Article

A foundationmodel to predictand capture
human cognition

https://doi.org/10.1038/s41586-025-09215-4

Received: 26 October 2024

Accepted: 29 May 2025

Published online: 02 July 2025

Open access

M Check for updates

Marcel Binz'™, Elif Akata', Matthias Bethge?, Franziska Brandle®*, Fred Callaway®,

Julian Coda-Forno', Peter Dayan?*, Can Demircan', Maria K. Eckstein®, Noémi Eltet6®,
Thomas L. Griffiths’, Susanne Haridi'?, Akshay K. Jagadish'?#, Li Ji-An®, Alexander Kipnis',
Sreejan Kumar’, Tobias Ludwig?*, Marvin Mathony', Marcelo Mattar®, Alireza Modirshanechi',
Surabhi S. Nath?**2, Joshua C. Peterson', Milena Rmus', Evan M. Russek’, Tankred Saanum™#,
Johannes A. Schubert®, Luca M. Schulze Buschoff', Nishad Singhi", Xin Sui**,

Mirko Thalmann', Fabian J. Theis?"**, Vuong Truong*, Vishaal Udandarao®"*,

Konstantinos Voudouris', Robert Wilson'®, Kristin Witte', Shuchen Wu', Dirk U. Wulff"™'8,
Huadong Xiong' & Eric Schulz'

Establishing a unified theory of cognition has been animportant goal in psychology"?.
Afirst step towards such atheory is to create acomputational model that can
predict human behaviourin awide range of settings. Here we introduce Centaur, a
computational model that can predict and simulate human behaviour in any
experiment expressible in natural language. We derived Centaur by fine-tuning a state-
of-the-artlanguage model on alarge-scale dataset called Psych-101. Psych-101 has an
unprecedented scale, covering trial-by-trial data from more than 60,000 participants
performingin excess 0f 10,000,000 choices in 160 experiments. Centaur not only
captures the behaviour of held-out participants better than existing cognitive models,
butitalso generalizes to previously unseen cover stories, structural task modifications
and entirely new domains. Furthermore, the model’s internal representations become
more aligned with human neural activity after fine-tuning. Taken together, our results
demonstrate that it is possible to discover computational models that capture human

behaviour across awide range of domains. We believe that such models provide
tremendous potential for guiding the development of cognitive theories, and we
present a case study to demonstrate this.

The human mind is remarkably general®>. Not only do we routinely make
mundane decisions, such as choosing abreakfast cereal or selectingan
outfit, but we also tackle complex challenges, such as figuring out how
to cure cancer or explore outer space. We learn skills from only a few
demonstrations*, reason causally® and fuel our actions through curios-
ity®. Whether we are climbing mountains, playing video games, or creat-
ing captivating art, our versatility defines what it means to be human.
By contrast, most contemporary computational models, whetherin
machinelearning or the cognitive sciences, are domain specific. They
are designed to excel at one particular problemand only that problem.
Consider, forinstance, AlphaGo, whichisacomputer system created by
Google DeepMind to master the game of Go”. The system can play this
particular game at an impressive level, but it cannot do much beyond
that. A similar pattern can be observed in the cognitive sciences. For
instance, prospecttheory, whichis one of the most influential accounts
of human cognition, offers valuable insights into how people make
choices®, but it tells us nothing about how we learn, plan or explore.

If we want to understand the human mind in its entirety, we must
move from domain-specific theories to anintegrated one. The impor-
tance of such a unified approach has already been recognized by the
pioneers of our field. For example, in 1990, it was stated that “unified
theories of cognition are the only way to bring [our] wonderful, increas-
ing fund of knowledge under intellectual control”>. How can we make
meaningful progress towards such theories?

Animportantstep towards a unified theory of cognitionis to build a
computational model that can predict and simulate human behaviour
in any domain?®. In this paper, we take up this challenge and intro-
duce Centaur—a foundation model of human cognition'. Centaur
was designed in a data-driven manner by fine-tuning a state-of-the-art
large language model* on a large corpus of human behaviour. For
this purpose, we curated a large-scale dataset called Psych-101, which
covers trial-by-trial data from 160 psychological experiments (see
Methods, ‘Data collection’ and Extended Data Fig. 1). We transcribed
each of these experiments into natural language, which provides a
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Multi-armed bandits

In this task, you have to repeatedly choose between
two slot machines labelled B and C. When you select
one of the machines, you will win or lose points.
Your goal is to choose the slot machines that will
give you the most points.

You press <<C>> and get -8 points.

You press <<B>> and get 0 points.

You press <<B>> and get 1 points.

Supervised learning

In each trial, you will see between one and three
tarot cards. Your task is to decide if the combination
of cards presented predicts rainy weather (by
pressing P) or fine weather (by pressing L).

You are seeing the following: card 3, card 4. You
press <<L>>. You are right, the weather is fine.

You are seeing the following: card 1, card 4. You
press <<P>>. You are right, the weather is rainy.

Decision-making

You will choose from two monetary lotteries by
pressing N or U. Your choice will trigger a random
draw from the chosen lottery that will be added to
your bonus.

Lottery N offers 4.0 points with 80.0% or 0.0 points
with 20.0%.

Lottery U offers 3.0 points with 100.0%.

You press <<U>>.

Markov decision processes

You will be taking one of the spaceships F or V to
one of the planets M or S. When you arrive at each
planet, you will ask one of the aliens for space trea-
sure.

You are presented with spaceships V and F.
You press <<V>>. You end up on planet M and
see aliens G and W. You press <<G>>.

You find 1 piece of space treasure.

Memory

You will view a stream of letters on the screen, one
letter at a time. You have to remember the last two
letters you saw since the beginning of the block. If
the letter you see matches the letter two trials ago,
press E, otherwise press K.

You see the letter V and press <<K>>.

You see the letter X and press <<K>>.

You see the letter V and press <<E>>.

Miscellaneous

You will be presented with triplets of objects, which
will be assigned to the keys E, Z, and B. In each
trial, please indicate which object you think is the
odd one out by pressing the corresponding key.
E: tablet, Z: fox, and B: vent. You press <<Z>>.

y, Z: coop, and B: drink. You press <<B>>.

ite, Z: flan, and B: jar. You press <<E>>.
E: wand, Z: flag, and B: fire. You press <<Z>>.

b

Centaur: a foundation model of human cognition

In this task, you
have to repeatedly
choose between two

slot machines labelled
BandC.[..]
You press <<

Fig.1|Overview of Psych-101and Centaur. a, Psych-101 comprises trial-by-
trial datafrom160 psychological experiments with 60,092 participants
making 10,681,650 choicesintotaland involving 253,597,411 text tokens.

