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Objective: The objective was to evaluate the effects of deep brain stimulation (DBS) in an international cohort of
patients with VPS16-related dystonia.

Methods: This observational study collected preoperative and postoperative demographic, clinical, stimulation,
genetic, neuroimaging, and neurophysiological data of medically refractory DYT-VPS16 patients with implanted DBS in
10 international centers. Motor symptoms and disability outcomes were assessed using the Burke-Fahn-Marsden Dys-
tonia Rating Scale Motor (BFMDRS-M) and Disability (BFMDRS-D) scales. A cut-off threshold for considering response
to DBS was set at 25% of BFMDRS-M improvement at the last follow-up (FU) compared to baseline.

Results: The cohort consisted of 26 participants (17 men, 65.4%). Age at dystonia onset and surgery was 17.8 &+ 10.9
and 35.3 £+ 14.8 years, respectively. At the last FU, 102.5 + 57.3 months (range, 2-216), the mean BFMDRS-M
improvement was 41.6 + 37.3% (26/26 patients) and 34.8 + 42.6% for the BFMDRS-D (23/26 patients). Most patients
(19/26, 73%) were considered responders. Higher motor improvement was associated with stimulation of the
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ventroposterior portion of the internal globus pallidus. A significant inverse relationship was observed between
improvement in BFMDRS-M at last FU, and the presence of spasticity (p = 0.027) and fixed skeletal deformities
(p = 0.001) before surgery. Non-responders had a younger age at disease onset and at implantation, shorter disease
duration at DBS surgery, and higher baseline BFMDRS scores.

Interpretation: DBS was an effective treatment for three-quarters of patients with pathogenic VPS16 variants in our
cohort. Mean motor improvement was most pronounced at the 1-year FU, but persisted at the last FU despite disease

progression.

athogenic VPSI6 gene variants have been recently
Pidentiﬁed as an important cause of early-onset dysto-
nia with a global disease burden.'” Although initially
considered an autosomal recessive disorder,® several fami-
lies with autosomal dominant pattern and incomplete
penetrance or cases with a de novo occurrence have been
identifie > DYT-VPS16 dystonia typically presents

with isolated generalized dystonia, with craniocaudal gra-
5.8,9,13

d 1,2,4—

dient, occasionally accompanied by myoclonus,
neuropsychiatric features, such as emotional lability, anxi-
ety or depression,”®” and intellectual disability."®

Deep brain stimulation (DBS) is an effective treatment
for medically refractory segmental or generalized dystonia.
Predicting DBS success at an individual patient level for dys-
tonia is difficult, but improved understanding of the genetic
background of dystonia has allowed incorporation of genetic
data into predictive algorithms.'®"> In this regard, increasing
evidence suggests both short- and long-term DBS efficacy in
a significant proportion of patients with monogenic dystonia
because of TORIA mutations,'*'®" as well as in DYT-
SGCE"® DYT/PARK-TAFI," DYT-KMT2B,*
DYT-GNAL?' or DYT-GNAOI dystonia.22’23 Moreover,
previous reports show minimal or no improvement after DBS
in patients with DYT-A7PIA3 dystonia.”>** Although several
previous reports suggest a potential benefit of DBS also in
DYT-VPS16 dystonia, current evidence has not been suffi-
cient to draw final conclusions for dlinical decision-making,”

The aim of our study was to evaluate short- and
long-term effects of DBS in an international retrospective
cohort of patients with VPSI6-related dystonia. We also
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aimed to evaluate factors associated with good versus poor
outcomes in these patients, including genetic variants, clini-
cal factors, and lead positions, as well as to describe pallidal
neuronal activity acquired during perioperative microelec-

trode recordings in this clinico-genetic syndrome.

Methods

Recruitment and Ethical Approval

Thirty-seven centers from Europe, Americas, Asia, and
Australia were contacted for the availability of patients with
DYT-VPS16 dystonia and implanted DBS (see Supporting
Information). In total, 26 patients with available data were
identified from 10 DBS centers in 6 European countries,
including Grenoble, Montpellier (both France), Berlin,
Cologne, Hamburg, Kiel (all Germany), Milan (Italy), Gro-
ningen (Netherlands), Kosice (Slovakia), and London
(United Kingdom). Inclusion criteria were as follows:
(1) genetically confirmed DYT-VPSI6 dystonia, treated
with DBS, (2) at least 1 available follow-up (FU) more than
1 month after the surgery and Burke-Fahn-Marsden Dysto-
nia Rating Scale (BFMDRS) motor sub-score available at
least at baseline before surgery and at last FU.

