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Abstract

Background: Chronic non-communicable diseases (NCDs) are a major global health chal-
lenge, with unhealthy diets contributing significantly to their burden. Metabolomics
data offer new possibilities for identifying nutritional biomarkers, as demonstrated in
short-term intervention studies. This study investigated associations between habit-
ual dietary intake and urinary metabolites, a not well-studied area. Methods: Data
were available from 496 participants of the population-based MEIA study. Linear and
median regression models examined associations between habitual dietary intake and
metabolites, adjusted for possible confounders. K-means clustering identified urinary
metabolite clusters, and multinomial regression models were applied to analyze asso-
ciations between food intake and metabolite clusters. Results: Using linear regression
models, previously reported associations could be replicated, including citrus intake
with proline betaine, protein intake with urea, and fiber intake with hippurate. Novel
findings include positive associations of poultry intake with taurine, indoxyl sulfate,
1-methylnicotinamide, and trimethylamine-N-oxide. Milk substitutes were positively asso-
ciated with urinary uracil, pseudouridine, 4-hydroxyhippurate, and 3-hydroxyhippurate,
and inversely associated with quinic acid. Dietary fiber intake showed a positive as-
sociation with 3-(3-hydroxyphenyl)-3-hydroxypropionic acid and a negative association
with indoxyl sulfate. We identified sucrose and taurine as key metabolites differentiat-
ing metabolite clusters. Multinomial regression analysis confirmed significantly different
dietary associations across clusters, particularly for fruits, processed meat, poultry, and alco-
holic beverages. Conclusions: This study highlights established and novel food–metabolite
associations, demonstrating the potential of urinary metabolomics for use as nutritional
biomarkers in individuals from the general population.

Keywords: urinary metabolites; habitual dietary intake; metabolomics; dietary biomarkers

1. Introduction
Chronic non-communicable diseases (NCDs) are the leading global causes of morbidity,

disability, and healthcare expenditures, accounting for nearly two-thirds of all deaths
annually [1–3]. Each year, NCDs cause 41 million deaths, primarily due to cardiovascular
diseases, cancers, chronic respiratory diseases, and diabetes [4]. Between 2000 and 2019,
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global NCD-related deaths rose from 59.5% to 73.9%, underscoring their growing impact [5].
Unhealthy diets, alongside physical inactivity, smoking, and alcohol consumption pattern,
are key drivers of NCDs, influencing metabolic pathways like inflammation, oxidative
stress, and derangement in lipid metabolism [6]. Understanding the impact of dietary
factors on health is therefore essential to improve dietary practices and reduce the global
burden of NCDs.

As dietary assessment is time-consuming and prone to bias, biomarkers have emerged
as an essential tool for supplementing or even replacing dietary assessment; if successfully
established, they provide objective and reliable measures of intake and nutrient status
and are not suffering from biases of self-reported data, such as recall errors and social
desirability [7–9]. Building on this, metabolomics captures a wide range of metabolites
influenced by genetic, environmental, and dietary factors, providing deeper insights into
the complex interplay between diet and metabolic health [10,11].

Despite advancements in nutritional research, most metabolomics studies focused on
controlled (short-term) dietary interventions, limiting their relevance for real-world dietary
data. Habitual intake, i.e., long-term dietary intake, remains underexplored due to chal-
lenges in capturing data under real-world conditions [12,13]. Urine-based metabolomics
addresses this gap by offering a comprehensive metabolic overview, encompassing metabo-
lites from food, the microbiome, and endogenous processes. Its ability to detect food-
derived metabolites, often less abundant in plasma, makes it particularly effective for
studying habitual dietary intake [12]. However, validating urinary biomarkers for specific
foods and dietary components remains challenging, as most have been identified under
controlled conditions with limited relevance to diverse, free-living populations [14]. Our
study aimed to overcome these limitations by analyzing habitual dietary intake and uri-
nary metabolites in the population-based “Metabolism, Nutrition and Immune System in
Augsburg” (MEIA) study.

2. Materials and Methods
2.1. Study Design and Population

The present study used data from the MEIA study, a population-based study con-
ducted in the Augsburg region to explore associations between nutrition, metabolism,
and immune function. A random sample from civil registries stratified by age and sex
was selected and invited to participate. Potential participants were contacted via postal
invitations and followed up with telephone reminders. Eligible participants were adults
aged 19–75 years, residing in the Augsburg region, i.e., in the city of Augsburg and the
surrounding counties of Augsburg and Aichach-Friedberg. Exclusion criteria included
serious health conditions or inability to provide informed consent. Recruitment and data
collection occurred between April 2021 and July 2023. Among the 594 participants enrolled
in the MEIA study, 496 had complete data on dietary intake—defined as having responded
to all dietary intake questions without any missing values—and were included in the
present analysis. The MEIA study was performed in accordance with the Declaration
of Helsinki. Ethical approval was obtained from the Ethics Committee of the Ludwig-
Maximilians-Universität München. All participants provided informed written consent
before participation.

2.2. Data Collection

Participants from the MEIA study were examined at the study center of the Chair of
Epidemiology at the University Hospital Augsburg. During their visit, participants com-
pleted a computer-assisted personal interview. The interview collected detailed information
on medication use, health status, and lifestyle factors. Additionally, participants completed
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a computer-assisted questionnaire on a tablet, which covered dietary supplement use,
eating behavior, smoking habits, healthcare utilization, and preventive health measures.
Dietary intake was assessed using the myfood24 online platform as described in detail
below [15]. In addition to dietary assessments, participants underwent physical, cognitive,
and anthropometric measurements during their study visits. Biological samples, including
fasting venous blood, spot urine, and fecal samples, were collected. Blood samples were
analyzed for routine laboratory parameters such as blood lipids and liver enzymes. All
samples were processed and stored at −80 ◦C in the biorepository of the Chair of Epidemi-
ology for future analyses. In the present analysis, we focused on spot urine samples for
metabolomics analysis.

2.3. Dietary Assessment

To evaluate dietary intake, the myfood24 online tool (Dietary Assessment Ltd., Leeds,
UK) was utilized, specifically designed for large-scale epidemiological studies. Myfood24
was chosen for its ability to efficiently capture detailed dietary data, offering a time-
saving and less administratively demanding alternative to traditional methods. At the
study center, participants were introduced to myfood24 through a brief video tutorial
before recording their dietary intake from the previous day. Following the initial dietary
assessment, participants were asked to complete three additional 24-h dietary recalls over
the next six weeks. These recalls were scheduled on randomly selected weekdays and
weekends to capture variations in daily intake patterns. Participants received e-mail
invitations with links to myfood24 on the specified days. As an alternative to self-reported
online diet assessment, 11.6% of participants preferred to complete 24-h diet recalls by
phone (assisted by a trained interviewer). A portion size guide, containing all available
options in myfood24, was provided to aid in accurate reporting during telephone interviews.
To capture additional information about eating contexts, participants were asked questions
on the location and social context of each meal. The usual dietary intake was derived as a
weighted mean over the observed 24-h recalls available for the participant. The initial recall
conducted at the study center was excluded due to the 12-h fasting requirement. Only
participants with at least two additional recalls (i.e., a total of three or four) were included.
Ideally, information from two weekdays and one weekend day (i.e., from Saturday or
Sunday) should be collected. To account for potential differences in eating behavior between
weekdays and weekends, we applied a weighted means approach, assigning a weight
of 5/7 to weekdays and 2/7 to the weekend day. This approach was based on previous
literature indicating systematic differences in dietary intake across the week [16]. While the
use of multiple 24-h recalls per individual is a common approach to characterize habitual
intake, with-in person variability often leads to distorted intake distributions. To address
this challenge, several statistical methods have been developed to better describe usual
intake distributions [17,18]. Since our focus was on analyzing individual-level associations
rather than estimating population-wide intake distributions, the weighted means approach
was chosen as an appropriate and pragmatic method for approximating individual habitual
intake [16,19,20]. Participants with an energy intake–to–basal metabolic rate ratio below
0.6 were excluded as extreme underreporters. Basal metabolic rate was estimated using the
Schofield equation based on sex, age, and body weight [21]. The food items were grouped
into meaningful food groups and subgroups.