It contains domains such as multi-armed bandits, decision-making, memory,

common format for expressing vastly different experimental para-
digms™". The resulting dataset has an unprecedented scale, containing
more than 10,000,000 human choices and including many canonical
studies from domains such as multi-armed bandits, decision-making,
memory, supervised learning, Markov decision processes and more
(see Fig.1a for an overview and examples).

We subjected Centaur to aseries of rigorous tests and demonstrate
that it captures human behaviour at several levels of generalization.
First, we show that Centaur predicts behaviour of held-out participants
(those who are not part of the training data) better than existing cogni-
tive models in almost every single experiment. We then demonstrate
thatits ability to capture humanbehaviour also generalizes to held-out
experiments. Inthis context, we find that Centaur accurately predicts
humanbehaviour under modified cover stories, problem structures and
eveninentirely new domains. Finally, we show that Centaur’sinternal
representationsbecome more human aligned, even thoughit was never
explicitly trained to capture human neural activity.

Takentogether, our results demonstrate that it is possible to discover
computational models that capture human behaviour across awide
range of domains. We think that such a predictive model offers many
direct opportunities to obtain a better understanding of the human
mind"" and we present a case study that demonstrates this potential.

Model overview

We built Centaur on top of the open-source language model Llama
3.170B, a state-of-the-art model pretrained by Meta Al (hereafter, we
refer to this model simply as Llama)". Having alarge language model as
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supervised learning, Markov decision processes and others (the examples
shown have been stylized and abbreviated for readability). b, Centaurisa
foundation of model human cognition that is obtained by adding low-rank
adapterstoastate-of-the-art language model and fine-tuning it on Psych-101.

thebackbone allowed us torely on the vast amounts of knowledge that
is present in these models. The training process involved fine-tuning
on Psych-101using a parameter-efficient fine-tuning technique known
as quantized low-rank adaptation (QLoRA)™. QLoRA relies on a fro-
zen four-bit quantized language model as abase model. Although the
parameters of the base model are left unchanged, it adds low-rank
adapters, which contain only a few additional, trainable parameters
(typically represented in a half-precision floating-point format). In our
case, we added low-rank adapters of rank r= 8 to all non-embedding
layers (that is, all linear layers of the self-attention mechanisms and
the feedforward networks), as illustrated in Fig. 1b. With these set-
tings, the newly added parameters amount to 0.15% of the base model’s
parameters. We then trained the model for one epoch on the entire
dataset using a standard cross-entropy loss. We masked out the loss
for all tokens that do not correspond to human responses, thereby
ensuring that the model focuses on capturing human behaviour and
not on completing experimental instructions. The entire training pro-
cess took approximately five days on an A100 80GB GPU (Methods,
‘Fine-tuning procedure’).

Centaur captures human behaviour

We evaluated Centaur on different types of held-out data to demon-
strate thatit robustly captures human behaviour. In our first analysis,
we tested whether it could predict the behaviour of participants who
were not part of the training data. For this, we split each transcribed
experiment into two parts and used 90% of participants for training
and retained 10% for testing. We measured goodness-of-fit to human
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Fig.2|Goodness-of-fiton Psych-101. a, Difference inlog-likelihood of
Centaur and Llama relative to adomain-specific cognitive model for each
experiment. A value of zero corresponds to the goodness-of-fit of the domain-
specific cognitive model and avalue above zero indicates improved goodness-
of-fitto human responses. Log-likelihoods are averaged over responses
(n=992,867).Error bars correspond to the standard error of the mean.
Centaur outperforms both Llamaand a collection of domain-specific cognitive
modelsinalmostevery experiment (one-sided t-tests: £(1,985,732) = -144.22,
P<0.0001;¢(1,985,732) =-127.58, P< 0.0001, respectively). We only included
experiments for which we have implemented a domain-specific cognitive
modelinthis graphicand merged different studies using the same paradigm.

choices using negative log-likelihoods averaged across responses
(Methods, ‘Evaluation metric’). Figure 2a presents the results of this
analysis, comparing Centaur with the base model without fine-tuning
and a collection of domain-specific models that represent the
state-of-the-art in the cognitive-science literature (Extended Data
Table 1). Although there was substantial variance in predictability
across experiments (Centaur, 0.49; Llama, 0.47), fine-tuning always
improved goodness-of-fit. The average difference in log-likelihoods
across experiments after fine-tuning was 0.14 (Centaur negative
log-likelihood, 0.44; Llama negative log-likelihood, 0.58; one-sided
t-test: £(1,985,732) =-144.22, P< 0.0001; Cohen’s d, 0.20).
Furthermore, we compared Centaur with the previously men-
tioned collection of domain-specific cognitive models. These models
include, among others, the generalized context model?, a pros-
pect theory model'® and various reinforcement learning models™?°
(Methods, ‘Domain-specific cognitive models’). We observed that
Centaur outperforms domain-specific cognitive modelsin allbut one
experiment. The average difference in predicting human behaviour

0

T T T T T

0.4 0.6 0.8 1.0 0 0.5 1.0
Accuracy (human)

Extended Data Table1contains numerical results for all experiments.

b, Model simulations on the horizon task. The plot shows the probability
densities over reward and aninformation bonus parameter for both people
and simulated runs of Centaur. ¢, Model simulations on the two-step task.
The plot shows the probability densities over reward and a parameter
indicating how model-based learning was for both people and simulated runs
of Centaur.d, Model simulations onasocial prediction game. The plot shows
the probability densities over accuracies of predicting human strategies

and strategies of an artificial agent, with matched statistics for both people
and simulated runs of Centaur.

to the domain-specific cognitive models was 0.13 (cognitive models,
negative log-likelihood, 0.56; one-sided ¢t-test: ¢(1,985,732) = -127.58,
P<0.0001; Cohen’sd, 0.18). Extended Data Figs. 2 and 3 contain more
comparisons to models fine-tuned on non-behavioural dataand a
noise-ceiling analysis.