Central ethical approval for this study was obtained by
the ethics committee of the University Hospital of L. Pasteur
in Kosice, Slovak Republic, under no. 2022/EK/11088. The
study was performed according to the Declaration of Hel-
sinki. Informed consent of all participating patients was pro-
vided by each center individually. The methodology
followed the STROBE guidelines for a cohort study.
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Genetic Data

Genetic data were collected for each patient. For each vari-
ant, we determined whether variants were previously
described, reported on mutation databases, or novel and
were classified according to the American College of Med-
ical Genetics and Genomics (ACMG) guidelines.25 Loss-
of-function variants were classified as pathogenic. Missense
variants were further evaluated based on Combined Anno-
tation Dependent Depletion (CADD) score and other in-
silico prediction programs (PolyPhen-2, SIFT, Provean,
and MutationTaster) as well as frequency in the Genome
Aggregation Database (gnomAD). Missense changes that
were predicted to be deleterious by at least 3 tools and
that were absent from gnomAD were considered disease-
causing.

We grouped patients into 2 categories: protein-
truncating variants (start-loss, nonsense, frameshifts, and
splice-site) or missense variants. The model of the human
VPS16 protein  structures was retrieved from the

AlphaFold Protein Structure Database (AlphaFold DB) by

. . . 26-28
their Ul’llpl‘Ot accession COdC.

Data Collection

We collected basic demographic information as well as
age of disease onset. Detailed phenotypic data were col-
lected, including site of dystonia onset and distribution
of dystonia at baseline and at the last available FU
assessment. If available, also data at first FU (1—
3 months), 6, and 12 months after implant were
assessed. The presence or absence of spasticity, fixed
skeletal deformities, neuropsychiatric symptoms, epilep-
tic seizures, either diagnosed by relevant scales or based
on treating neurologist reporting (present/not present),
and information on comorbidities were also collected.
Data on previous treatment and its effect on dystonia
were recorded. DBS-related information included age at
surgery, DBS target, type of device, surgical comp-
lications, stimulation parameters, stimulation-related
side-effects, and device/hardware-related complications.
Primary outcomes of the study included evaluation of
dystonia as assessed by BFMDRS-motor (M)*’ and
BFMDRS-disability (D) subscales.”” The cut-off for
non-responders was set as an improvement of
BFMDRS-M  <25% at last FU. Responders with
improvement more than >50% were further sub-
classified as high responders.’>?! Secondary outcomes
included Clinician and Patient Global Impression—
Improvement Scales (CGI and PGI, respectively). Pri-
mary and secondary outcomes were recorded for each of
the study timepoints as available, including baseline sta-
tus before DBS surgery.

Svorenova et al: Deep Brain Stimulation in DYT-VPS16

Statistical Analysis

Statistical analysis was performed using SPSS Version
25 statistic software package. Data were expressed as
mean =+ standard deviation (SD) and statistical signifi-
cance was set at p-value <0.05. Non-parametric tests were
used if the data were not distributed normally for com-
parisons between groups. Improvement of BEMDRS was
calculated as ([BFMDRS baseline-FU]/baseline) x 100.
Mann—Whitney U test was used to identify the relation-
ship between age of disease onset and genotype and dysto-
nia severity represented by BEMDRS-M at baseline and
type of mutation. The evolution of BEMDRS-M at base-
line and last FU with DBS according to the class of vari-
ant was analyzed by Wilcoxon signed-rank test. The
Wilcoxon signed-rank test was used for the comparison of
BFMDRS scores and PGI and CGI at each timepoint.
Correlations between improvement of BFMDRS and
independent continuous variables such as the age of dysto-
nia onset, age at DBS implantation, and disease duration
were identified with non-parametric Spearman’s rho test.
For ordinal values (gender, fixed skeletal deformities, spas-
ticity, intellectual disability, anxiety, depression, emotional
lability, epileptic seizures, and other comorbidities), we
used non-parametric Mann—Whitney U test. Additionally,
analysis of variance regression analysis was used to study
relationships  between selected significant factors and
response to DBS. Differences between responders
and non-responders were characterized by eta (continu-
ous) and phi (ordinal variables) coefficient and individu-
ally, significant factors of DBS outcome were analyzed by
binomial logistic regression. The Spearman’s rho test was
used also for expression of relationship between subjective

PGI and objective BEMDRS improvement.