2.4. Assessment of Urinary Metabolites

Spot urine samples (20 mL) were collected from participants during their visit to
the study center after an overnight fast of at least 12 h and used for metabolomics anal-
ysis. The urine samples were processed at the laboratory of the Chair of Epidemiology
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at the University Hospital Augsburg. After centrifugation and aliquoting, the samples
were stored at −80 ◦C until analysis. Laboratory analysis was performed at Nightingale
Health, Helsinki, Finland, using a high-throughput nuclear magnetic resonance (NMR)
spectroscopy platform optimized for quantifying abundant urinary metabolites with min-
imal signal overlap [22]. Urinary metabolite concentrations were expressed relative to
creatinine, reported in mmol/L, and scaled by a factor of 100 to enhance interpretability.
Missing values were imputed using half the lowest detected metabolite concentration,
representing the detection limit.

2.5. Covariables

Covariables were selected based on the established literature [12,23] and included:
age (in years), sex, body mass index (BMI) (in kg/m2), physical activity level (PAL),
smoking status, and alcohol consumption pattern. Body weight and height were measured
in light clothing and used to calculate the BMI. PAL was assessed using the European
Health Interview Survey-Physical Activity Questionnaire (EHIS-PAQ), classifying activity
according to participant-reported frequency, duration, and intensity [24]. These responses
were then used to categorize PAL (sedentary, low active, active, very active) [25]. Smoking
status was classified from questionnaire responses as current smoker, former smoker, or
never smoker, based on self-reported smoking history. Alcohol consumption pattern was
assessed using the AUDIT-C score, a validated screening tool that evaluates patterns of
alcohol use on a scale from 0 to 12. Higher scores reflect a more frequent or risk-associated
alcohol consumption pattern, but not necessarily a higher absolute intake. Risk levels were
categorized as low for scores between 0 and 2 in women and 0 and 3 in men, moderate
for scores of 3 to 5 in women and 4 to 5 in men, high for scores of 6 to 7 in both sexes, and
severe for scores ranging from 8 to 12 in both sexes [26].

2.6. Statistical Analysis

The analysis focused on 49 out of 51 urinary metabolites; urea was excluded from clus-
ter analyses due to its broad range and disproportionately high values, which could distort
clustering results, and creatinine was excluded because all metabolites were already normal-
ized to urinary creatinine. Both metabolites, however, were retained for selected individual
analyses. Patient characteristics, food intake, and urinary metabolite data were summa-
rized using both means and standard deviations (SDs) as well as medians and interquartile
ranges (IQRs) for continuous variables. Categorical variables were described using absolute
and relative frequencies. We applied Student’s t-tests for normally distributed continuous
variables, Mann–Whitney U-tests for non-normally distributed continuous variables, and
Chi-square tests for categorical variables. Corresponding p-values were used to evaluate
statistical significance. Most metabolite concentrations were log2-transformed to address
skewness and outliers. Exceptions were made for 2-hydroxyisobutyrate, ethanolamine,
pseudouridine, and urea, which followed approximately normal distributions and were
not log-transformed. Normality assumptions were evaluated visually using Q-Q plots and
statistically assessed with the Kolmogorov–Smirnov test. To test the linearity assumption,
restricted cubic splines for continuous predictors were applied, with the optimal number
of knots (3–5) determined using the Akaike Information Criterion (AIC). Homoscedasticity
and the normal distribution of residuals in parametric models were visually assessed using
residual scatter plots and Q-Q plots, respectively.

Linear regression models were applied to explore associations between individual
food groups, subgroups, or selected nutrients (exposure) and specific urinary metabolites
(outcome). Median regression was performed as an alternative statistical method to provide
more robust estimates when the assumptions for linear regression could not be met. For
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these models, standard errors were estimated using bootstrap. In contrast, standard errors
in linear regression models were derived using conventional model-based estimation. Both
linear and median regression models were adjusted for potential confounders, including
age, sex, BMI, PAL, smoking status, and alcohol consumption pattern. Interaction terms
were tested to evaluate effect modification by sex and age on the relationship between
predictors and metabolite outcomes.

Clustering analysis was performed to identify patterns of urinary metabolites. A
series of cluster analyses were performed using different cluster sizes (K = 2–8). 30 cluster
validity criteria from the R package “NbClust” (version 3.0.1) were applied to determine
the most appropriate number of clusters. The optimal solution was determined to be
four clusters. K-means clustering was applied to group data into clusters, iteratively
updating centroids to minimize within-cluster variance. This process continued until the
clusters were stable. Cluster 1 (n = 10) was excluded from further analysis due to its small
sample size and low metabolite concentrations. This pattern is likely attributable to a high
proportion of imputed values, as missing metabolite concentrations were replaced using
the respective detection limits. These preprocessing-related effects may have artificially
driven the formation of this separate cluster. The analysis continued with three clusters,
where Cluster 2 included 84 participants, Cluster 3 included 56 participants, and Cluster 4
included 346 participants. This resulted in a total sample size of 486 participants, which
was consistently used in all subsequent analyses, including linear and median regression
models. The identified clusters served as the basis for subsequent analyses exploring their
association with dietary intake.

Further, multinomial regression models were employed to assess associations between
intakes of individual food groups (exposures) and clusters of metabolites (outcomes). Vari-
able Importance in Projection (VIP) values were calculated to assess the contribution of
each food group, with values above 1 considered significant. The VIP threshold was set
at 1, rather than the standard 1.5, to include a broader range of food groups in the analysis.
A higher threshold would have excluded several relevant groups, limiting the comparative
analysis. Subcategories of food groups that were identified as significant through multi-
nomial regression were also incorporated into the analysis. In total, 16 food groups and
subgroups were considered in the analysis, including meat, vegetables, milk and dairy
products, fish and seafood, plant-based substitutes, and alcoholic beverages (including
beer, wine/sparkling wine, spirits, and liqueurs/cocktails). Additional categories included
milk, fermented dairy products, cheeses other than fresh cheese, milk substitutes, as well
as dietary fiber and whole grain products. Multicollinearity among the selected predictors
(food groups) was evaluated using the Variance Inflation Factor (VIF), and all values re-
mained below 5.0, indicating no notable multicollinearity issues. Statistical significance
was defined as p-values < 0.05. All statistical analyses were performed using R software
(version 4.4.1).