The previous analyses have focused on predicting human responses
conditioned on previously executed behaviour. We may ask whether
Centaur canalso generate human-like behaviour whensimulatedinan
open-loop fashion (that is, when feeding its own responses back into
themodel). This setting arguably provides amuch stronger test of the
model’s capabilities and is sometimes also referred to as model falsifica-
tion?. To check whether Centaur survives this test, we ran open-loop
simulationsin three different experimental paradigms and inspected
thedistributions of statistics that resulted from these simulations. First,
we simulated Centaur on the horizon-task paradigm, atwo-armed ban-
dit task used to detect different types of exploration strategies®. We
found that Centaur (mean = 54.12, s.d. = 2.89) achieved a performance
comparable to human participants (mean = 52.78, s.d. =2.90), which
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Fig.3|Evaluationindifferent held-outsettings. a, Negative log-likelihoods
averaged overresponses (n=9,702) for the two-step task with amodified cover
story®. b, Negative log-likelihoods averaged over responses (n = 510,154) fora
three-armed bandit experiment®. ¢, Negative log-likelihoods averaged over
responses (n=99,204) for an experiment probing logical reasoning? with

was supported by an equivalence test using the two one-sided ¢-tests
procedure witha +3-point margin (P = 0.02). Centaur also engagedina
similar level of uncertainty-guided directed exploration (Fig.2b), a pat-
tern that is notably absent in many contemporary language models'.

Wealso observed that Centaur does not merely capture thebehaviour
oftheaverage participant, butrather the distribution over trajectories
produced by the entire population. For example, in the two-step task (a
well-known paradigm used to tease apart model-free and model-based
reinforcement learning®®), Centaur, just like human subjects, produced
trajectoriesinwhichlearningis purely model-free, purely model-based
and mixtures thereof (as the bimodal distribution in Fig. 2c shows).

Finally, we verified that Centaur fails at predicting non-human
behaviour. For this, we considered a study that required participants
to predict either human responses or responses of an artificial agent
withmatched statistics in four canonical economic games?. Mirroring
theresults of the original human study, Centaur accurately predicted
human responses (64% accuracy) but struggled to predict artificial
responses (35% accuracy; one-sided ¢-test: £(230) =20.32, P< 0.0001;
Fig.2d). Taken together, these results demonstrate that Centaur exhib-
itshuman-like characteristics across various settings, confirming that
it can generate meaningful open-loop behaviour.

Probing generalization abilities

So far, we have shown that Centaur generalizes to previously unseen
participants performing experiments that were part of the training
data. A true foundation model of human cognition, however, must also
capturebehaviourinany arbitrary experiment, evenif that experiment
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itemsbased onthe Law School Admission Test (LSAT). Centaur outperforms
both Llamaand domain-specific cognitive models when faced with modified
cover stories, problem structures and entirely new domains. N/A, not applicable.
Errorbarsshowthes.e.m.Theimageinaisreproduced fromref.23, Springer
Nature Limited. Theimagein cis reproduced from Wikipedia.org.

was not part of the training data. To probe whether Centaur has this abil-
ity, we exposed it toaseries of increasingly complex out-of-distribution
evaluations.

First, weinvestigated whether Centaurisrobustinthe face of changes
to the cover story. For this analysis, we relied on data collected in
ref. 23, which used the aforementioned two-step task. In addition to
the canonical cover story (spaceships travelling to foreign planets in
search of treasures), the study introduced a new cover story involving
magical carpets. Importantly, Psych-101 includes experiments using
the canonical spaceship cover story? but no experiments with the
magic-carpet cover story. Even so, we found that Centaur captured
human behaviour in the magic-carpet experiment of ref. 23 (Fig. 3a).
As in our previous analysis, we observed an improvement after
fine-tuning, as well as afavourable goodness-of-fit when compared with
a domain-specific cognitive model (Centaur negative log-likelihood,
0.51; Llama negative log-likelihood, 0.63; cognitive model negative
log-likelihood, 0.61; one-sided ¢-test comparing Centaur with Llama:
t(9,701) =-24.7, P< 0.0001; one-sided t-test comparing Centaur with
the domain-specific cognitive model: £(9,701) =-20.7,P< 0.0001; the
domain-specific cognitive model used in this analysis was a hybrid
model that combined model-based and model-free reinforcement
learning)®.

Inasecond out-of-distribution evaluation, we probed whether Cen-
taurisrobust to modifications intask structure. To test this, we exposed
it to a paradigm known as Maggie’s farm®. Maggie’s farm extends the
horizontask paradigmby addinga third option. Psych-101encompasses
several two-armed bandit experiments (including the horizon task)
but not Maggie’s farm or any other three-armed bandit experiments
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(it does, however, contain multi-armed bandit experiments with more
than three options to choose between). Thus, this analysis provides
atest of Centaur’s robustness to structural task modifications. We
found that Centaur captured human behaviour on Maggie’s farm, as
shownin Fig.3b. We again observed a benefit of fine-tuning, as well as
afavourable goodness-of-fit compared with a domain-specific cog-
nitive model, which did not generalize well to this setting (Centaur
negative log-likelihood, 0.42; Llama negative log-likelihood, 0.62;
cognitive model negative log-likelihood, 0.98; one-sided ¢-test com-
paring Centaur with Llama: ¢(510,153) = -204.2, P< 0.0001; one-sided
t-test comparing Centaur with the domain-specific cognitive model:
t(510,153) =-559.8, P< 0.0001).

Finally, we investigated whether Centaur could capture human
behaviour even in entirely new domains. In this context, we consid-
ered a study investigating logical reasoning?. Although Psych-101
includes probabilistic and causal reasoning problems, we purposefully
excluded any studies involving logical reasoning. As in the previous
analyses, there was again a positive effect of fine-tuning (Centaur nega-
tivelog-likelihood, 1.65; Llamanegative log-likelihood, 1.92; one-sided
t-test: £(198,406) = -50.39, P < 0.0001; Cohen’s d, 0.23; Fig. 3c). Note
that we did not compare with any domain-specific cognitive modelin
this setting, because itis unclear how to constructa model that would
make any meaningful transfer from training data that does notinclude
any related problems.

We consolidated these results by analysing Centaur on six more
out-of-distribution experimental paradigms that were not part of the
training data in any shape or form (including moral decision-making?,
economic games?®, naturalistic category and reward learning®,
behavioural propensities®® and a deep sequential decision task®).
Centaur robustly captured human behaviour in all these settings,
whereas smaller and non-fine-tuned models did not do so consist-
ently (Extended Data Fig. 4).

