience and expertise [14,18−20] that are rare to
find and mostly limited to specialised centres. While there are
initiatives to train rheumatologists all around the globe, these
efforts will presumably be insufficient to achieve the desirable
goal of a global network of fast-track clinics with sufficient
expertise in GCA ultrasound. With modern technological advan-
ces, a suggested solution to close this gap is the development of
an artificial intelligence (AI)-based assistant (eg, publicly acces-
sible online) that can help classify submitted ultrasound images
as abnormal or not, thereby assisting physicians globally in the
early detection of GCA.

AI has been proclaimed to lead the fourth industrial revolu-
tion and is seen as having the potential to heavily impact our
present and future [21]. Likewise, the introduction of AI in the
healthcare sector has accelerated quickly over the last few years
[22]. Previous attempts to apply AI in the classification of medi-
cal image data have proven feasible and have shown remarkable
results when trained to label chest radiographs [23], classify
skin cancer [24], or identify breast cancer in mammograms
[25]. Recently, the first applications of AI in the field of imaging
in rheumatology have been made: Andersen et al [26] devel-
oped a neural network for the automatic scoring of arthritis dis-
ease activity on joint ultrasound images, and Bressem et al [27]
trained neural networks for the accurate detection of specific
3

inflammatory joint abnormalities (‘sacroiliitis’) in pelvic x-rays.
However, no attempt has yet been made to utilise AI in GCA for
classifying B-mode ultrasound images−standard 2-dimensional
greyscale ultrasound images without colour Doppler−as normal
or abnormal.

The technological foundation of AI is marked by deep neural
networks [28]. A variety of different deep neural network archi-
tectures exist, each with distinct characteristics, including limi-
tations in image processing size, resolution, result accuracy, and
resource efficiency [28]. In pursuing the outlined development
of an AI-based system (see Supplementary Material), it is crucial
to consider the technological constraints of diverse neural net-
work architectures. Neural network architectures that are not
able to handle images presented in a sufficiently high resolution,
necessary for the adequate evaluation of disease-characteristic
features, should be excluded in advance. In this context, the
image resolution of 224 × 224 pixels represents a critical thresh-
old, as it is the maximum limit for input in many common neural
network architectures [27,29]. On the other hand, neural net-
work architectures allowing for higher resolution image input
are available, but the processing of higher image resolutions
increases the computing power demand. Limitations in the
available computing power require specifications that limit the
maximum image resolution intended for processing. This
ensures the selection of a suitable deep neural network architec-
ture that balances resource efficiency with the ability to handle
task-appropriate image sizes. In order to provide scientific evi-
dence and determine the requirements a neural network must
fulfil, this project aimed to define the minimum resolution
required for human experts to reliably classify ultrasound
images of arteries commonly affected by GCA for the presence
or absence of the disease.

METHODS

Study design

We designed a web-based exercise in which physicians expe-
rienced in GCA ultrasonography were asked to classify 250
ultrasound images for the presence or absence of GCA typical
morphology. Forty-one physicians from 15 countries were
invited by email to participate. To qualify as an expert, all partic-
ipants must be board-certified rheumatologists with extensive
experience in large-vessel vasculitis ultrasonography, defined as
a minimum of 4 years interpreting GCA ultrasound images and
prior assessment of at least 100 patients with suspected GCA
throughout their careers. Additionally, they were members of
the Large Vessel Vasculitis subgroup within the Outcome Meas-
ures in Rheumatology (OMERACT) Ultrasound subgroup. The
study followed the principles of the Declaration of Helsinki and
the Guidelines of Good Clinical Practice and received ethical
approval from the local ethics committee (Institutional Review
Board number #101/22). Patients and the public were not
actively involved in the design and conduct of this study.