3. Results
3.1. Study Population

Participant characteristics for the total sample and stratified by sex are presented in
Table 1. Of the 496 participants included in the urinary metabolomics analysis, 211 (42.54%)
were male and 285 (57.46%) were female. The median age of the total sample was
49.00 ± 14.64 years, with no significant difference in age distribution between males and
females (p = 0.430). However, significant differences were identified in several metabolic
and dietary variables between the sexes. Men had significantly higher BMI and waist
circumference compared to women. HDL cholesterol levels were significantly higher in
women compared to men. Behavioral factors, such as smoking habits and PAL were
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similar between men and women. Men were more likely to be classified as high- or
severe-risk alcohol misusers compared to women (p < 0.001). Habitual dietary intake data
based on repeated 24-h dietary recalls is presented in Table 2. Men reported significantly
higher consumption of processed meat, edible fats/oils other than butter, bread and bak-
ery products, alcoholic beverages, and meat and milk alternatives. Women consumed
significantly more vegetables, non-alcoholic beverages, and fruits. Table 3 shows urinary
metabolite concentrations stratified by sex. Significant differences were observed for several
metabolites. For example, men exhibited higher concentrations of allantoin, creatinine,
4-deoxythreonate, taurine, and tyrosine, while women showed higher levels of acetate,
arabinose, dimethylamine, ethanolamine, ethanol, formate, glucose, glycine, hippurate,
and 3-(3-hydroxyphenyl)-3-hydroxypropionic acid.

Table 1. Characteristics of the total study population and stratified by sex.

Characteristics Total (n = 496) Male (n = 211) Female (n = 285) p-Value

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Age (y) 47.33
(14.64)

49.00
(26.00)

47.81
(15.10)

50.00
(27.00)

46.98
(14.31)

49.00
(23.00) 0.430 b

BMI (kg/m2) 26.27 (5.13) 25.56 (6.26) 27.38 (4.43) 26.93 (5.13) 25.45 (5.46) 24.10 (6.78) <0.001 b

Waist circumference
(cm) 87.84 (15.16) 87.00 (24.00) 96.00 (13.56) 96.00 (18.00) 81.81 (13.38) 79.00 (19.00) <0.001 b

Cholesterol (mg/dL) 194.94 (38.67) 194.00 (54.00) 190.13 (38.98) 189.00 (54.50) 198.54 (38.10) 196.00 (56.00) 0.017 a

LDL-C (mg/dL) 118.81 (33.70) 117.00 (47.00) 120.00 (34.04) 120.00 (44.50) 117.91 (33.47) 116.00 (50.00) 0.497 a

HDL-C (mg/dL) 62.96 (16.81) 61.00 (22.00) 54.68 (13.54) 52.00 (19.00) 69.16 (16.35) 67.50 (21.00) <0.001 b

Dietary Protein (g) 69.35 (26.91) 65.55 (32.69) 81.48 (29.59) 78.06 (33.53) 60.37 (20.61) 57.53 (25.80) <0.001 b

Dietary Fat (g) 74.40 (30.84) 69.81 (40.45) 84.31 (33.35) 83.41 (41.02) 65.33 (26.11) 63.22 (34.78) <0.001 b

Dietary
Carbohydrates (g) 188.41 (66.90) 179.67 (79.32) 215.40 (70.28) 207.59 (78.64) 168.43 (56.64) 164.47 (68.83) <0.001 b

Dietary Fiber (g) 18.77 (8.64) 17.00 (10.26) 19.54 (9.51) 16.95 (11.49) 18.20 (7.90) 17.08 (10.20) <0.001 b

Dietary Energy (kcal) 1775.66
(593.57)

1728.26
(700.45)

2072.31
(618.20)

1985.50
(781.20)

1556.05
(466.61)

1532.23
(594.69) <0.001 b

Dietary Energy (kJ) 7435.34
(2485.69)

7239.34
(2969.87)

8678.10
(2588.25)

8313.46
(3266.01)

6515.26
(1954.13)

6413.02
(2490.85) <0.001 b

n (%) n (%) n (%) p-Value

Smoker:

0.160
Current 76 (15.32%) 35 (16.59%) 41 (14.39%)
Never 248 (50.00%) 95 (45.02%) 153 (53.68%)

Previous 172 (34.68% 81 (38.39%) 91 (31.93%)
PAL:

0.301
Sedentary 139 (28.66%) 31 (15.12%) 56 (20.00%)

Low Active 154 (31.75%) 61 (29.76%) 93 (33.21%)
Active 87 (17.94%) 64 (31.22%) 75 (26.79%)

Very Active 105 (21.65%) 49 (23.90%) 56 (20.00%)
Risky Alcohol
Consumption

Pattern: <0.001
Low 239 (49.08%) 91 (43.96%) 148 (52.86%)

Moderate 183 (37.58%) 67 (32.37%) 116 (41.43%)
High 46 (9.45%) 35 (16.91%) 11 (3.93%)

Severe 19 (3.90%) 14 (6.76%) 5 (1.79%)

Mean (SD) and Median (IQR) were reported for continuous variables and n (column %), while n (column %) was
used for categorical variables. We applied Student’s t-tests a for normally distributed continuous variables and
Mann–Whitney U-tests b for non-normally distributed continuous variables, and Chi-square tests for categorical
variables. Corresponding p-values were used to evaluate statistical significance.
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Table 2. Habitual food consumption in the study population and stratified by sex.

Food Groups Total (n = 496) Male (n = 211) Female (n = 285) p-Value

(g/Day) Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Fresh Meat 31.60 (51.45) 0.00 (46.82) 39.53 (60.77) 0.00 (63.48) 25.73 (42.46) 0.00 (35.71) 0.084
Processed Meat 32.18 (48.20) 14.29 (46.43) 45.87 (57.21) 28.57 (71.08) 22.05 (37.23) 8.57 (30.00) <0.001
Fish and Fish

Products 11.12 (28.43) 0.00 (4.71) 14.22 (36.29) 0.00 (7.14) 8.83 (20.57) 0.00 (4.29) 0.819

Eggs 8.77 (17.50) 0.00 (10.11) 9.14 (18.25) 0.00 (9.99) 8.49 (16.95) 0.00 (10.00) 0.882
Milk and Dairy

Products 106.57 (115.16) 71.43 (126.99) 114.57 (135.57) 69.29 (146.42) 100.64 (97.16) 76.68 (120.73) 0.881

Butter 6.55 (8.07) 4.29 (8.72) 7.83 (9.38) 5.14 (11.61) 5.60 (6.81) 4.00 (7.15) 0.057
Other Edible

Fats/Oils 5.26 (9.06) 1.82 (6.36) 5.27 (10.41) 1.14 (4.62) 5.25 (7.93) 2.11 (7.41) 0.008

Bread and Bakery
Products 107.98 (77.21) 95.00 (100.97) 126.72 (87.42) 115.00 (106.84) 94.10 (65.46) 86.63 (88.81) <0.001

Staple Food 61.54 (76.81) 34.23 (90.01) 63.62 (82.22) 35.71 (93.91) 60.00 (72.66) 33.67 (88.85) 0.735