As well as analysing human choice data, we also examined whether
Centaur could predict human response times. Hick’s law*2 indicates that
individual response times are a linear function of response entropies.
Therefore, we extracted nearly 4,000,000 response times for a sub-
set of experiments in Psych-101 and fitted three linear mixed effects
models, each predicting log-transformed response times based on
log-transformed response entropies derived from a different com-
putational model. We found that the response entropies derived from
Centaur captured alarger proportion of the variance inresponse times
(conditional R?, 0.87) than those derived from Llama (conditional R?,
0.75,108[BF centaur, Liamal = 53,773.5) and the cognitive models (conditional

T T T
20 30 40

Layer

Layer

neural activity in asentence-reading task®® canbe decoded using Centaur’s
internal representations extracted from different layers. Control referstoa
model that used representations extracted fromarandomly initialized
transformer model withmatched architecture.

R?,0.77,108[BF centaur, cognitivemodeis] = 14,995.5), thereby highlighting Cen-
taur’s ability to predict measures beyond pure choice data.

To demonstrate that the model does not degrade on problems it
was pretrained for, we furthermore verified it ona collection of bench-
marks from the machine-learning literature®>*. We found that Centaur
remains stablein performance-based benchmarks, evenimproving over
the base model in some of them** (Extended Data Fig. 5a,b). Finally,
in benchmarks that measure human alignment, we observed a shift
towards human-like characteristics (Extended Data Fig. 5¢). Figure 4a
depicts this improved alignment on a low-dimensional embedding
derived from ten behavioural metrics in CogBench, abenchmark to
test the cognitive abilities of large language models®.

Alignment to human neural activity

Despite being trained to match only human behaviour, we also won-
dered whether Centaur’s internal representations become more
aligned with human neural activity. To check whether thisis the case,
we conducted two analyses in which we predicted human neural activ-
ity using the model’s internal representations®>¢, We first conducted
a whole-brain analysis in which we predicted functional magnetic
resonance imaging (fMRI) measurements of people performing the
two-step task®. For this, we relied on data collected ina previous study®
involving 94 participants each making 300 choices. Participants were
tested on either the magic-carpet cover story (which we had already
usedinoneofourearlier generalization analyses) or an abstract cover
story. Neither of these two cover stories was part of Centaur’s training
data. We extracted recordings frommodels’ residual stream before each
choice and after feedback. We then aggregated human neural activity
ineachregionandregressed the aggregated activity on Centaur’sinter-
nal representations. This procedure was then repeated separately for
each participantand region (Methods, ‘Neural alignment’). Figure 4b
shows the resulting Pearson correlation coefficients across layers for
both Centaur and Llama averaged over measurements (n =11,374).
We found that Centaur’s representations consistently outperformed
Llama’s representations in predicting human neural activity (all pair-
wise one-sided t-tests, P < 0.001), indicating that fine-tuning a model
onlarge-scalebehavioural data aligned itsinternal representations to
human neural activity. It is worth noting that this type of analysis was
possible only because of the expressivity of Centaur’s representations,
and that using representations of a conventional cognitive model led
to a substantial drop in performance (dashed line in Fig. 4b). A more
fine-grained report of our results is given in Extended Data Fig. 6.
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Fig.5|Model-guided scientific discovery. a, We used Psych-101and
Centaur to guide the development of a cognitive model for amulti-attribute
decision-making study*. Each panel shows the AIC for the set of models
considered at the given stage, starting with the models considered in the
original study. b, We asked DeepSeek-R1to generate an explanation for the
humanresponses and formalized the resulting verbal strategy into a formal

We expanded these resultsin asecond analysis, for whichwerelied on
apreviously collected datasetinvolving fMRI measurements of people
reading simple six-word sentences, such as “That is such a beautiful
picture!”*, The primary goal of this analysis was to show that neural
alignmentinunrelated settings remainsintact after fine-tuning on cog-
nitive experiments. We focused on a subset of five participants who each
passively read 1,000 sentences, spread across 20 experimental runs and
two scanning sessions. The presented sentences were extracted from
nine corporaand selected to maximize semantic diversity. We closely
followed the protocol of the original study and predicted aggregated
neural activity across participantsinthe language network. We repeated
this procedure for representations extracted from different layers in
both Centaur and Llama. Predictability peaked at around layer 20, as
shown in Fig. 4c. This peak is consistent with the hypothesis that the
intermediate layers of such models contain the most information.
We performed an inverse-weighted meta-analysis® on the difference
in correlations between Centaur and Llama, and this indicated that
there was a significant benefit of fine-tuning when pooling across lay-
ers (8=0.007,95% confidence interval [0.0002, 0.013], P= 0.045).
Although this effect was consistent across layers, it was not statistically
significant for any individual layer.

Model-guided scientific discovery

Psych-101 and Centaur both constitute valuable tools for scientific
discovery. In the following section, we present an example of how
each of them can be used to improve our understanding of human
decision-making. The individual steps of this process are illustrated
inFig. 5.

Psych-101 contains human behavioural data in a natural-language
format, which means it can be readily processed and analysed by a
language-based reasoning model such as DeepSeek-R1 (ref. 40). Todem-
onstrate this use case, we asked DeepSeek-R1to generate an explanation
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computational model. ¢, Werefined this model through scientificregret
minimization using Centaur as areference model. Six data points are shown
for which Centaur makes accurate predictions but the DeepSeek-R1-discovered
model does not. We then used this information to design adomain-specific
cognitive model thatis as predictive as Centaur butis stillinterpretable.
Thebicycleimagesinaare reproduced from Flaticon.com.

of participants’ behaviour in amulti-attribute decision-making experi-
ment*. In this paradigm, participants are given two different options
thatare each characterized by various features (in our case, four expert
ratings for two products) and they must then decide which of the two
options they prefer (Fig. 5a). The model produced several explana-
tions, one of which caught our attention: “The participant employed
atwo-step decision-making strategy. First, they determined which
product had the majority of positive ratings (1 s) across all experts. If
the products were tied in the number of positive ratings, the participant
then considered therating fromthe highest validity expert tobreak the
tie.” This strategy combines two well-known heuristic decision-making
strategies that, as far as we know, have not been considered in this
combination before. We then took this verbal strategy, implemented
itasaformal computational model and found that it explained human
response behaviour more accurately than the three strategies consid-
eredinthe original study (a weighted-additive strategy, equal weighting
and take-the-best heuristic; Fig. 5b).