Vascular ultrasound image source and selection

CJB selected 50 ultrasound images from an image collection
provided by 5 international experts in GCA ultrasonography
(CM, CP, MM, VSS, and WAS). The selection included 10 images
of each of the following vessels: (1) superficial common tempo-
ral arteries, (2) their frontal branch, (3) their parietal branch
(all in transverse view), (4) axillary arteries in transverse view,
and (5) axillary arteries in longitudinal view. All ultrasound
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images were obtained in B-mode. The sample included 6 images
from patients with acute GCA and 4 images from healthy indi-
viduals for each vessel, except for the axillary artery in longitu-
dinal view, which had 5 images from patients with acute GCA
and 5 images from healthy individuals. The images were
obtained from a total of 50 patients, of which 29 had GCA and
21 had no evidence of GCA.

Each image was derived from an individual patient or a
healthy subject. Images were obtained from different ultrasound
machine brands (Esaote, GE, and Philips) using 3 to 12 (Philips
EPIQ), 4 to 12 (GE LOGIQ e), 6 to 15 (GE LOGIQ S8), 5 to 18
(Philips EPIQ), 6 to 18 (Esaote MyLab 8), 8 to 18 (GE LOGIQ
E9), and 6 to 24 MHz (GE LOGIQ E10) linear transducers for the
investigation of axillary arteries and 5 to 18 (Philips EPIQ), 8 to
18 (GE LOGIQ S8 and GE LOGIQ E9), and 6 to 24 MHz (GE
LOGIQ E10) hockey stick probes for the investigation of cranial
arteries. Image acquisition at each site was performed according
to a previously published scanning protocol [14]. Intima-media
thickness (IMT) measurements were available for all images. All
GCA patients had a diagnosis confirmed by a board-certified
rheumatologist and met either the extension of the 2016 Ameri-
can College of Rheumatology classification criteria for GCA [30]
or the 2022 American College of Rheumatology/EULAR classifi-
cation criteria for GCA [31] (depending on the date of diagno-
sis). Diagnosis was confirmed either by TAB or imaging,
including ultrasound. None of the patients had a change in
Figure 1. Comparison between the original square 512 × 512-pixel cut out fr
ral artery in transversal view and its downsized study-specific resolution varia
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clinical diagnosis from GCA to a non-GCA diagnosis during the
follow-up period.

Vascular ultrasound image processing

All ultrasound images were individually loaded into an image
editing software (GNU Image Manipulation Program version
2.10.8) to apply the necessary image preparation for this study.
IMT measurements were removed if present. From each ultra-
sound image, a square 512 × 512-pixel image section focusing
on the appropriate artery was selected and cut out. This section
was subsequently downsized (without interpolation) to all
study-specific resolution variants, namely 32 × 32, 64 × 64,
128 × 128, and 224 × 224 pixels. Figure 1 reflects the visual per-
ception of all 5 image resolution variants applied in the study.
All 4 downsized variants, in addition to the initial 512 × 512-
pixel variant, resulted in a total of 250 vascular ultrasound
images representing 50 distinct vessel images, each at 5 differ-
ent resolutions.

Conduct of the web-based classification exercise

The web-based image classification exercise was performed
via Research Electronic Data Capture (REDCap, provided by
Vanderbilt University [32]) version 13.2.5. It included all vascu-
lar ultrasound images without any information about the
om a native B-mode ultrasound image of the superficial common tempo-
nts, namely 32 × 32, 64 × 64, 128 × 128, and 224 × 224 pixels.
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corresponding IMT measurements, final ultrasound results, or
clinical patient details. Intentionally, participants of the exercise
were not told that they were evaluating identical images at dif-
ferent resolutions. To prevent image recall, images were dis-
played sequentially by artery and section, starting with the
lowest resolution, with images presented in random order at
each resolution level. During the classification exercise, each
image was shown individually (1 per page), with each vascular
ultrasound image representing a separate patient case (see Sup-
plementary Fig S1). Participants were given 3 response options
to the question, “I classify this ultrasound image as belonging to
a . . .”: (1) “GCA patient,” (2) “Healthy individual,” and (3)
“Meaningful classification is not possible.” Whenever the latter
option was selected, a follow-up dialogue box appeared, prompt-
ing the participant to choose either “GCA patient” or “Healthy
individual” in response to the question, “If only one of the
above-mentioned answers was accepted, I would pick. . .” This
approach to gathering ‘forced classifications’ aimed at a deeper
understanding and recognition of patterns in the participants’
decision-making process. Personal data regarding professional
experience were also collected from all participants.