Whole Grain
Products 35.94 (50.36) 14.29 (53.93) 41.23 (60.65) 11.43 (66.67) 32.02 (40.80) 16.67 (46.43) 0.842

Potatoes 22.47 (46.41) 0.00 (24.40) 23.32 (50.36) 0.00 (20.36) 21.84 (43.33) 0.00 (26.57) 0.535
Vegetables 88.25 (97.34) 58.57 (112.75) 76.27 (104.77) 44.36 (100.78) 97.12 (90.62) 72.75 (110.87) <0.001
Legumes 6.90 (27.09) 0.00 (0.00) 6.78 (27.57) 0.00 (0.00) 6.99 (26.78) 0.00 (0.00) 0.768

Fruits 100.72 (108.23) 70.72 (139.38) 82.58 (108.95) 43.43 (125.95) 114.15 (105.90) 90.00 (131.14) <0.001
Nuts 10.11 (18.33) 0.00 (13.72) 9.80 (19.30) 0.00 (12.74) 10.34 (17.61) 0.00 (14.29) 0.194

Sweets 20.88 (27.45) 10.71 (31.11) 22.27 (31.09) 9.29 (30.44) 19.85 (24.41) 12.86 (31.43) 0.850
Non-Alcoholic

Beverages
1382.40
(808.89)

1307.14
(983.16)

1472.31
(854.85)

1367.86
(1064.55)

1315.83
(767.86)

1261.35
(926.05) 0.048

Alcoholic Beverages 200.31 (338.81) 45.53 (266.49) 352.36 (446.18) 176.43 (622.50) 87.73 (151.60) 14.29 (107.14) <0.001
Roasted Coffee 283.12 (235.24) 241.36 (300.00) 274.89 (254.52) 232.14 (348.22) 289.21 (220.13) 250.00 (264.29) 0.156

Soups and Sauces 55.61 (95.30) 4.22 (80.00) 57.00 (96.18) 0.00 (85.71) 54.58 (94.80) 5.71 (71.43) 0.752
Meat and Milk

Alternatives 19.81 (60.32) 0.00 (0.00) 16.47 (59.74) 0.00 (0.00) 22.28 (60.74) 0.00 (2.14) 0.006

Data are presented as Mean (SD) and Median (IQR) in grams per day (g/day) for each food group. We applied
Mann–Whitney U-tests for non-normally distributed continuous variables to assess differences between groups.
Due to the classification approach, where each food item was assigned to only one food group, even if it could
belong to multiple categories, the median intake of certain groups (e.g., eggs or meat and milk alternatives) may
not be fully representative.

Table 3. Urinary metabolite concentrations, expressed in (mmol/mmol creatinine) × 100, overall and
stratified by sex.

Abbreviations Metabolites Total (n = 496) Male (n = 211) Female (n = 285) p-Value

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

(mmol/mmol Creatine) × 100

ACE rCr Acetate 1.83 (24.89) 0.49 (0.53) 3.14 (37.94) 0.36 (0.40) 0.85 (0.87) 0.60 (0.67) <0.001 b

ALA rCr Alanine 1.88 (0.84) 1.71 (0.91) 1.94 (0.84) 1.82 (1.18) 1.83 (0.83) 1.68 (0.78) 0.153 b

ALN rCr Allantoin 4.26 (40.28) 0.59 (0.72) 3.88 (43.67) 0.73 (0.75) 4.54 (37.62) 0.52 (0.59) <0.001 b

AOHIBUT rCr 2-Hydroxyisobutyrate 0.51 (0.15) 0.50 (0.19) 0.50 (0.14) 0.48 (0.18) 0.51 (0.15) 0.51 (0.20) 0.209 a

ARB rCr Arabinose 0.54 (0.41) 0.45 (0.33) 0.50 (0.46) 0.41 (0.27) 0.58 (0.36) 0.50 (0.36) <0.001 b

BNHIBUT rCr 3-Aminoisobutyrate 8.36 (74.61) 0.65 (1.16) 8.09 (71.86) 0.53 (1.12) 8.56 (76.75) 0.73 (1.13) 0.042 b

BOHIBUT rCr 3-Hydroxyisobutyrate 0.77 (0.35) 0.70 (0.35) 0.77 (0.30) 0.71 (0.35) 0.77 (0.38) 0.70 (0.37) 0.418 b

BOHIVA rCr 3-Hydroxyisovalerate 0.54 (1.67) 0.41 (0.25) 0.64 (2.52) 0.43 (0.23) 0.46 (0.27) 0.40 (0.25) 0.161 b

CACO rCr cis-Aconitate 1.97 (0.78) 1.83 (0.85) 1.76 (0.83) 1.65 (0.57) 2.12 (0.70) 2.03 (0.87) <0.001 b

CIT rCr Citrate 22.47
(12.32)

20.81
(16.09) 15.39 (8.22) 14.37

(10.58)
27.85

(12.21)
27.32

(16.31) <0.001 b

CREA rCr Creatinine 10.19 (6.75) 9.06 (9.89) 11.69 (6.91) 10.79 (9.62) 9.06 (6.41) 7.68 (9.03) <0.001 b

DMA rCr Dimethylamine 3.09 (0.80) 2.99 (0.63) 2.92 (0.70) 2.78 (0.56) 3.21 (0.85) 3.11 (0.55) <0.001 b

DOETA rCr 4-Deoxyerythronic acid 0.77 (0.36) 0.69 (0.40) 0.74 (0.30) 0.68 (0.36) 0.79 (0.40) 0.70 (0.43) 0.643 b
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Table 3. Cont.

Abbreviations Metabolites Total (n = 496) Male (n = 211) Female (n = 285) p-Value

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

(mmol/mmol Creatine) × 100

DTA rCr 4-Deoxythreonate 2.30 (0.97) 2.14 (1.10) 2.59 (1.03) 2.40 (1.26) 2.08 (0.86) 1.96 (1.01) <0.001 b

ETNH rCr Ethanolamine 4.32 (1.49) 4.21 (1.90) 3.95 (1.27) 3.89 (1.78) 4.60 (1.58) 4.52 (1.96) <0.001 a

ETOH rCr Ethanol 10.96
(91.73) 0.19 (0.32) 8.03 (83.70) 0.15 (0.25) 13.12

(97.40) 0.24 (0.35) 0.002 b

FORM rCr Formate 1.59 (0.84) 1.52 (1.00) 1.48 (0.82) 1.33 (1.01) 1.68 (0.84) 1.62 (1.05) 0.002 b

FURGL rCr 2-Furoylglycine 18.89
(106.47) 0.13 (0.17) 23.50

(124.05) 0.15 (0.17) 15.27
(90.38) 0.11 (0.18) 0.487 b

GLC rCr Glucose 7.66 (65.92) 2.97 (1.54) 12.60
(100.33) 2.59 (0.95) 3.93 (2.67) 3.51 (1.65) <0.001 b

GLN rCr Glutamine 3.69 (29.84) 2.05 (2.02) 2.34 (1.57) 2.00 (1.87) 4.72 (39.56) 2.10 (2.26) 0.980 b

GLY rCr Glycine 9.52 (6.56) 8.00 (5.94) 7.51 (4.12) 6.49 (4.42) 11.02 (7.57) 9.16 (7.26) <0.001 b