However, the DeepSeek-R1-discovered model Akaike information cri-
terion (AIC;181.7) still fell short of the goodness-of-fit of Centaur (AIC,
72.5),indicating that thereis stillroom forimprovement. We therefore
used a method known as scientific regret minimization, which uses a
black-box predictive model as a reference to identify responses that
are in principle predictable but are not captured by a given model*.
Typically, scientific regret minimization requires the collection of a
large-scale experiment-specific dataset to train this predictive model.
Centaur, however, can be used out-of-the-box and without the need to
collect any domain-specific data, thereby circumventing this step and
broadening the scope of scientific regret minimization considerably
(indeed, the multi-attribute decision-making data set under consid-
eration contained fewer than 100 participants, placing it far out of
reach for conventional scientific regret minimization). Wheninspect-
ing the responses that were well predicted by Centaur but not by the
DeepSeek-R1-discovered model, we observed that they all involved
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problems in which participants chose the option with fewer positive
ratings overall but which was rated positively by a higher-validity
expert (see Fig. 5c for anillustration of these problems and Methods,
‘Model-guided scientific discovery’ for further details). This pattern
indicates that the switch between the two heuristics is probably not as
strict as initially suggested by the DeepSeek-R1-discovered strategy.
To capture this, we replaced the either-or rule with a weighted aver-
age of both heuristics. We found that the model that resulted from
this process matched Centaur in terms of its goodness-of-fit (AIC,
71.7) but was still interpretable. We entered the resulting AIC values
of all the models in a group-level model-selection procedure* and
estimated the protected exceedance probability, which is defined as
the probability that a particular model has a higher frequency within
agroup than all the other candidate models. The protected exceed-
ance probability of the model that resulted from scientific regret mini-
mization was P = 0.83. Notably, the result of this model comparison
stands in contrast to the one that was conducted with the original set
of models and indicates that people rely on a combination of heu-
ristics when making decisions, as opposed to following a weighted-
additive strategy**.

Discussion

Inthis paper we have introduced Centaur, afoundation model of human
cognition that was obtained by fine-tuning a state-of-the-art language
model onPsych-101, whichis alarge-scale dataset of human behaviour.
This approach allowed us to leverage the vast knowledge embedded
inlarge language models and also align them with human behaviour®.
Centaur successfully captured human behaviour and passed a wide
range of out-of-distribution checks. It generalized not only to unseen
participants, but also to different cover stories, structural variations
and entirely new domains. In addition to analysing the model on a
behaviourallevel, we also conducted aseries of analyses onitsinternal
representations, in which we found increased alignment with human
neural activity.

We also conducted a case study demonstrating how both Psych-101
and Centaur can be used for guiding the development of predictive,
yetinterpretable, cognitive models. The individual steps of our pro-
cedure are generic, so it could serve as a blueprint for model-guided
scientific discovery in other experimental paradigms in the future.
Looking beyond this example, Centaur finds many more applicationsin
the context of automated cognitive science**®. It may, for instance, be
used for insilico prototyping of experimental studies®. In this context,
one could use the model to figure out which designslead to the largest
effect sizes, how to design a study to reduce the number of required
participants or to estimate the power of an effect.

The present paper takes initial steps in leveraging Centaur to gain
deeper insights into human cognition, and it also opens up exciting
new avenues for future exploration. First, one could further probe
Centaur’s internal representations to understand how it represents
knowledge and processes information. The resulting insights could,
inturn, be usedto generate hypotheses about knowledge representa-
tion and information processing in humans that could be validated
in future experimental studies. We believe that tools such as sparse
auto-encoders*® and attention map visualization*® provide promis-
ing avenues towards accomplishing this goal, and we hope to explore
them in future studies.

Furthermore, it might also be possible to train models with differ-
ent architectures from scratch using the dataset that we created in
the process of this paper. Doing so would enable us to investigate
the neural architecture of human cognition at a scale that could not
have been done before. We might, for example, ask questions such
as whether human information processing is better described by
attention-based architectures*® or by architectures witha vector-based
memory, or how much we canimprove by incorporating theories from

the neuroscience literature®. We expect an eventual outcome of such
an approach to contain both domain-specific and domain-general
modules, thereby allowing us to investigate the interplay between
the two.

As far as we know, Psych-101 is already the broadest and largest
dataset of human behaviour available, and we view its development
as an ongoing process and plan to develop it further. The focus in its
currentstateislargely onlearning and decision-making, but we intend
to eventually include more domains, such as psycholinguistics, social
psychology and economic games. Experiments withinformation about
individual differences are another source of neglected datain the cur-
rentiteration of Psych-101. Ideally, we want to include all types of rel-
evant information about subjects (including age, personality traits
or socioeconomic status) in the prompt, such that a model trained
on these data can capture individual differences. Experiments from
developmental psychology or computational psychiatry provide an
ideal source for this purpose. Finally, although we have already included
some cross-cultural and meta-studies® %, the currentiteration still has
astrong bias towards a Western, educated, industrialized, rich and
democratic (WEIRD) population®,

Eventually, we hope to provide any psychological data in a stand-
ardized format that facilitates benchmarking, thereby comple-
menting existing efforts from the neuroscience community*”,
Although the natural-language format (together with quite a bit of
reverse-engineering) used in this work allows us to express a vast range
of experimental paradigms, it introduces a selection bias against experi-
ments that cannot be expressed in natural language. The long-term
objective should therefore be to move towards a multimodal data
format®.

Conclusion

When the idea of a unified model of cognition was first proposed,
researchers expressed concern that established areas of cognitive
science might react negatively to suchamodel. In particular, they feared
that the approach might be seen as unfamiliar or incompatible with
existing theories, just like an “intruder with improper pheromones™°.
This could lead to an “attack of thekiller bees”, in which researchersin
more-conventional fields would fiercely critique or reject the new model
todefend their established approaches. To mitigate these concerns, the
concept of a cognitive decathlon was proposed: arigorous evaluation
framework in which competing models of cognition are tested across
tenexperiments andjudged on their cumulative performancein them.
In the current work, we applied Centaur to the equivalent of 16 such
cognitive decathlons, in which it was tested against numerous estab-
lished models and consistently won every competition. This outcome
indicates that the data-driven discovery of domain-general models of
cognition is a promising research direction. The next step for future
research should be to translate this domain-general computational
model into a unified theory of human cognition®.
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Methods

Data collection

We constructed Psych-101 by transcribing data from 160 psychologi-
cal experiments into natural language. Each prompt was designed to
include the entire trial-by-trial history of a complete session from a
single participant. The experiments included were selected using the
following criteria: publicly available data on a trial-by-trial level; the
possibility of transcription into text without asignificant loss of infor-
mation; and coverage of abroad spectrum of domains. The transcrip-
tion of each experiment was done manually by the authors. Approval
from the institutional review board was obtained by the individual
studiesasrequired. We designed our natural-language prompts using
the following principles: instructions should follow the original study
as closely as possible; simplifications were made where appropriate;
and a maximum prompt length of roughly 32,768 tokens was used.
Fullinformation about all the experimentsincludedis providedinthe
Supplementary Information, Example prompts.