Statistical analysis

Statistical analyses were conducted using SPSS Statistics (ver-
sion 26.0.0.0; IBM Corporation) and R (version 4.3.0; R Founda-
tion for Statistical Computing) [33]. Descriptive statistics and
exploratory data analysis were used. For metric parameters,
mean, SD, median (in the case of the monthly average image
classification figures, which contained individual outliers), and
ranges were calculated. Categorical data were summarised by
absolute and relative frequencies. Further analysis was per-
formed to determine which change in image resolution is linked
to a significant effect on correct image classification using logis-
tic mixed-effects models. An increased chance of correct classifi-
cation, indicated by an estimated odds ratio (OR) larger than 1,
is interpreted as an improvement in classification performance.
An estimated OR smaller than 1 is interpreted as a deterioration
in image classification performance. To account for repeated
measurements per rater and image, these were included as ran-
dom intercept terms. Further factors impacting the classification
decision, such as image resolution, working experience, and
whether a study participant had provided study images, were
investigated and, therefore, included as fixed effects. The image
resolution and arteries were included as categorical independent
variables. When the analyses were adjusted for the number of
years experts had already been reading GCA ultrasound images
or the number of patients that experts estimated to have seen,
these were included as metric independent variables. Sensitivity
and specificity were calculated on the basis of correct and incor-
rect classification numbers. In addition to that, 95% CIs were
calculated. Due to a technical error in REDCap, detected only
after study completion, participants could bypass the ‘forced
classification’ within the follow-up question after the initial
response had indicated an unclassifiable image. This affected all
participants equally. Missing classifications from this issue were
excluded from the analysis. The threshold for statistical signifi-
cance was set at p= .05.

RESULTS
Study participant characteristics and expertise

Out of 41 international experts in GCA ultrasonography
invited to participate in the web-based exercise, 31 responded,
5

resulting in a response rate of 75.6%. The cohort comprised 5
board-certified rheumatologists from Denmark, 4 from the
United States of America, 4 from Germany, 3 from Italy, 3 from
Austria, 2 from the United Kingdom, 2 from the Netherlands,
and 1 each from Bulgaria, Norway, Poland, Portugal, Slovenia,
Spain, Switzerland, and Turkey. Study participants had an aver-
age of 21.2 years of medical experience, ranging from 9 to
40 years. They had been interpreting GCA ultrasound images for
an average of 10.9 years, with experience ranging from 4 to
30 years. Participants reported evaluating a median of 16.0
(mean, 70.1; range, 2-500) images from GCA patients per
month.

Image classification results

Overall, 7750 classification decisions were obtained (31 par-
ticipants conducting a total of 310 decisions per artery, view
and resolution combined).

Overall, the frequency of participants selecting the response
option ‘meaningful classification is not possible’ decreased with
increasing image resolution (constantly with every sequential
stage of raised image resolution) from 90.5% (at the image reso-
lution stage of 32 × 32 pixels) to 25.9% (at 512 × 512 pixels).
Figure 2 illustrates how frequently the response option was
selected during vascular ultrasound image classification,
depending on the respective artery (and view) and image resolu-
tion. It was selected least frequently for images of the axillary
artery in longitudinal view (19.0%), the axillary artery in trans-
verse view (22.3%), and the temporal artery in transverse view
(26.1%) at the 512 × 512-pixel resolution.