GLYA rCr Glycolic acid 4.15 (2.19) 3.80 (2.41) 4.20 (2.11) 3.79 (2.32) 4.11 (2.25) 3.81 (2.50) 0.731 b

HIP rCr Hippurate 31.18
(26.51)

23.23
(24.43)

25.65
(22.06)

20.05
(21.06)

35.36
(28.77)

27.47
(27.11) <0.001 b

HPHPA rCr 3-(3-Hydroxyphenyl)-3-
Hydroxypropionic acid 2.55 (2.26) 1.71 (2.51) 2.27 (2.20) 1.41 (1.95) 2.75 (2.29) 2.01 (2.75) 0.004 b

HYP rCr Hypoxanthine 0.94 (0.53) 0.85 (0.54) 0.87 (0.55) 0.78 (0.47) 0.99 (0.51) 0.92 (0.51) 0.001 b

ILE rCr Isoleucine 2.52 (41.60) 0.09 (0.08) 4.43 (61.08) 0.08 (0.06) 1.09 (15.86) 0.10 (0.11) <0.001 b

IND rCr Indoxyl Sulfate 2.73 (1.37) 2.50 (1.67) 2.40 (1.11) 2.19 (1.37) 2.98 (1.49) 2.79 (1.74) <0.001 b

LAC rCr Lactate 1.33 (1.65) 0.89 (0.94) 0.81 (1.69) 0.65 (0.45) 1.71 (1.52) 1.25 (1.34) <0.001 b

LEU rCr Leucine 0.18 (0.07) 0.17 (0.09) 0.18 (0.07) 0.17 (0.07) 0.18 (0.08) 0.17 (0.09) 0.519 b

MNT rCr Mannitol 5.28 (41.82) 1.18 (3.08) 7.51 (63.40) 0.99 (2.43) 3.59 (4.99) 1.30 (4.10) 0.231 b

MOHHIP rCr 3-Hydroxyhippurate 2.05 (1.94) 1.39 (1.99) 1.91 (1.94) 1.24 (1.79) 2.15 (1.93) 1.49 (2.24) 0.082 b

OMNA rCr 1-Methylnicotinamide 0.70 (0.37) 0.62 (0.41) 0.60 (0.28) 0.55 (0.34) 0.78 (0.41) 0.69 (0.46) <0.001 b

PGLU rCr Pyroglutamate 2.35 (0.70) 2.26 (0.77) 2.27 (0.75) 2.10 (0.71) 2.41 (0.64) 2.35 (0.77) <0.001 b

POHHIP rCr 4-Hydroxyhippurate 1.40 (1.27) 1.06 (0.82) 1.35 (1.44) 0.96 (0.78) 1.43 (1.12) 1.14 (0.81) 0.004 b

PRGLY rCr Propylene Glycol 6.30 (61.79) 0.40 (0.46) 3.49 (39.47) 0.40 (0.52) 8.35 (73.89) 0.40 (0.41) 0.888 b

PROBET rCr Proline Betaine 6.37 (63.18) 0.67 (1.26) 2.02 (11.64) 0.61 (1.17) 9.68 (83.12) 0.71 (1.36) 0.352 b

PSEUR rCr Pseudouridine 3.04 (0.49) 3.03 (0.57) 2.84 (0.42) 2.82 (0.49) 3.19 (0.47) 3.17 (0.54) <0.001 a

QUINA rCr Quinic acid 2.60 (2.00) 2.22 (2.62) 2.17 (1.79) 1.79 (1.98) 2.93 (2.09) 2.62 (2.76) <0.001 b

SCR rCr Sucrose 72.68
(197.82) 0.23 (0.49) 88.40

(204.72) 0.24 (1.39) 58.33
(190.74) 0.21 (0.34) 0.294 b

TACO rCr trans-Aconitate 0.48 (0.29) 0.44 (0.21) 0.48 (0.20) 0.45 (0.20) 0.48 (0.34) 0.43 (0.21) 0.282 b

TAU rCr Taurine 7.25 (38.37) 3.61 (5.45) 5.49 (5.92) 3.86 (5.01) 8.82 (52.44) 3.16 (5.71) 0.048 b

THRE rCr Threonine 0.65 (0.40) 0.58 (0.43) 0.68 (0.40) 0.61 (0.42) 0.63 (0.40) 0.55 (0.44) 0.075 b

TMAO rCr Trimethylamine-N-oxide 4.67 (4.81) 3.56 (2.59) 4.50 (4.19) 3.24 (2.61) 4.81 (5.23) 3.65 (2.60) 0.161 b

TRIG rCr Trigonelline 3.48 (2.81) 2.85 (3.26) 2.88 (2.75) 2.08 (2.84) 3.94 (2.77) 3.31 (3.59) <0.001 b

TRP rCr Tryptophan 3.58 (48.15) 0.57 (0.33) 7.55 (73.70) 0.56 (0.31) 0.63 (0.30) 0.57 (0.35) 0.452 b

TYR rCr Tyrosine 1.03 (0.51) 0.96 (0.65) 1.09 (0.50) 1.04 (0.68) 0.98 (0.51) 0.88 (0.61) 0.003 b

URA rCr Uracil 0.59 (0.28) 0.53 (0.31) 0.51 (0.26) 0.46 (0.25) 0.64 (0.28) 0.59 (0.34) <0.001 b

VAL rCr Valine 0.23 (0.09) 0.21 (0.11) 0.22 (0.09) 0.20 (0.12) 0.23 (0.09) 0.22 (0.10) 0.020 b

XAN rCr Xanthosine 0.93 (0.22) 0.89 (0.23) 0.87 (0.21) 0.84 (0.19) 0.98 (0.22) 0.96 (0.23) <0.001 b

XYL rCr Xylose 0.74 (0.44) 0.68 (0.36) 0.74 (0.59) 0.64 (0.33) 0.73 (0.30) 0.70 (0.36) 0.094 b

Metabolite concentrations are presented as Mean (SD) and Median (IQR) in units of 100 mmol/L, adjusted relative
to creatinine. We applied Student’s t-tests a for normally distributed continuous variables, Mann–Whitney U-tests
b for non-normally distributed continuous variables. Corresponding p-values were used to evaluate statistical
significance.

3.2. Individual Associations Between Habitual Food Intake and Urinary Metabolites

Table 4 presents the association of habitual food or nutrient (dietary fiber) consump-
tion with urinary metabolites, adjusting for age, sex, BMI, PAL, smoking status, and alcohol
consumption pattern. Consistent with prior findings, significant positive associations were
observed between citrus intake and proline betaine (ß = 0.005, 95% CI 0.001–0.009, p = 0.006),
protein intake and urinary urea levels (ß = 0.078, 95% CI 0.028–0.129, p = 0.002), and dietary
fiber intake and hippurate (ß = 0.013, 95% CI 0.006–0.021, p < 0.001). In addition, several
new associations were identified. Poultry consumption was found to be positively associ-
ated with multiple metabolites, including taurine, indoxyl sulfate, 1-methylnicotinamide,
and trimethylamine-N-oxide. Significant associations were also observed between milk
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substitute consumption and urinary levels of uracil, pseudouridine, 4-hydroxyhippurate
and 3-hydroxyhippurate; additionally, a significant inverse association was found for
quinic acid. Dietary fiber intake was positively associated with 3-(3-hydroxyphenyl)-3-
hydroxypropionic acid and hippurate. A negative association was observed between
indoxyl sulphate and dietary fiber intake. No clear interaction effects with age and sex
were identified in the linear and median regression models.