DBS Sweet and Sour Spot Mapping and

Microelectrode Recordings Data Analysis

Pre- and post-surgical neuroimaging data (computed
tomography or magnetic resonance imaging) were col-
lected for electrode position reconstructions. If available,
data on neurophysiological perioperative microelectrode
recording were also collected. We localized DBS electrodes
for the patients in our cohort using the advanced
processing pipeline available in Lead-DBS v2.5.>* For
electric fields (E-fields) estimation, we followed the meth-
odology published previously.” To examine the impact of
stimulation intensity and position on globus pallidus
internus  (GPi)-DBS  responsiveness in DYT-VPSI6
patients, we applied a voxel-wise correlation analysis.>*?*
Specifically, E-fields were modelled in 22 patients
(3 patients were excluded from this analysis because of
low image quality, Table S1) based on active contacts and
stimulation parameters, and were analyzed separately for
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the right and left hemispheres. To identify and visualize
sweet and sour spot regions based on voxel-wise correla-
tion scores, we processed voxel data using a combination
of statistical filtering and 3-dimensional visualization tech-
niques for each hemisphere separately as outlined in
Supporting Information.>*34

We also examined intraoperative microelectrode
recordings (MER) from 5 trajectories acquired during pal-
lidal DBS surgery under propofol anesthesia in 2 patients
(P8 and P9) to characterize the neural activity of the inter-
nal and external segments of the globus pallidus (GPi and
GPe, respectively). We applied Dunn’s test with Holm-
Bonferroni multiple comparison correction for continuous
neural features and Fisher exact test for binary neural fea-
tures for GPi-GPe comparison as described previously3 >
(see Supporting Information for more details).

Results

Genetic Data

We identified 26 patients with 18 different VPS16 gene
variants in our cohort, 4 of them novel (c.1A>G,
c.290 T>A, c.1189A>G, and ¢.1204-2A>G), not reported
in mutation databases (ClinVar), and another 4 newly
associated with dystonia phenotype (c.2806G>A, ¢.2113C>G,
c.1438G, and c.1813C>T). Two patients had variants of
uncertain significance according to ACMG guidelines, the
rest were classified as pathogenic (18/26) or likely patho-
genic (5/26 and 1/26 compound heterozygote ¢.286G>A +
c.2113C>G, P21). Most patients 22 of 26 had protein
truncating variants (PTV) (1 start-loss, 6 nonsense,
4 frameshift, and 2 splice site) 5 missense variants were
identified (3/26 patients and 1/26 previously mentioned
compound heterozygote, patient P21). Two families were
present in the cohort, P19/P20 and P18/P16, P17, both
being mother/children. Genetic background of the cohort
and position of variants on gene are shown in Table 1 and
Figure 1.

Demographic and Clinical Characteristics at
Baseline

Our cohort consists of 9 females (34.6%) and 17 males
(65.4%) with VPSIG-related dystonia and implanted
DBS. Mean age at dystonia onset was 17.8 £ 10.9 years
(range, 6-50 years). Dystonia’s site of onset was mostly in
the limbs (12/26) or the neck (8/26). Before surgery, most
of the patients had generalized dystonia except 3 cases
with segmental distribution of the disease. Most of them
presented with cervical dystonia (25/26), at least 1 limb
(25/26, all of them including arm involvement) or trunk
(21/26) involvement (Fig 2A). Four patients (Patients
13, 16, 21, 23) had combined dystonia with myoclonus

and Patient 16 presented also with freezing of gait before
surgery (Table 2).

Mean BFMDRS motor and disability sub-scores at
baseline were 44.1 +22.5 and 11.3 +7.1 (24/26),
respectively. Spasticity was reported in 2of 26 (7.7%)
patients, fixed skeletal deformities in 8 of 26 (30.8%)
patients. Neuropsychiatric features present at baseline
included anxiety (15/26, 57.7%), depression (9/26,
34.6%), emotional lability (9/26, 34.6%), and intellectual
disability (4/26, 15.4%) based on clinical assessment by
the treating neurologist (present/not present), but results
from relevant scales were missing in most centers. Single
patients reported obsessive-compulsive disorder, psychosis,
and post-traumatic stress disorder diagnosed by a psychia-
trist (Table 2). Epileptic seizures were documented in 2 of
26 patients (7.7%).

