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Benchmarkingvision-languagemodels for
diagnostics in emergency and critical care
settings
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The applicability of vision-language models (VLMs) for acute care in emergency and intensive care
units remains underexplored. Using a multimodal dataset of diagnostic questions involving medical
images andclinical context,webenchmarkedseveral small open-sourceVLMsagainstGPT-4o.While
open models demonstrated limited diagnostic accuracy (up to 40.4%), GPT-4o significantly
outperformed them (68.1%). Findings highlight the need for specialized training and optimization to
improve open-source VLMs for acute care applications.

Artificial intelligence (AI) is rapidly transforming healthcare, with
increasing applications in diagnostics, clinical workflows, and patient
management1. This potential is particularly evident in critical care envir-
onments such as emergency departments (EDs) and intensive care units
(ICUs), where clinicians must synthesize imaging, text-based information,
and real-time patient data under significant time constraints2. Vision-
language models (VLMs), which merge natural language processing and
computer vision, offer new possibilities for integrating multimodal data
streams3. They promise to support decision-making by identifying diag-
nostic patterns from imaging studies, extracting and interpreting clinical
notes, and combining disparate inputs within critical care environments4–9.
For example, Chua et al.10 showed that combining imaging features with
clinical text improved early detection of sepsis in ED settings. While pro-
prietary models like GPT-4 have demonstrated impressive capabilities,
small open-source VLMs offer significant advantages in terms of scalability,
data privacy, and cost, especially for resource-constrained and underserved
settings11.

Yet despite their growing availability, these models have not been
systematically evaluated in image-based diagnostic tasks for acute care. For
these reasons, we benchmarked several open-source VLMs chosen for their
smaller computational footprints and suitability in clinical settings12.
Delayed or inaccurate diagnoses in ED/ICUworkflows can be catastrophic,
underscoring the urgent need for robust diagnostic support. By integrating
imaging and clinical data, VLMs may enhance diagnostic speed and accu-
racy for critical conditions such as stroke, myocardial infarction, sepsis, and

trauma. As interest in AI-based diagnostic tools for acute care continues to
grow, the New England Journal of Medicine (NEJM) Image Challenge
dataset provides a valuable benchmark for assessingmodel performance on
diverse, real-world diagnostic tasks with clearly defined ground-truth
answers. Its rich collection of acute-care cases makes it particularly relevant
for evaluating AI’s potential to streamline high-stakes clinical decision-
making.

In this study, we evaluated several open-source VLMs and compared
them to GPT-4o using the NEJM Image Challenge dataset of over 1000
diagnostic questions, each linked to clinical images. The integration of
clinical images, case descriptions, multiple-choice answers, and human
responses allowed for a systematic assessment ofmodel performance across
varying complexity levels (Fig. 1)12.

Our findings revealed that current small open-source VLMs lag sig-
nificantly behind GPT-4o in diagnostic tasks. While GPT-4o achieved an
accuracy of 68.1% and exceeding the average performance of human
responders, open-source VLMs yielded poor accuracy, ranging from below
randomguessing (<20%) to amodest 40.4% for the largest, best-performing
model (Fig. 2). Smaller VLMs designed for resource-constrained deploy-
ment, such as DeepSeek VL2 Tiny or Smol 500M, were particularly
inadequate, with some models performing below random guessing. Per-
formancedifferences acrossdifficulty levelswere relativelyminor, indicating
that model accuracy is consistent across easier and more challenging
diagnostic cases (Fig. 3). Notably, cases in the NEJM Image Challenge
frequently overlapped with conditions that demand urgent intervention in
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EDs and ICUs, yet none of the evaluated open-source models exhibited the
diagnostic accuracy necessary for real-world application in such critical
environments.

To better understand the performance relationships and correctness
patterns among these VLMs, we computed Phi coefficients to quantify the

correlation in their responses (Fig. 4). Strong correlations within model
families, such as InternVL and Qwen, demonstrate consistent correctness
patterns as model complexity increases. However, models like DeepSeek
VL2 Tiny (1B) and Smol (500M, 2B) have distinctive correctness patterns,
likely due to their smaller size and limited capacity.

This performance gap highlights several barriers to the adoption of
open-source VLMs for acute care. One notable limitation is the lack of
specialized trainingonmedical datasets tailored toEDand ICUsettings.The
models evaluated in this study were trained on generic multimodal datasets
and were not optimized for clinical diagnosis, let alone the unique demands
of high-stakes, time-sensitive decision-making in acute care environments.
Moreover, the relatively small model sizes of certain open-source VLMs,
while enabling deployment on local or mobile hardware, appear to com-
promise accuracy due to reduced parameter capacity and inferior perfor-
mance on complex pattern recognition. These limitations suggest that while
open-source models could eventually democratize access to advanced
diagnostic tools, improved architectures and targeted training strategies are
required to close the accuracy gap.