Table 4. Multivariable-adjusted linear and median regression analyses on the associations between
habitual dietary intake and selected urinary metabolites (dependent variable).

Food
Groups/Items Metabolites Estimate Lower CI Upper CI p-Value

CITRUS FRUITS

Citrus Fruits PROBET rCr 0.0054 0.0016 0.0093 0.0061 c

DIETARY PROTEIN

Dietary Protein URA rCr 0.0789 0.0281 0.1297 0.0024 c

MEAT

Fresh Meat TAU rCr 0.0035 0.0007 0.0063 0.0145 d

Red Meat TAU rCr 0.0021 −0.0024 0.0067 0.3599 d

Red Meat TMAO rCr 0.0009 −0.0005 0.0024 0.2217 c

Poultry TAU rCr 0.0052 0.0021 0.0084 0.0010 d

Poultry IND rCr 0.0021 0.0006 0.0037 0.0069 c

Poultry OMNA rCr 0.0014 0.0001 0.0027 0.0326 c

Poultry TMAO rCr 0.0022 0.0005 0.0039 0.0094 c

FISH

Fish DMA rCr −0.0003 −0.0011 0.0005 0.4603 c

Fish TMAO rCr −0.0020 −0.0046 0.0007 0.1409 c

Fish TAU rCr 0.0025 −0.0091 0.0143 0.6648 d

MILK SUBSTITUTES

Milk Substitutes URA rCr 0.0009 0.0001 0.0017 0.0163 c

Milk Substitutes PSEUR rCr 0.0010 0.0003 0.0017 0.0036 c

Milk Substitutes MOHHIP rCr 0.0019 0.0002 0.0036 0.0221 d

Milk Substitutes POHHIP rCr 0.0016 0.0001 0.0030 0.0316 d

Milk Substitutes QUINA rCr −0.0025 −0.0046 −0.0003 0.0224 d

DIETARY FIBER

Dietary Fiber ACE rCr 0.0092 −0.0013 0.0198 0.0866 d

Dietary Fiber BNHIBUT rCr 0.0170 −0.0003 0.0376 0.1042 d

Dietary Fiber BOHIBUT rCr 0.0003 −0.0049 0.0056 0.9062 d

Dietary Fiber HPHPA rCr 0.0233 0.0055 0.0412 0.0105 d

Dietary Fiber HIP rCr 0.0137 0.0060 0.0215 0.0004 c

Dietary Fiber IND rCr −0.0066 −0.0128 −0.0003 0.0390 c

Dietary Fiber FORM rCr 0.0034 −0.0046 0.0115 0.4056 c

Dietary Fiber AOHIBUT rCr −0.0009 −0.0024 0.0006 0.2580 c

Dietary Fiber BOHIVAL rCr 0.0034 −0.0037 0.0106 0.3521 c

Associations between food groups and specific metabolites (as ratios of metabolite concentration by creatinine
concentration) are presented using log-transformed metabolite outcomes, except for URE, PSEUR, and AOHIBUT,
which are normally distributed. Results, including estimates, confidence intervals, and p-values, account for the
log-normal distribution of the data where applicable. Associations were derived from linear c and median d

regression models.
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3.3. Description of Identified Metabolite Clusters

We stratified the study population into metabolite clusters to explore potential dif-
ferences in their associations with dietary behavior. No significant difference in age
distribution was observed across clusters. However, participants significantly differed
by sex (p < 0.001), with Cluster 3 having the highest proportion of males (67.86%), fol-
lowed by Cluster 4 (44.22%). Conversely, the highest prevalence of females was ob-
served in Cluster 1 (80.00%), followed by Cluster 2 (78.57%) and Cluster 4 (55.78%)
(Supplementary Table S1). In addition to demographic differences, clusters exhibited
significant differences in metabolic and dietary parameters, most notably in HDL choles-
terol levels (p = 0.027), protein intake (p = 0.019), fat consumption (p = 0.032), and total
energy intake (p = 0.033). Cluster 3 consistently showed higher energy intake, while
Clusters 1 and 2 exhibited a significantly lower mean energy intake. In addition, pro-
cessed meat consumption was significantly higher in Cluster 3 compared to Cluster 1,
Cluster 4, and Cluster 2 (p = 0.002). Concerning metabolites, the strongest differences be-
tween clusters were identified for urinary sucrose and taurine levels, as illustrated in
the heatmap in Figure 1. Cluster 1, which contained only 10 participants, was charac-
terized by, e.g., higher levels of 2-hydroxyisobutyrate, cis-aconitate, 4-deoxythreonate,
pyroglutamate, or glucose and lower levels of indoxyl sulfate, trigonelline, glutamine,
and quinic acid, when compared to Clusters 2, 3, and 4. Significant differences across the
remaining three clusters were observed for several metabolites, including alanine, acetate,
arabinose, 3-hydroxyisovalerate, cis-aconitate, creatine, dimethylamine, 4-deoxythreonate,
2-furoylglycine, isoleucine, 3-hydroxyhippurate, pyroglutamate, pseudouridine, sucrose,
taurine, trigonelline, tyrosine, and valine (p < 0.05) (Supplementary Table S2). Overall, the
concentrations of urinary metabolites were found to be largely similar across Clusters 2, 3,
and 4.

Cluster 1 

 

Cluster 2 

 

Cluster 3 

 

Cluster 4 

−1 

−2 

−3 

Figure 1. Heatmap of standardized median metabolite concentrations across clusters. Clusters were
identified using k-means.

3.4. Association of Habitual Food Intake and Clusters of Urinary Metabolites

After excluding Cluster 1, the associations between 16 food groups and subgroups
with Clusters 2, 3, and 4 were analyzed using multinomial logistic regression models. Two
multinomial models were used, with either cluster 2 or cluster 4 as the reference category.
Overall, dietary intake patterns were broadly comparable across clusters, with limited
variation in the consumption of most food groups. However, significant linear associations
were observed for alcoholic beverages between Cluster 3 and Cluster 4 and between
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Cluster 3 and Cluster 2, with the strongest association observed for beer consumption
(Supplementary Table S3). In contrast, non-linear associations were found for fruit intake
between Cluster 3 and Cluster 4, for poultry intake between Cluster 3 and Cluster 2 as well
as between Cluster 2 and Cluster 4, as well as for processed meat intake between Cluster 3
and Cluster 4 (Supplementary Figures S1–S4).

4. Discussion
In this study, we explored the associations between habitual dietary intake and urinary

metabolites in 486 adults from a population-based sample. Our findings for specific food–
metabolite associations replicated several known associations while also revealing novel
diet–metabolite relationships. Additionally, we identified four clusters of metabolites using
K means, but differential relationships with habitual food consumption were limited.