When experts initially selected ‘meaningful classification is
not possible,’ they were subsequently asked to make a forced
decision on whether the ultrasound image belonged to a GCA
patient or a healthy individual (referred to as ‘forced classi-
fication’). Table 1 presents detailed results of ‘confident classi-
fication’ provided in the first instance, as well as the ‘forced
classification’ outcomes for all arteries, views, and image resolu-
tions. Generally, increasing image resolution from 32 × 32 to
224 × 224 pixels led to a higher number and percentage of cor-
rect classifications across all arteries and views. This improve-
ment was consistent whether considering only correct confident
classifications (32 × 32 pixels: 4.8%; 64 × 64 pixels: 13.8%;
128 × 128 pixels: 37.7%; 224 × 224 pixels: 57.6%) or both confi-
dent and forced classifications (32 × 32 pixels: 37.8%; 64 × 64
pixels: 54.8%; 128 × 128 pixels: 68.6%; 224 × 224 pixels:
74.4%). No relevant increment was observed in classification
results once image resolution increased further from 224 × 224
pixels to 512 × 512 pixels (overall correct confident classifica-
tion at 512 × 512 pixels: 61.1%; overall correct confident and
forced classification at 512 × 512 pixels: 75.3%).

A detailed view showed that the highest percentage of cor-
rect classifications was achieved in ultrasound images of the
axillary artery in longitudinal view (total percentage of correct
classifications at an image resolution of 512 × 512 pixels:
83.9%). Images of the axillary artery in transverse view yielded
the lowest percentage of correct classifications at any image res-
olution stage compared with other combinations of arteries and
views.

Further analysis of the complete dataset across all arteries
and views revealed that any increase in image resolution signifi-
cantly improved classification performance compared with the
reference category of 32 × 32-pixel images. Specifically, image
resolutions of 64 × 64 pixels (OR, 2.19; 95% CI, 1.84-2.61; p <
.001), 128 × 128 pixels (OR, 3.49; 95% CI, 2.91-4.19; p < .001),



Figure 2. Frequency of the response option ‘Meaningful classification is not possible’ being selected during vascular ultrasound image classification,
depending on the respective artery (and view) and image resolution. For all arteries, the frequency of this response option being selected decreased
with increasing image resolution (consistent with every sequential stage of increased image resolution).
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224 × 224 pixels (OR, 4.11; 95% CI, 3.42-4.94; p < .001), and
512 × 512 pixels (OR, 3.90; 95% CI, 3.25-4.69; p < .001) were
all associated with significant improvements in image classifica-
tion performance. In comparison with 128 × 128-pixel images
as the reference category, increasing the image resolution fur-
ther improved classification performance numerically, although
the improvement did not reach statistical significance
(224 × 224 pixels: OR, 1.18; 95% CI, 0.97-1.43; p = .094;
512 × 512 pixels: OR, 1.12; 95% CI, 0.93-1.35; p= .248). A sub-
analysis selectively considering images of the axillary artery in
longitudinal view or the temporal artery in transverse view did
not reveal any relevant differences in the overall trend com-
pared with the main analysis.

Heatmap plots illustrating the frequency with which each
individual image included in this web-based exercise was classi-
fied correctly at a certain image resolution level are enclosed in
Supplementary Figure S2.
Sensitivity and specificity

The sensitivity and specificity of classifying vascular ultra-
sound images for the presence or absence of GCA indicative
abnormalities based on single static B-mode images were
assessed for any vessel/view and image resolution. Classification
of 512 × 512-pixel longitudinal view images of the axillary
artery achieved the highest specificity (specificity: 0.948, sensi-
tivity: 0.734), while the lowest specificity was observed in
64 × 64-pixel transverse view images of the axillary artery (spec-
ificity: 0.596). Classification of 512 × 512-pixel transverse view
images of the temporal artery’s frontal branch achieved the
highest sensitivity (sensitivity: 0.851, specificity: 0.793), while
the lowest sensitivity was observed in 32 × 32-pixel transverse
view images of the parietal branch of the temporal artery
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(sensitivity: 0.153). In general, sensitivity and specificity metrics
constantly improved with rising image resolution between
32 × 32 and 128 × 128 pixels. In further increasing the image
resolution beyond 128 × 128 pixels, sensitivity and specificity
metrics continued to rise or remained constant, depending on
the considered artery and view. Detailed data are listed in
Table 2.
Factors impacting the classification decision