Despite these challenges, the performance of proprietary systems like
GPT-4o demonstrates the immense potential of VLMs for acute care. GPT-
4o’s consistent accuracy across difficulty levels indicates that large-scale
models, even in a zero-shot setting without task-specific tuning, can deliver
substantial diagnostic value. However, GPT-4o’s performance may vary
with task design and dataset selection. For instance,Ueda et al.13 reported up
to98%accuracyona very selective subset of theNEJMImageChallenge that
used only textual descriptions. These differencesunderscore the importance
of contextual factors (e.g., imaging data, question format) and caution
against overgeneralizing our findings. In our study, GPT-4o exceeded the
overall performanceof humanresponders, indicating considerablepotential
as decision-support tools in EDs and ICUs.While their diagnostic accuracy
may improve patient care efficiency, fully alleviating clinician workload
often entails additional features, such as automating documentation and
administrative tasks that fall outside this study’s scope. Moreover, concerns
regarding data privacy, cost, and scalability still limit the widespread
adoptionof proprietary systems.Consequently, open-source initiatives offer
an important avenue for developing ethical and accessible AI solutions
tailored to diverse healthcare settings.

If refined for clinical deployment, VLMs could potentially benefit ED
and ICU workflows by assisting with triage, aiding in the detection of life-
threatening conditions (e.g., pulmonary embolism, severe infections), and
supplementing diagnostic accuracy in overburdened healthcare systems.
For example, small VLMs running on edge devices could enable bedside
image analysis in resource-limited or rural hospitals. Furthermore,
ensemble approaches, where multiple models work collaboratively to
improve final predictions, could compensate for the weaknesses of smaller
individual systems14.

Fig. 1 | Overview of the benchmarking process for
evaluating VLMs on the NEJM Image Challenge.
VLMs analyze medical images and descriptions to
select the correct diagnosis from multiple-choice
answers, compared against expert readers’ con-
sensus. Medical images shown are sourced from
Wikimedia Commons.

Fig. 2 | Percentage of correct answers for eachmodel by difficulty level. Each bar is
segmented to show results for easy (green), medium (purple), and hard (orange)
questions. The total height of each bar represents the overall percentage of correct
answers for that model. The horizontal dashed line indicates the random guessing
threshold. Because there were fivemulti-choice answers in each challenge, we defined
random guessing at 20% accuracy. The horizontal dotted line represents the average
performance of human responders to the challenge. DeepSeek VL2 Tiny (1B),
InternVL 2.5 (1B), and Smol (500M) performed worse than random guessing with
correct answer percentages lower than 20%.Granite Vision 3.2, InternVL 2.5 (2B) and
Smol (2B) performed slightly above randomguessingwith accuracies of 23.0%, 22.6%,
and25.4%, respectively.The InternVL2.5 andQwen2.5VLmodel families exhibited a
consistent improvement in accuracy with increased model complexity; for instance,
InternVL2.5 (4B) answered correctly in 32.6%of cases, and InternVL2.5 (8B) showed
slight improvementwith an accuracy of 35.0%. TheQwen2.5VL (3B)model achieved
a 35.6% accuracy, whileQwen 2.5 VL (7B) improved further to 40.4%. The Phi4Multi
(5B) andGemma3 (4B)models reached an accuracy of 33.4% and 35.5%, respectively.
Notably, none of the open VLMs could compete with GPT-4o, which correctly
answered more than two-thirds (68.1%) of challenge questions.
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The correlation analysis showed that models within the same family
(e.g., InternVL, Qwen) tended to produce similar responses (Fig. 4), while
models with low mutual phi coefficients (e.g., DeepSeek vs. InternVL or
GPT-4Q vs. Smol) generated more diverse outputs, suggesting to be good
candidates for ensembling, as they likelymake different types of predictions,
thereby enhancing the overall robustness and accuracy when combined.
Another key pathway involves the integration of multimodal data, where
VLMs process not only imaging but also patient history, laboratory results,
and real-time vitals to offer a more comprehensive and actionable assess-
ment of patient health. However, for these innovations to succeed, rigorous
validation and regulatory certification are essential to ensure diagnostic
reliability and patient safety.