Fine-tuning procedure

Llama 3.1 70B was the base model for our fine-tuning procedure. We
used a parameter-efficient fine-tuning technique known as QLoRA',
which adds so-called low-rank adapters to each layer of afour-bit quan-
tized base model. The base model was kept fixed during fine-tuning and
only the parameters of the low-rank adapters were adjusted. We added
low-rank adapters of rank r = 8 to all linear layers of the self-attention
mechanisms and the feedforward networks. Each low-rank adapter
modifies the forward pass as follows:

Y=XW+aXLL,
WeR"™ L eR";L,eR™,

where XW is the (quantized) linear transformation of the base model
and XL,L, is the low-rank adapter component, with X being the input to
the layer with dimensionality hand Y being the output of the layer with
dimensionality 0. The hyperparameter a controls the trade-offbetween
the two. Ris the set of real numbers. Low-rank adapter computations
were performed in half-precision floating-point format. For further
details on this technique, please see the original work™.

We fine-tuned the model for one epoch on the entire dataset using a
standard cross-entropy loss (we experimented with prolonged training
butfound that this led to overfitting). We only back-propagated the loss
at human responses and masked out the loss for all other tokens. The
effective batch size was set to 32, the learning rate to 0.00005 and the
weight decay to 0.01. We used an 8-bit AdamW optimizer® with alinearly
increasing warm up over the first 100 gradient steps. The fine-tuning pro-
cedurewasimplemented using the unslothlibrary (https://unsloth.ai/).

We havealso trained a smaller version of Centaur, called Minitaur, that
uses Llama 3.18B as the base model following the same recipe. Minitaur
captures human behaviour close to its training distribution but gener-
alizes less robustly than the larger model to out-of-distribution experi-
ments (Extended Data Fig. 7). Nevertheless, we believe that Minitaur is
useful for prototyping because it does not require access to any specific
hardware (itruns, forinstance, on the free GPU instances in Google Colab).

Evaluation metric

We used (negative) log-likelihoods averaged over responses as our eval-
uation metric. For experiments with multi-token responses, we summed
log-likelihoods within a response and averaged across responses. We
used one-sided t-tests whenever we tested whether Centaur outper-
formed a competing model in predicting human behaviour, because
our hypotheses were directional and based on the prior expectation
that Centaur would perform better. Because the number of observa-
tions in our analyses is generally large, reported significant effects
survive after correcting for multiple comparisons where appropriate.

Domain-specific cognitive models

We sselected as our baseline models 14 cognitive and statistical models
that together cover most of the experiments in Psych-101. Further
details regarding the included models and their specifications are
provided in Supplementary Information, Modelling details.

For our mainanalysis, we were interested in predicting the behaviour
of held-out participants. Therefore, we fitted a joint set of parameters
for all participantsin the training data and evaluated how well amodel
with these parameters predicts the responses of held-out participants.
Mirroring the evaluation metric for the language-based models, we
evaluated goodness-of-fit using (negative) log-likelihoods averaged
over responses.

For the out-of-distribution evaluations, we fitted model parameters
using the most similar experimentin the training set, and then we evalu-
ated how well a model with the resulting parameters predicts human
responses in the unseen setting. The most similar experiment for
the magic-carpet version of the two-step task was a two-step task
experiment with the default spaceship cover story. The most similar
experiment for Maggie’s farm was the horizon task. We included no
baseline model for the logical reasoning task, because none of the
experiments in the training data were similar to it.

Neural alignment

The neural alignment analysis on the two-step task was conducted
using data collected inaprevious study®”. We used aregularizedlinear
regression model to predict fMRI data from internal representations
of Centaur and Llama (a separate model was used for each participant
andregion). Wefitted each of these models on data from two scanning
blocks and evaluated them on data from the third. The regularization
strength was selected using a nested cross-validation procedure. For
each run, we split the beta maps into cortical and subcortical regions
of interest (ROI) using the Schaefer 2018 atlas with 100 ROIs®2. We aver-
aged the betas within each ROI, reducing the number of betas from
the number of voxels to the number of ROIs. All cortical and subcorti-
cal ROIs from the atlas were evaluated. Reported Pearson correlation
coefficients correspond to the average across all ROls.

Internal representations were extracted from the models’ residual
stream and transformed using a principal component analysis. We set
the number of retained components such that they explained 95% of
the variance.

The fMRIdata were preprocessed using fMRIPrep 24.0 (ref. 63). We
used the default settings of f/MRIPrep, and all the scans were aligned
to the MNI152NLin2009cAsym atlas®*. To extract effect estimates for
each subtrial of the task (such as the second step of the fifth trial, or
the feedback of the tenth trial), we built separate general linear mod-
els (GLMs). Each GLM included the subtrial of interest as a separate
regressor, whose z-scored beta estimates were used for the alignment
analysis. This part of the data was not modelled using other regres-
sors. Furthermore, we included different regressors capturing all
thefirst steps, all the second steps and all the feedback steps. Finally,
we used six rotation and translation estimates as well as framewise
displacement as noise regressors. The haemodynamic response was
modelled using the spm® model. A high-pass filter of 0.01 Hzand a
Gaussian kernel with 6 mm full-width at half-maximum was applied.
The GLMs were built using nilearn®,

The neural alignment analysis on the sentence-reading task was
conducted using publicly available code from the original study®. No
other changes were made apart from replacing GPT2-XL with Centaur
and Llama. Please see the original study®® for further details.

Model-guided scientific discovery

In our model-guided scientific discovery analysis, we focused on par-
ticipantsin the test set to avoid any potential contamination issues.
We fitted parameters of all cognitive models individually for each
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participant using a maximum-likelihood estimation. Models were
compared with each other using the AIC. The three models from
the original study were implemented by the following equations:

p(a=Alx,, Xz, WADD) < exp(B - WiyappXa)
Wyapp=10.9, 0.8, 0.7, 0.6]
p(a=AlxX,, Xg, EW) < exp(B - WiwX,)
wiw=1[1,1,1,1]
p(a=AlX,, X, TTB) = exp(8- WitpX,)
Wrrp=[1, 0.5, 0.25, 0.125]

where x, and x;; are vectors containing four expert ratings (either O
orl)and Bis afree parameter controlling the noise level.