A logistic mixed-effects model, which was performed in order
to detect influential factors in classification decision-making and
potential confounders (study participants’ contribution to study
image provision, image resolution, study participants’ level of
experience in GCA image interpretation as quantified by tempo-
ral duration, and quantity of scans interpreted throughout their
career), identified image resolution as the only significant deter-
mining factor. A lower image resolution had a higher chance
that the image was marked as ‘meaningful classification is not
possible.’ Compared with a resolution of 512 × 512 pixels, the
chance of receiving the label ‘Meaningful classification is not
possible’ (1: yes, 0: no) was increased by a factor of 1.43 (p <
.001) for images of size 224 × 224 pixels, a factor of 5.05 (p <
.001) for images of size 128 × 128 pixels, a factor of 40.97 (p <
.001) for images of size 64 × 64 pixels, and a factor of 198.84 (p
< .001) for images of size 32 × 32 pixels. Likewise, compared
with a resolution of 512 × 512 pixels, lower image resolutions
led to significantly lower rates of correct image classification
(eg, for an image size of 32 × 32 pixels: OR, 0.25; p < .001; for
an image size of 64 × 64 pixels: OR, 0.56; p < .001). The number
of years experts had already been reading GCA ultrasound
images had no significant effect on the selection of the response
category ‘Meaningful classification is not possible’ (OR, 1.02;



Table 1
Image classification results across all arteries, views, and image resolutions (in pixels)

During the image classification exercise, experts first chose 1 of 3 options to answer the question, “I classify this ultrasound image as belonging to a . . .”: (1)
“GCA patient,” (2) “Healthy individual,” or (3) “Meaningful classification is not possible.” This initial decision is termed “Confident classification” (results
in the first 3 columns). If option (3) was selected, a follow-up dialogue prompted a forced choice between “GCA patient” and “Healthy individual” (termed
‘Forced classification,’ results in the next 3 columns). Percentage figures can be found in the 4 columns on the right. In total, 310 classifications were submit-
ted for each artery, view, and image resolution (10 images classified by 31 experts).
aPercent total correct: the number of correct confident classifications plus the number of correct forced classifications, divided by the total number of classi-
fications (n = 310).
bPercent total incorrect: the number of incorrect confident classifications plus the number of incorrect forced classifications, divided by the total number of
classifications (n = 310).
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p = .725). Neither did the number of patients that experts esti-
mated to have seen and evaluated for suspected GCA throughout
their career (OR, 1.00; p = .422). The presented statistical data
were derived from a model adjusted for differences across artery
locations and views.

DISCUSSION

In this first and international study exploring the minimum
image resolution mandatory for reliable human expert
7

classification of vascular ultrasound images in GCA and healthy
subjects, we observed ascending classification performance with
increasing image resolution up to an image resolution of
224 × 224 pixels, where decision confidence and image classifi-
cation performance plateaued without further significant gains
despite a continual increase in image resolution.

In fact, an in-depth analysis of the classification exercise per-
formed in this study by human experts revealed that, compared
with images of 128 × 128 pixels set as the reference category,
higher image resolutions still showed further numerical



Table 2
Sensitivity and specificity of vascular ultrasound image classification by human experts at various image resolutions, arteries, and
views

Image resolution (pixels)

Artery Metric 32 × 32 64 × 64 128 × 128 224 × 224 512 × 512

Overall Sensitivity 0.299 0.585 0.755 0.767 0.761
Specificity 0.814 0.832 0.814 0.862 0.856

Axillary artery−longitudinal view Sensitivity 0.328 0.549 0.727 0.733 0.734
Specificity 0.719 0.929 0.943 0.915 0.948

Axillary artery−transverse view Sensitivity 0.350 0.584 0.707 0.702 0.678
Specificity 0.663 0.596 0.65 0.784 0.757

Superficial common temporal artery−transverse view Sensitivity 0.346 0.549 0.759 0.734 0.709
Specificity 0.846 0.773 0.724 0.855 0.871

Frontal brancha−transverse view Sensitivity 0.329 0.690 0.837 0.834 0.851
Specificity 0.860 0.872 0.807 0.793 0.793