In real-time applications, particularlywithin chaotic environments like
EDs and ICUs, explainability and interpretability must also be prioritized.
Diagnostic output must be easy to understand and actionable for clinicians
under pressure. Future efforts should address these practical considerations
while also working to mitigate potential biases that may occur in under-
represented populations. To foster equitable AI solutions for all patients,
models must be trained on diverse datasets that reflect the population-level
variation seen in emergency and acute care settings15.

The NEJM Image Challenge dataset’s inclusion of realistic and diverse
cases provides a robust starting point for evaluating VLMs for emergency

and critical care applications. However, there are limitations to the current
benchmarking approach.While the dataset typically includes clear ground-
truth answers, real-world ED/ICU scenarios often involve iterative
problem-solving and require clinicians to generate differential diagnoses
rather than selecting from multiple-choice options. Future studies should
extend these evaluations by incorporating open-ended tasks and additional
multimodal benchmarks that better reflect the complex, dynamic nature of
clinical reasoning in acute care16. It is also important to note that while
efforts were made to avoid inadvertent data contamination, the possibility
remains that some models may have been trained on publicly accessible
medical challenges. Greater transparency in the disclosure of training
datasets could address such concerns and bolster the validity of future
benchmarking studies17.

These findings alsomirror results reported in non-emergencymedical
contexts, such as dermatology or radiology screening, where tasks typically
involve broader training data and less time-sensitive decision-making. In
those domains, smaller open-sourceVLMs have performed relatively well18,
underscoring the importance of fine-tuning model architectures and
training regimens to the complexity and urgency of different clinical
scenarios.

In conclusion, this study demonstrates the potential and limitations of
small open-source VLMs for emergency and critical care diagnostics.While
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Fig. 3 | Heatmap of model correctness for each challenge question. The colored
bars along the right-hand side classify each question’s difficulty based on the NEJM
human responder accuracy, ranging from ‘hard’ (orange, ≤44%) at the top, to
‘medium’ (purple, 45–55%), and ‘easy’ (green, ≥56%) at the bottom. Each row
corresponds to a single question, and each column corresponds to one of the eval-
uatedVLMs.A dark cell indicates that themodel selected the correctmultiple-choice
answer; a blue cell indicates that the model’s final answer was incorrect. Humans
were categorized as giving the correct answer if more than 50% of NEJM readers

answered correctly. The distribution of correct answers across easy, medium, and
hard categories remained relatively stable, indicating that the models’ capabilities
were consistent irrespective of question difficulty as perceived fromahumanpoint of
view. Despite the accuracy improvements within certain model families, we noted
inconsistencies. For example, the smaller InternVL 2.5 (1B) answered some chal-
lenges correctly that the larger InternVL 2.5 (2B) did not. Additionally, DeepSeek
VL2 Tiny (1B) and InternVL 2.5 (1B) performed comparably and below random
guessing, yet their answering patterns showed little overlap.
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their modest accuracy renders them insufficient for clinical use at present,
refining thesemodels through specialized training, larger architectures, and
ensemble approaches holds significant promise for enhancing the reliability
andaccessibility ofAI-drivendiagnostic tools.As these technologiesmature,
their ability to integrate multimodal data streams, reduce diagnostic errors,
and support time-sensitiveworkflows could transformacute care delivery in
EDs and ICUs. Continued research and development are essential to bridge
the gap between AI innovation and practical implementation in these cri-
tical environments.

Methods
VLMs
In this study, we evaluated the ability of several widely used open-source
VLMs, including Deepseek VL2 Tiny (1B)19, Gemma 3 (4B)20, Granite
Vision 2.5 (2B)21, InternVL 2.5 (1B, 2B, 4B, and 8B)22, Phi4 Multimodal
(5B)23, Qwen 2.5 VL (3B and 7B)24, and Smol (500M and 2.2B)25. All these
models are less than6monthsold as ofApril 2025andwere chosenbasedon
their strong performance in benchmarks and popularity on the Hugging-
Face platform. Additionally, we compared them against GPT-4o26, a pro-
prietary model, to provide a comprehensive understanding of their
capabilities in the field of medical diagnostics.

The values such as 1B, 3B, and 8B represent the number of model
parameters (e.g., 1B = 1 Billion), which indicates the model’s capacity.
Generally, a higher number of parameters can lead tobetter performance, as
the model can capture more intricate patterns in the data. GPT-4o is esti-
mated to have more than 1.8 trillion parameters, although there is no
confirmed information on its exact size.