We prompted DeepSeek-R1 (in the Distill-Llama-70B variant) to gener-
ate explanations of human decision-making; the corresponding prompt
is provided in Supplementary Information, Model-guided scientific
discovery. We then formalized the explanation shown in Fig. 5b into
the following computational model:

exp(B-WirgXy), if Y Xu =D Xg;
p(a=A,I|x,, xg DeepSeek — R1) « i i
exp(B- WiwXa), else

For the scientific regret minimization pipeline, we computed the
difference in log-likelihoods between Centaur and the DeepSeek-
R1-discovered model. We visualized and inspected the ten data points
with the greatest difference. This process resulted in the following
computational model:

p(a=AlX,, Xg, SRM) < exp(B- (0 WipXs + (1 - 0) - WiyX,))

where gis afree parameter constrained between 0 and 1that controls
the trade-off between the two strategies.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Psych-101is publicly available on the Huggingface platform at https://
huggingface.co/datasets/marcelbinz/Psych-101. The test setis accessi-
bleundera CC-BY-ND-4.0 licence through agated repository at https://
huggingface.co/datasets/marcelbinz/Psych-101-test.

Code availability

Centaurisavailable onthe Huggingface platformathttps://huggingface.
co/marcelbinz/Llama-3.1-Centaur-70B-adapter. The extra code needed

toreproduce our resultsisavailable at https://github.com/marcelbinz/
Llama-3.1-Centaur-70B.
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¢, We performed adata contamination analysis using the LogProber method®’
forevery experimental paradigmin Psych-101. LogProber fits atwo-parameter
exponential model to the cumulative log-likelihood of each sequence being
checked for contamination. High acceleration (log B) suggests thata prompt
ismemorized fromthe pretraining data. Following the results presentedin
the original work®’, we set a threshold for possible contaminationtolog B> 1.

Embedding dimension 2

Serial reaction time task

GfﬂiNﬁmmggt -one-out

Virtual subway network

Balloon analog
Columbla card taxk

risk task

Risky choice

N-back  CNOICEST3k
Wiei sk reliorcenent lesrning | Dunning-Kruger effect
7.5 4 ) Modified cover story%igure 3a)
° 9 “®
3:0 A . )
@ Mor eu%n mak|ng. @ Naturalistic category learning
[ ] Behaworal proj nS|t .
2.5 -
‘ Entirely rsvel do%a na&FIPlgt ')e - ’
0.0 . [ ®
(] [ ) @ Modified problem struc.re‘gure 3b)
@ @ Deep seque‘lal decision task
—-2.5 - . [}
e ©o . ®
—5.0 - ‘ ® @ Economic games
0o “
T T T T T T T T
-5 —-5.0 ~-25 0.0 2.5 5.0 7.5 10.0

Embedding dimension 1

Thisanalysisindicated no evidence of contamination. d, Two-dimensional
embedding of the experiments used in this paper. To obtain this embedding,
we took the corresponding natural language prompts up to the point of the
firsthuman choice, extracted a vector-based representation for them using
ModernBERT®, and finally projected these representations onto two dimensions
using multidimensional scaling. Purple dots correspond to experiments from
Psych-101, whereas the colored dots correspond to the indicated evaluation
experiment.



Article

0.8

Negative log-likelihood

Centaur Llama Nemotron Hermes Reflection

Extended DataFig.2|Negativelog-likelihoods of Centaur and alternative
Llama variants on Psych-101. Torule out the hypothesis that finetuning on
any dataaligns amodel with humanbehavior, we compared Centaur to various
Llamavariants finetuned for other purposes (i.e. non-cognitive tasks).
Nemotron®is finetuned for instruction-following. Hermes™is finetuned for
various purposes, including agentic capabilities, roleplaying, reasoning, multi-
turn conversation, and long context coherence. Reflectionis finetuned for
reasoning. None of the Llama variants captures human behavior better than
thebase model, ruling out the hypothesis that finetuning generally leads to
models thatare better at predicting human behavior. Error bars correspond
tothestandard error of the mean, taken over responses.
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Extended DataFig. 3 |Noise ceiling analysis. We conducted anoise

ceiling analysis to better understand the capabilities of Centaur. Itis not
straightforward to estimate the noise ceiling for experiments with sequential
dependencies, whichincludes the majority of Psych-101. Hence, we focused on
two experiments for which such an analysisis possible: a, the choices13k data
set'®*andb, anintertemporal choice experiment®. Inboth cases, we found that
Centaur substantially exceeds the estimated noise ceiling. Thisis possible
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Centaur Llama

because Centaur can pick up on context-dependent patterns thatare not
captured by standard noise ceiling analyses. Therefore, we have performed an
additional analysis testing how well Centaur can predict human responsesif
we promptitto predict eachresponseindependently. We use the suffix “ind.”
toindicate this way of prompting the model. Centaur still matches the
performance of domain-specific cognitive models when context-independent
prompts areused, amountingto roughly half of the estimated noise ceiling.
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a, Negative log-likelihoods on moral decision-making? (t(181388) =-103.54,
p<0.0001). b, Negative log-likelihoods on economic games' (t(7798) = -11.69,
p <0.0001). ¢, Negative log-likelihoods on naturalistic category learning!
(t(21838) =-14.05,p < 0.0001).d, Negative log-likelihoods on behavioral
propensities®® (t(156230) =-11.06, p < 0.0001). e, Negative log-likelihoods on
naturalistic reward learning® (t(9838) =-12.63, p < 0.0001). f, Negative log-
likelihoods on adeep sequential decision task® (t(6092) =-1.06, p = 0.144).
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Extended DataFig. 5| metabenchand CogBenchresults. a, Results for z=6.371,p<0.0001, Horizon task:z=22.176, p < 0.0001, Restless bandit:
metabench?*, asparse benchmark containing several canonical benchmarks z=7.317,p<0.0001, Instrumental learning:z= 0.126, p = 0.45, Two-step task:
from the machine learningliterature. We find that Centaur maintains the level z=1.458,p=0.072,Balloon analogrisk task:z=1.496, p = 0.067; all z-test were

of performance of Llama, indicating that finetuning on human behaviordidnot  one-sided). ¢, Behavioral metrics from CogBench. We observe that Centaur
lead to deteriorationin other tasks (ARC:z=-0.126, p=0.9, GSM8K:z2=-0.529, = becomes more similar to humansubjectsin allten behavioral metrics (Prior