The efficacy of oral medications was limited. Botuli-
num toxin was reported as effective in less than half of the
patients (10/23, 43.5%) and partially or temporarily effec-
tive in one-third (7/23, 30.4%) of injected patients. For
detailed clinical characteristics of the cohort, see Table S1.

DBS Insertion and Outcomes

All patients had electrodes implanted into GPi bilaterally
except for P14, who had unilateral right GPi placement
and P21, who had bilateral GPi placement together with
thalamic ventral intermediate nucleus (VIM) electrodes in a
single surgery with no reported complications. Mean age at
DBS surgery was 35.3 £ 14.8 years (range, 11-68 years)
and mean disease duration was 17.5 £+ 9.7 (range,
2-35 years). The types of the DBS device implanted are
listed in the Table S1.

Surgical complications were reported in 2 patients
(2126, 7.7%). P11 had slight left facial nerve deficit and
P25 had a small pocket hematoma around implantable pulse
generator without signs of infection. Device-related compli-
cations and stimulation-related adverse effects are listed in
Table S1. In addition, P8 underwent explantation of the
whole DBS system 11 months after surgery because of sub-
jective ineffectiveness (non-responder with low compliance
and subsequently not recharging, at last FU 2 months after
DBS BFMDRS-M improvement was 14.0%).

Mean age at last FU was 43.6 & 15.1 years. The FU
period in our cohort varied between 2 and 216 months
with a mean duration of 102.5 £ 57.3 months. There
were significant improvements in BFMDRS-M scores
between baseline and first FU (n =38, p=0.012),
6 months (n=06, p=0.028), 12 months (n= 16,
2 =0.003), and last FU group (n = 26, p = 0.001). Sig-
nificant changes were measured in BFMDRS-D between
the baseline and first FU (n = 8, p = 0.027), 12 months
(n =15, p =0.003), and last FU (n =23, p = 0.002)
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TABLE 1. Genetic Background of the Cohort (n = 26)

c.286G>A + ¢.2113C>G p-Glu96Lys; p.Leu705Val 21

ACMG = American College of Medical Genetics and Genomics.

Missense; missense

Bold represents non-responders (n = 7). Steel et al'; Ostrozovicova et al’ Pott et al’; Monfrini et al'®; Petry-Schmelzer et a
P! P! ry:

cDNA p number Patient no. Variant type ACMG classification
c.1A>G p.? 2 Start-loss Likely pathogenic
c.1A>G p.? 3 Start-loss Likely pathogenic
c.244_259delinsGAGAGC  p.K82Efs*124 237 Frameshift Pathogenic

Likely pathogenic; likely pathogenic

c.290 T>A p-Leu97Gln 26 Missense Variant of uncertain significance
c.455_462dup p.Leul55Alafs*59? 25! Frameshift Pathogenic
c.559C>T p.Argl87* 1 Nonsense Pathogenic
c.559C>T p.Arg187%* 7° Nonsense Pathogenic
¢.559C>T p-Argl87* 8° Nonsense Pathogenic
c.559C>T p.-Argl187* 9"° Nonsense Pathogenic
¢.1094_1095dup p.Tyr366Serfs*12 19! Frameshift Pathogenic
¢.1094_1095dup p-Tyr366Serfs*12 20" Frameshift Pathogenic
c.1189A>G p-Lys397Glu 5 Missense Likely pathogenic
c.1204-2A>G p.? 14 Splice-site Likely pathogenic
c.1389C>G p-Tyr463* 24 Nonsense Pathogenic
c.1438G p-Gly480Ser 22 Missense Variant of uncertain significance
c.1720 + 1G>C p2 11 Splice-site Likely pathogenic
c.1813C>T p-Arg605* 12 Nonsense Pathogenic
c.1903C>T p.Arg635* 4 Nonsense Pathogenic
c.1903C>T p.Arg635* 6’ Nonsense Pathogenic
c.1903C>T p-Arg635* 10 Nonsense Pathogenic
c.1939C>T p.Arg647% 16" Nonsense Pathogenic
c.1939C>T p.Arg647% 17" Nonsense Pathogenic
c.1939C>T p-Arg647* 18" Nonsense Pathogenic
c.2140C>T p.Gln714%* 15" Nonsense Pathogenic
€.2170_2171delAA p-Lys724Glufs*44 13" Frameshift Pathogenic