Our results confirm three previously established food–metabolite associations, includ-
ing citrus fruit consumption, protein intake, and dietary fiber intake. Proline betaine, a
well-established biomarker of citrus intake, has been validated in both controlled feeding
and population-based studies. It is considered a reliable short-term and habitual marker,
with evidence of high sensitivity (90.6%) and specificity (86.3%) in intervention studies, as
well as increased urinary excretion among habitual citrus consumers [27,28]. In our analysis,
we also found a significant positive association between citrus intake and urinary proline
betaine levels, providing further support for its reliability as a biomarker of habitual citrus
fruit consumption. Although the direct health effects of proline betaine remain unclear, its
association with diets high in fiber and low in sodium and fat suggests potential cardiovas-
cular benefits [29,30]. Another significant association described in previous studies was
observed between protein intake and urinary urea levels. Urea, the primary nitrogen carrier
in urine, has been shown to increase with higher protein intake [31–34]. It is produced in
the liver from nitrogen released during amino acid metabolism and is excreted in the urine,
making its urinary concentration a common and well-established marker in metabolomics
studies to assess dietary protein intake [32]. This relationship has been documented in
both experimental and population-based studies. For instance, the INTERMAP Study
included detailed dietary assessments and urinary biomarker analysis across diverse inter-
national cohorts, confirming urinary urea as a reflection of protein intake [33]. In addition,
physiological reviews and experimental studies on nitrogen metabolism support this rela-
tionship from a mechanistic perspective [31–33]. Fiber intake was associated with urinary
hippurate, a marker derived from polyphenol-rich foods such as fruits, vegetables, tea, and
wine [35–40]. The validity of hippurate as a biomarker for polyphenol and fiber intake
has been demonstrated in both controlled feeding and population-based studies. Higher
hippurate levels indicate increased polyphenol and dietary fiber intake, which has been
confirmed in different populations [36,41]. Beyond its role as a dietary marker, hippurate is
associated with increased gut microbiome diversity, reduced risk of metabolic syndrome,
and improved glucose tolerance [42,43]. The specificity of taurine and trimethylamine-N-
oxide (TMAO) as a red meat biomarker remains inconclusive, as we found no significant
association, consistent with other studies suggesting 1- and 3-methylhistidine as more reli-
able markers [44–48]. Additionally, unlike prior research [49–51], we found no association
between fish intake and urinary TMAO, dimethylamine, or taurine.

Our analysis identified novel associations between poultry consumption and several
urinary metabolites, including taurine, indoxyl sulphate (IS), 1-methylnicotinamide (N1-
MN), and TMAO. Taurine, abundant in animal tissues and particularly rich in poultry,
eggs, and dairy products, was identified as a marker of poultry intake in our study, differ-
ing from broader associations with omnivorous diets reported in previous studies [52,53].
This specificity may be influenced by endogenous taurine synthesis, as even low intake
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groups, such as vegans, can still excrete measurable taurine concentrations, potentially
explaining inconsistencies of taurine as a marker of meat consumption [54]. Poultry con-
sumption was also significantly associated with urinary IS, a toxin formed by the hepatic
metabolism of indole, which is produced via gut bacterial fermentation of dietary tryp-
tophan [55]. Given poultry’s high tryptophan content, higher consumption may elevate
urinary IS levels, though further investigation is needed [56,57]. In addition, N1-MN, a
niacin metabolite influenced by niacin and tryptophan intake, was positively associated
with poultry, consistent with prior findings, linking niacin-rich foods such as poultry to
elevated N1-MN levels [58–60]. Our findings further identified TMAO, a metabolite formed
from compounds such as choline and carnitine found in animal foods and metabolized
by gut bacteria, to be associated with poultry intake [49,61]. However, research on TMAO
has shown mixed results, with Dai et al. [49] reporting a negative association, suggest-
ing poultry may contribute less to TMAO formation than other animal proteins. These
discrepancies likely reflect interindividual differences in gut microbiota composition and
metabolic activity, which are known to influence the microbial conversion of precursors
into trimethylamine, the immediate precursor of TMAO. In addition, hepatic expression
of flavin-containing monooxygenase 3, which oxidizes trimethylamine into TMAO, can
vary due to genetic polymorphisms and host metabolic status. Finally, overall dietary
patterns, including fiber intake and the presence of other TMAO-rich foods such as fish,
may further modulate TMAO production and clearance [50,61–63]. These factors highlight
the complex interplay between diet, host metabolism, and microbial composition in deter-
mining TMAO levels. Furthermore, we identified associations between dairy alternatives
and several urinary metabolites, including uracil, pseudouridine, 4-hydroxyhippurate,
3-hydroxyhippurate, and quinic acid. Milk substitute consumption was positively as-
sociated with urinary levels of uracil, a pyrimidine base associated with soy products,
particularly fermented soy milk. Uracil’s bioactive effects, such as angiotensin-converting
enzyme (ACE) inhibition and potential skin benefits, suggest its role in the health benefits
of fermented soy products [64,65]. Pseudouridine, a modified nucleoside associated with
ribonucleic acid (RNA) turnover and often elevated in oncogenic conditions, has also been
positively associated with milk substitute consumption [66–68]. Given its role in cellular
and metabolic regulation, its relation to milk substitute intake may reflect increased RNA
metabolism, although its association with milk substitutes does not necessarily indicate
a unique dietary source. Our analysis additionally indicated that 4-hydroxyhippurate,
typically derived from polyphenol-rich foods, was positively associated with milk sub-
stitutes. This suggests that soy may play a role in polyphenol metabolism and excretion.
This finding is consistent with the results of previous studies, e.g., by Jacobs et al., which
demonstrated an increase in urinary 4-hydroxyhippurate in participants who consumed
polyphenols with soy milk. This highlights the efficacy of soy as a carrier of polyphe-
nols [69]. Additionally, 3-hydroxyhippurate has been shown to exhibit a notable positive
correlation with milk substitutes. Similar to 4-hydroxyhippurate, it has been previously
identified at elevated levels in urine after polyphenol intake. Nevertheless, a direct re-
lationship between this substance and milk substitutes has yet to be documented in the
literature [70]. Furthermore, a significant negative correlation was identified between
milk substitute consumption and urinary quinic acid levels. Quinic acid, abundant in
coffee, fruits, and vegetables, is metabolized by gut bacteria into 4-hydroxyhippuric acid, a
biomarker for polyphenol intake [71,72]. The inverse association may reflect the differing
effects of milk substitutes on gut microbiome functionality compared to traditional dairy
products, which in turn affect polyphenol and quinic acid metabolism [73,74]. In addition to
poultry and milk substitute consumption, our analysis revealed novel associations between
dietary fiber intake and various urinary metabolites, including a positive association with
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3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) and an inverse association with IS.
No significant associations were observed with several amino acid-derived compounds.
HPHPA, an organic acid commonly found in urine, is derived from polyphenols and
phenylalanine and can also be produced by gut microbial metabolism [75–77]. Although
a direct link between fiber intake and urinary HPHPA has not been widely documented,
a related metabolite, 3-(2-hydroxyphenyl)-propionic acid (2-HPPA), has shown positive
associations with fiber intake in recent studies [37]. IS, linked to tryptophan metabolism,
showed an inverse relationship with fiber intake, consistent with studies suggesting fiber’s
role in reducing IS levels by improving gut health [55,78]. Acetate, a short-chain fatty
acid (SCFA) associated with gut microbial fermentation of fiber, showed limited urinary
association likely due to its rapid absorption [79–82]. Despite the influence of fiber on
gut microbiota and amino acid metabolism, metabolites such as 3-aminoisobutyrate, 3-
hydroxyisobutyrate, 2-hydroxyisobutyrate, 3-hydroxyisovalerate, and formate showed no
significant associations, as they are primarily associated with amino acid and one-carbon
metabolism rather than fiber intake [79,83–86].