Parietal brancha−transverse view Sensitivity 0.153 0.555 0.738 0.829 0.830
Specificity 0.979 0.950 0.898 0.939 0.878

a Branch of the temporal artery.
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improvement in classification performance. However, classifica-
tion performance improvement with increasing image resolu-
tion largely plateaued at 224 × 224 pixels, in line with
sensitivity and specificity metrics, which also accentuated a
‘sweet spot’ at 224 × 224 pixels. In a combined conservative
consideration of these results, an image resolution of 224 × 224
pixels crystallised as the optimum between preserved informa-
tion content and data size efficiency, thereby defining the mini-
mum requirement for image resolution a neural network
architecture in this scenario of application will be supposed to
handle. These findings resonate with the applied image resolu-
tion in other application scenarios of AI-driven medical imaging
classifications [34,35] in general, but more specifically, vessel
ultrasound image classification within the scope of disorders
other than GCA [36,37]. Particularly noteworthy is a study con-
ducted by Li et al [37], which similarly focused on the detection
of disease-specific vascular wall changes−in this case, the auto-
matic detection of atherosclerotic plaques and calcification from
intravascular ultrasound images. Despite contextual differences,
parallels to our study’s conclusions can be drawn from the fact
that Li et al [37] also successfully trained their neural network
with images at a resolution of 224 × 224 pixels. Our study pro-
vides evidence that adequate GCA ultrasound image classifica-
tion by human experts does not necessarily require the highest
resolution level of 512 × 512 pixels, but can be appropriately
achieved at a resolution level of 224 × 224 pixels. This finding
broadens the range of neural network architectures suitable for
AI development, including the widely chosen and resource-effi-
cient network architectures such as ResNet [27] or DenseNet
[29], which are limited to a maximum default image input size
of 224 × 224 pixels.

Moreover, the reported results on human expert image clas-
sification performance serve as an essential benchmark for the
classification performance of the projected neural network,
which aims to match or exceed human expert classification
performance, as achieved in other medical fields before [35].
The data presented in this study are representative, particu-
larly considering that experts were only provided with 1 single
static B-mode image per patient without any additional IMT
measurement, halo, compression sign, insight into other ana-
tomical segments, or clinical information. While participants
in this study classified each image individually, it is important
to note that there are typically 8 or more images available per
patient, which may lead to higher sensitivity and lower speci-
ficity on a patient level when combined in clinical practice.
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Also, sensitivity and specificity results, combined with heat-
map visualisation (Supplementary Fig S2) and data from both
confident and forced classifications, indicate that participants
tended to classify an image as belonging to a GCA patient only
when they were relatively confident. Among all cases in which
the initial response option had been ‘meaningful classification
is not possible,’ subsequent forced classifications found more
than twice as many of these images to be attributed to GCA
patients vs healthy individuals. Thus, images ultimately classi-
fied as belonging to GCA patients were clearly overrepresented
within the category of ‘meaningful classification is not possi-
ble’ initial responses. This superordinate dynamic likely con-
tributed to missed GCA classifications, explaining the
persistent rate of misclassifications even at higher image reso-
lutions. At the same time, this caused assessment specificity to
remain consistently high across all resolution stages. Despite
all these factors, the image classification performance yielded
remarkable sensitivity and specificity results. Our reported
sensitivity of 0.833 and specificity of 0.915 for 224 × 224-
pixel longitudinal view images of the axillary artery, as well as
0.734 and 0.855, respectively, for 224 × 224-pixel transverse
view images of the superficial common temporal artery, align
with data from a systematic review and meta-analysis investi-
gating the diagnostic performance of temporal artery ultra-
sound (considering full resolution images) for the diagnosis of
GCA [38]. This meta-analysis, based on 11 studies with avail-
able data, reported a sensitivity of 0.78 and a specificity of
0.79 for detecting any sono-morphologic abnormalities (hypo-
echoic halo, stenosis, and/or occlusion) in GCA ultrasound.
Likewise, this study’s results are in line with the results of the
OMERACT Patient-based Reliability Exercise [14] that yielded
an interreader reliability of around 0.8 (light κ, 0.76-0.86) for
the overall diagnosis of GCA.