All evaluatedVLMsuse a two-stageprocess of extractingvisual features
from a dedicated vision backbone (e.g., a convolutional or transformer-
based encoder) and textual features from a languagemodule, thenmapping
these features into a shared embedding space via cross-modal attention or
contrastive learning27. Smaller models (e.g., DeepSeek VL2 Tiny (1B))
generally have fewer parameters and rely on light-weight encoders, which

can limit their capacity to learn complex multimodal relationships. In
contrast, larger architectures (e.g., Qwen 2.5 VL (8B), GPT-4o) incorporate
additional parameters and more advanced bridging mechanisms, enabling
more nuanced alignment between image and text features. While exact
architectural details are proprietary or unavailable for some models, dif-
ferences in training data scale, parameter count, and encoder–decoder
design can lead to variations in their capability to handle multimodal tasks.

Experiments were conducted on a local machine using a Nvidia A10G
graphics card with 24GB RAM, although many of the evaluated models
have lower computational requirements. VLMs with 1B or fewer para-
meters can potentially run on smartphones or edge devices, enabling
deployment in resource-constrained environments. In contrast, larger
models up to 8B parameters and beyond typically require more dedicated
hardware, such as high-performance GPUs, to ensure efficient inference.

We utilized the Huggingface library with Python to load the quantized
models and manage text generation parameters. We presented to each
model the medical image, relevant background information (if provided),
the question and the five possible multiple-choice answers, of which only
one was correct, as shown in the NEJM Image Challenge.

To maintain consistency and ensure that each model returned a defi-
nitive answer, we prompted the models to generate a single diagnosis using
the following instruction (with bracketed text replaced by the case-specific
content): “You are a medical expert. Use the image and the description to
choose the correct answer. This is the description: {case_description}. Please
choose the correct diagnosis among these options: {choice_1}, {choice_2},
{choice_3}, {choice_4}, {choice_5}. Please provide only the answer with no
additional explanations. The correct answer is always among the options.
You must always return one of the possible choices as an answer.”

We relied on the default or recommended (and relatively low-tem-
perature) settings for each VLM that yield near-deterministic outputs and
prompted each model to provide only one definitive diagnosis, accuracy
metrics in this study reflect a single run for each VLM since multiple runs
did not provide different results.

Fig. 4 | Correlation matrix of model response
patterns across VLMs. The heatmap displays Phi
coefficients (ranging from –1 to 1) quantifying the
similarity in correctness patterns among vision-
language models, with higher values indicating
greater similarity. Strongest correlations (up to 0.5)
occur within model families such as InternVL
(1B–8B) and Qwen (3B, 7B), reflecting consistent
intra-family performance. Smol models also corre-
late well internally but diverge from others. Granite
Vision 3.2 (2B), Phi4Multi (5B), and Gemma 3 (4B)
show moderate correlations with larger InternVL
andQwenmodels. DeepSeekVL2Tiny (1B) exhibits
low correlation with the similar performing Smol
(500 M), suggesting distinctive response patterns.
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NEJM image challenge data
The data utilized in this study were sourced from the NEJM Image Chal-
lenge, an educational feature that has been in continuous operation since its
inception in 2005. This weekly challenge engagesmedical professionals and
students in diagnostic exercises using real clinical images to enhance their
diagnostic skills.

As ofMarch 2025, the NEJM Image Challenge contains a total of 1012
image-text pairs. Each pair consists of an image and its corresponding
diagnostic query, alongwithfivemultiple-choice options. This dataset offers
comprehensive coverage of various medical conditions, scenarios, and
educational challenges. We extracted the complete set of images, questions,
correct answers, and the proportion of publicly recorded responses for each
option for use in this study. The average percentage of reader votes that
answered the medical cases correctly was 49.6%. Following Jin et al.16 we
categorized the challenges into three difficulty levels: “easy” for a 56–100%
correct answer rate, “medium” for 45–55%, and “hard” for 0–44%, based on
theproportionof correct answers fromNEJMusers.This leads to a relatively
even distribution of questions in each category, n = 321 in “easy”, n = 327 of
“medium” difficulty, and n = 364 “hard” questions (see Fig. 5).

Typically, thediagnostic queries in the challenge involve identifying the
correct diagnosis based on the visual cues provided by the clinical images
and the accompanying patient information. Occasionally, the questions
may focus on correct treatment options or other medical inquiries, broad-
ening the scope of diagnostic evaluation. Sometimes, the questions may be
short and generic, such as “What is the most likely diagnosis?” without
providing relevant clinical information but always presentedwith an image.
The longest case description consisted of 182 words.

Data availability
The data for this study is publicly available at the NEJM homepage.
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