Urine’s ease of collection, minimal interference from other compounds, and rapid
response to dietary changes make it particularly suitable for identifying dietary biomarkers
and studying metabolic health [87,88]. Its high concentrations of organic acids and microbial
metabolites provide valuable insights into dietary behavior and metabolic health [89]. Gut
microbial metabolites in urine are significantly associated with chronic diseases, with the
gut microbiota converting dietary fiber into bioactive compounds like SCFAs (acetate,
propionate, and butyrate), which improve gut health and reduce the risks of obesity,
metabolic syndrome, and type 2 diabetes [90]. These metabolites are classified into three
types: (1) diet-derived compounds like SCFAs and indole derivatives; (2) host metabolites
modified by microbiota, such as secondary bile acids; and (3) de novo microbial products, like
polysaccharide A [89]. By capturing complex diet-gut interactions, urinary metabolites serve
as valuable biomarkers to assess the impact of diet on chronic and communicable diseases.

Building on these insights into diet–metabolite associations, our study applied clus-
ter analysis to uncover patterns in urinary metabolites, using k-means to build clusters
independent of any endpoint. Unlike conventional targeted approaches such as partial
correlation, principal component analysis (PCA), and orthogonal projections to latent struc-
tures (oPLS) [23,51,91,92], clustering techniques offer unique advantages, especially for
large datasets [6,35,93,94]. K-means categorizes participants into distinct non-overlapping
groups, while hierarchical clustering captures gradients in smaller datasets or consumption
of specific food types [94]. Together, these clustering methods revealed latent, complex pat-
terns in metabolite interactions and provide a complementary perspective to traditional tar-
geted approaches. Our analysis identified taurine and sucrose as key cluster-differentiating
metabolites, which likely reflect differences in habitual dietary patterns. Taurine is a sulfur-
containing amino acid primarily obtained from animal-based foods such as meat and
seafood. Its levels in urine are considered reflective of recent intake and are also influenced
by endogenous synthesis and bile acid conjugation pathways. Higher urinary taurine
concentrations may indicate increased consumption of animal proteins and have been
proposed as biomarkers for Western-type dietary patterns [95,96]. Sucrose, a disaccharide
composed of glucose and fructose, is commonly used as a potential marker for dietary
sugar intake, particularly when excreted unmetabolized in urine. Its urinary presence
reflects incomplete absorption or very high intake and is associated with processed food
consumption and sweetened beverages [97,98]. These distinct metabolic signatures support
the hypothesis that dietary habits leave measurable imprints on the urinary metabolome
and help characterize cluster-specific intake profiles.
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Cluster 2, with low levels of taurine and sucrose, likely represents a diet low in sugary
foods and poultry. Linear regression showed no significant association between taurine
levels and red, fresh, or processed meat intake but revealed a strong positive association
with poultry consumption. This suggests that taurine levels in our cohort primarily reflect
poultry intake rather than general meat consumption, aligning with nutritional profiles
in Cluster 2. Elevated sucrose levels in Cluster 3 indicate a diet high in processed and
sugary foods, with poultry as the main source of taurine [97–99]. In contrast, Cluster
4 exhibited low sucrose levels but similar taurine levels to Cluster 3, reflecting a low
sugar diet with consistent poultry intake. Furthermore, multinomial regression analysis
highlighted dietary differences between the clusters, consistent with the metabolite-related
differences observed. Members of Cluster 3 had higher intakes of alcoholic beverages
and fruit, corresponding with higher sucrose levels, while processed meat intake was
higher in Clusters 3 and 2 compared to Cluster 4, consistent with taurine patterns. These
findings reinforce taurine and sucrose as key dietary markers related to the identified
urinary metabolite clusters in this cohort. The relative consistency of other metabolites
across clusters suggests dietary homogeneity within the Augsburg population. Factors
such as hydration status and timing of urine collection are unlikely to account for these
similarities, as samples were consistently collected in the fasting state, with concentrations
normalized to creatinine.

The present study has several strengths, including a robust sample size of 496 partici-
pants with comprehensive dietary assessments. Dietary data collection included both the
myfood24 online platform for repeated 24-h food recalls and an FFQ, providing detailed
insights into participants’ habitual intake. However, limitations include potential measure-
ment errors in self-reported dietary data, which may weaken associations with urinary
metabolomic data. The cross-sectional design further limits causal inference and does not
account for temporal dietary or metabolic changes. The generalizability of the findings is
further limited by the regional scope of participant recruitment and the relatively narrow
age range of the study population. As our analysis was based exclusively on data from
the German population, the results may not be directly transferable to populations with
different genetic backgrounds, dietary practices, or environmental exposures. Several of the
identified metabolites, such as trimethylamine-N-oxide (TMAO), indoxyl sulfate (IS), and
hippurate, are end products of gut microbial fermentation and are strongly influenced by
microbiota composition, which varies substantially between populations due to differences
in genetics, cultural dietary practices, and environmental exposures [42,43,50,55,100]. Con-
sequently, biomarker patterns observed in our study may differ in cohorts with distinct gut
microbiota profiles, affecting both the interpretation and potential application of urinary
metabolite markers across different populations. Future studies in more diverse popula-
tions are needed to validate and expand upon our findings. In addition, the study lacks
data on microbiota composition and genetic factors, which could have improved biomarker
identification by accounting for individual variability in metabolite levels. Another limi-
tation is the applied handling of unknown data (NaN). To avoid loss of participants, we
coded NaNs as values below the detection limit. According to the manufacturer’s comment,
NaNs could be very low or very high metabolite concentrations. Most NaNs were identified
for ethanol and sucrose values. As we used spot urine samples collected in the morning
following a 12-h fasting period, we concluded that very high values of ethanol or sucrose
are unrealistic. However, as only a single measurement was available, the metabolite data
represent a snapshot of dietary intake from the previous day. In addition, the planned
sensitivity analysis could not be performed since the exclusion of all NaNs drastically
reduced the sample size for cluster analysis. Furthermore, information on the consumption
of taurine-enriched beverages, such as energy drinks, was not collected and should be
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considered a limitation. Given that taurine was among the investigated metabolites, the
lack of data on specific sources like energy drinks may have affected the interpretation of
urinary taurine levels in relation to habitual dietary intake.

5. Conclusions
Our findings highlight associations between habitual diet and urinary metabolite

profiles, confirming known associations for citrus, protein, and fiber intake, while also
identifying new potential markers for poultry and milk substitute intake, as well as for
dietary fiber intake. Future research should use longitudinal approaches with sufficiently
large numbers of participants, incorporate microbiota and genetic data, and validate these
biomarkers in diverse populations to more accurately capture habitual diet–metabolite
relationships.
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