p=0.597,HellaSwag:z=0.0,p=1.0, MMLU:z= 0.0, p =1.0, Winogrande: weighting: z=2.176,p = 0.015, Likelihood weighting: z=1.131, p=0.129,
z=-0.556,p =0.578). Performance on TruthfulQA™ - which measures how Directed exploration: z=0.525, p = 0.3, Random exploration: z = 2.014,
models mimic human falsehoods - evenimproved ssignificantly with finetuning  p =0.022, Meta-cognition:z=2.206, p = 0.014, Learning rate: z= 0.477,
(z=2.312,p =0.021; all z-test were two-sided). b, Performance-based metrics p=0.317,Optimismbias: z=0.78, p=0.218, Model-basedness: z=9.608,
from CogBench®, abenchmark thatincludes ten behavioral metrics derived p<0.0001, Temporal discounting:z=2.594, p = 0.005, Risk taking: z=1.612,
fromseven cognitive psychology experiments. We find that - relativetoLlama-  p=0.053; all z-test were one-sided).

Centaur’s performance improves in all experiments (Probabilistic reasoning:
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behaviorally relevantin previous work. Cortical scores are averaged over the
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Extended Data Table 1| Psych-101 metrics

Experiment Centaur Llama Cognitive model
Shepard categorization 0.5394 0.5818 0.6108
Drifting four-armed bandit 0.7029 0.8810 0.9043
N-back 0.3954  0.5209 0.5787
Digit span 0.5520 0.6618 0.9359
Go/no-go 0.0000 0.0062 0.0757
Recent probes 0.2572  0.3433 0.3868
Horizon task 0.4032 0.5237 0.3595
Gardening task 0.3783  0.5040 0.9105
Columbia card task 0.1867 0.2261 0.2629
Balloon analog risk task 0.0593 0.0753 0.0922
Two-armed bandit 0.2963 0.3829 0.4187
Conditional associative learning 0.5380 0.6373 0.8575
THINGS odd-one-out 0.8068 1.1386 0.8253
Multi-attribute decision-making 0.0619  0.1502 0.1922
Two-step task 0.4998 0.6075 0.6043
Probabilistic instrumental learning 0.4937 0.5382 0.5047
Medin categorization 0.4967 0.5772 0.5313
Zoopermarket 0.4850 0.6026 0.6047
choices13k 0.4274  0.5342 0.6563
CPC18 0.3390 0.4118 0.6607
Intertemporal choice 0.4340 0.7336 0.6591
Structured bandit 0.6410 0.8114 1.0530
Weather prediction task 0.5514 0.5749 0.6267
lowa gambling task 0.8890 0.9880 1.1555
Virtual subway network 1.1271  1.5347 nan
Multi-task reinforcement learning 0.5672 0.6604 1.0424
Serial reaction time task 0.1718 0.1900 0.1962
Decisions from description 0.5336  0.7569 0.6120
Decisions from experience 0.3686  0.4339 0.5404
Changing bandit 0.3025 0.3824 0.4378
Multiple-cue judgment 1.1236 1.2818 1.9157
Recall and recognition 1.0591  1.3759 nan
Experiential-symbolic task 0.4536  0.6983 nan
Grammar judgement 1.4355 1.9949 1.4127
Risky choice 0.4281  0.6475 nan
Tile-revealing task 1.8713 2.7380 nan
Episodic long-term memory 0.8684 1.1344 nan
Aversive learning 4.0733 5.1066 nan
Spatially correlated multi-armed bandit  1.8319  2.4479 2.7635
Probabilistic reasoning 2.3731  2.6406 nan

Full negative log-likelihoods on held-out participants.



nature portfolio

Corresponding author(s): Marcel Binz

Last updated by author(s): Apr 27, 2025

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
<

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 [0 XX [ XIS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No new data was collected in this study.

Data analysis custom code on https://github.com/marcelbinz/Llama-3.1-Centaur-70B

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Psych-101 is publicly available on the Huggingface platform: https://huggingface.

co/datasets/marcelbinz/Psych-101. The test set is accessible under a CC-BY-ND-4.0 license via a gated repository: https://huggingface.co/datasets/marcelbinz/
Psych-101-test.




Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or N/A
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groupings

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences |X| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description Meta-analysis
Research sample Meta-analysis
Sampling strategy Meta-analysis
Data collection information available as part of the original studies
Timing information available as part of the original studies
Data exclusions information available as part of the original studies
Non-participation information available as part of the original studies
Randomization information available as part of the original studies

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
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Animals and other organisms
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Seed stocks N/A

Novel plant genotypes  N/A

Authentication N/A
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Magnetic resonance imaging

Experimental design

Design type two-step task and sentence-reading task

Design specifications see original reports:
https://www.nature.com/articles/s41562-023-01573-1
https://www.nature.com/articles/s41562-023-01783-7

Behavioral performance measures  see original reports:
https://www.nature.com/articles/s41562-023-01573-1
https://www.nature.com/articles/s41562-023-01783-7

Acquisition

Imaging type(s) functional, structural

Field strength 3T

Sequence & imaging parameters see original reports:
https://www.nature.com/articles/s41562-023-01573-1
https://www.nature.com/articles/s41562-023-01783-7

Area of acquisition Whole brain

Diffusion MRI [ ] used X Not used

Preprocessing

Preprocessing software fMRIprep 24.0.0, SPM12 and custom MATLAB scripts
Normalization identical to original study
Normalization template identical to original study
Noise and artifact removal identical to original study
Volume censoring identical to original study

Statistical modeling & inference

Model type and settings predictive modeling
Effect(s) tested whether human behavior can be predicted by language model activity

Specify type of analysis: [ | whole brain || ROI-based ~ [X Both

Describe how anatomical locations were determined (e.g. specify whether automated labeling algorithms

Anatomical | ion }
atomical location(s) or probabilistic atlases were used).

Statistic type for inference N/A

(See Eklund et al. 2016)




Correction N/A

Models & analysis

n/a | Involved in the study
|:| Functional and/or effective connectivity

|Z| |:| Graph analysis

|:| Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis  independent variables: language model activity
feature extraction: internal representations were extracted from the models’ residual stream and
transformed using a principal component analysis. We set the number of retained
components such that they explain 95% of the variance.
model, training, evaluation metrics: cross-validated linear regression, Pearson correlation
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