Limitations included the natural restrictions in expert
availability to participate in this exercise. Indeed, 5 experts
participated in this study who had previously granted access
to their image libraries, out of which a fraction of images
was randomly selected by an independent individual (CJB)
not involved as a study participant. In weighing whether
these study participants may have contributed to a bias in
the results, we performed sensitivity analyses for all reported
metrics, which did not lead to a significant change in results
after the exclusion of these participants. Image selection may
have been subject to selection bias and holds the potential to
have impaired representativeness. Furthermore, we decided
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not to actively include or exclude ultrasound images contain-
ing aspects of atherosclerosis, where an OMERACT ultra-
sound definition is available and validated [15]. Instead, our
dataset represents a random sampling from real-world clini-
cal cases, not stratified based on comorbidities. While in
fact, fibromuscular dysplasia or many other vasculopathies
are rarely encountered in temporal and axillary arteries, and
atherosclerosis is also uncommon in temporal arteries, ath-
erosclerotic changes can occur in the axillary arteries, though
they are typically distinguishable by ultrasound based on
their characteristic morphology [15]. Nonetheless, future
research should explore whether higher image resolution is
needed to differentiate GCA from these specific mimics, par-
ticularly in borderline cases where classification might be
more challenging. Intentionally and with the operating prin-
ciple of the projected AI-based GCA ultrasound image classi-
fication assistant in mind (see Supplementary Material), this
study made use of a single static B-mode image per patient
case without any additional IMT measurement, halo, com-
pression sign, or clinical information. This represents a strik-
ing difference in the way human experts are used to
approach a classification decision in clinical practice when
performing GCA ultrasound in a dynamic manner, with
appraisal of multiple anatomical segments. We regard this as
the primary reason for the overall high rate of initially ‘non-
classifiable’ images. An intrarater exercise could also have
been conducted, but it was felt to be beyond the scope of
this project. A technical error in REDCap allowed the omis-
sion of forced classifications, resulting in missing values
within the dataset. While potential bias cannot be entirely
excluded, removing these missing classifications was deemed
the most appropriate strategy to minimise bias. For transpar-
ency, Table 1 presents a detailed breakdown of classification
results across all arteries, views, and image resolutions for
both confident and forced classifications.

In conclusion, this international online study evaluated the
minimum image resolution mandatory for reliable human expert
classification of vascular ultrasound images in GCA and healthy
subjects and found that 224 × 224-pixel images provide the opti-
mum between preserved information content and data size effi-
ciency. This opens up a broad variety of applicable deep neural
network architectures for the development of an AI-based assis-
tant.

Future directions

Building on the results of the present study as the technical
foundation, the realisation of an AI-based GCA ultrasound image
classification assistant, as ultimately envisioned, follows a
modularly structured project roadmap, specific intermediate
milestones, and developmental steps that can be briefly outlined
as follows:

1. Training and validating a neural network model utilising a
task-appropriate dataset.

2. Expert-led clinical validation to prove reliability.
3. Staged rollout into clinical routine care.

While the primary developed neural network focuses on ves-
sel morphology and pathological IMT in B-mode ultrasound
images, it will subsequently be accompanied by 2 additional
complementary neural networks that are to be developed for the
evaluation of halo and compression signs. Each of these models
will independently undergo the same steps of (1) dataset
9

development, training, and validation, as well as (2) expert-led
clinical evaluation before undergoing (3) a staged rollout into
routine care. To date, a 3800-ultrasound image library has
already been provided for deep neural network training. Once
development and clinical validation of the AI model have been
completed, a publicly accessible website hosting the AI-based
assistant that facilitates the classification of uploaded ultrasound
images and helps to diagnose GCA early is envisioned. This
approach holds great potential for the rapid and accurate diag-
nosis of GCA, including in resource-disadvantaged regions, a fac-
tor that could critically impact individuals by allowing diagnosis
before ischaemic complications occur.
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