1_37

assessments. Mean improvement of BFMDRS-M and

Individual BFMDRS

sub-scores evolution after DBS

BFMDRS-D at the time of last FU compared to baseline
for the whole group was 41.6 = 37.3% (range, —52.1 to
92.9%) and 34.8 £42.6% (23/26; range, —42.9
to 100%), respectively. When excluding patients with a FU
period of <1 year (P8, P9) to evaluate long-term effect of
DBS, the mean improvement was 41.3 &£ 37.7% (n = 24;
range, —52.1 to 92.9%) and 33.4 £ 43.3 (n=21;
range, —42.9 t 100%) (Fig 2B, C), respectively.

implantation is shown in Figure 2D, E. The mean CGI
and PGI scores at last FU were 2.5 (n = 24) and 2.6
(n = 20), respectively. PGI was in correlation with objec-
tive last FU improvement in BEMDRS-M 7, (—0.791,
2 <0.001) and BEMDRS-D r, (—0.731, p < 0.001) scores
compared to baseline.

New dystonic symptoms occurred in 9 of 26 patients
(34.6%) at the time of last FU as compared to baseline.
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€c559C>T

£.C290T>A
Oc.1A>G @ c.244_259delinsGAGAGC
NM 022575.4 T’F 1
5
W Start-loss MW Pathogenic

@ Frameshift O Likely pathogenic
& Splice site i1 Variant of unknown significance
@ Nonsense

A Missense variant

A .286G>A(p.Glu9bLys)*

e 14386
@ c. 1389C>G
e 1204-2A>G

Ac. 1189A>G
@c.1094_1095dup I

€c.1939C>T

Ac2113C>G (p.Leu705Val)*

FIGURE 1: Schematic representation of VPS16 gene (NM_022575.4) indicating the variant positions and pathogenicity according
to American College of Medical Genetics and Genomics guidelines. *Compound heterozygote.

Seven of them were classified as spontaneous disease pro-
gression and 2 as stimulation induced dystonic side-effects
according to their treating neurologist. Nevertheless, at last
FU, the overall number of body sites affected by dystonia
decreased, except for number of patients with pharyngeal
dystonia (7/26; 26.9%) (see Fig 2A). Number of patients
with fixed skeletal deformities and spasticity remained the
same at the last FU as before surgery (8/26; 30.8% and
2/26; 7.7%, respectively).

Intellectual ~disability was newly reported in
2 patients (6/26; 23.1%) at the time of last FU (P5, P7)
compared to baseline. None of the patients developed
anxiety or emotional lability after surgery at the time of
the last FU. The number of patients with anxiety and
emotional lability decreased from 15 of 26 (57.7%) at
baseline to 11 of 26 (42.3%) (p = 0.046) at the last FU
and from 9 of 26 (34.6%) to 5 of 26 (19.2%)
(p = 0.046), respectively. Based on treating neurologists,
reported presence of depression increased from 9 of
26 (34.6%) patients at baseline to 11 of 26 (42.3%)
(p = 0.414) at the time of last FU.

A statistically significant negative relationship has
been observed between improvement of BEMDRS-M at
last FU and fixed skeletal contractures (p = 0.001) and
spasticity (p = 0.027) present before surgery. The regres-
sion analysis showed statistically significant dependency
on these factors (p = 0.026, 95% confidence interval
[CI] = (—59,736 to —4,116) and p = 0.047, 95% CI =
(—98,318 to —0,682), respectively). The same relation-
ship was not observed for improvement of BEMDRS-D.

Seven cases (26.9%) were classified as non-
responders at last FU, only 1 showing no improvement of
BFMDRS-M at all post-DBS. Improvement was transient
in 3 of them and did not reach the 25% improvement
threshold at last FU in 3 others (Table S1). Nineteen
patients (19/26; 73.1%) responded to DBS, 12 of them
(12/26; 46.2%) were defined as high responders (Table 2).

Position of non-responders in protein conformation
is illustrated on Figure 3A, B. In patients with missense
variants (compound heterozygote, P21 was not included),

the disease onset appears to be lower (9.7 £ 2.9 years,
n = 3 versus 18.6 & 11.2 years, n = 22, p = 0.071) with
higher BEMDRS-M at baseline before DBS (61.2 + 26.0,
n =3 vs 43.6 £ 20.4, n = 22, p = 0.225) (Fig 3C) than
in those with PTV, but the results were not statistically
significant. Statistically significant BEMDRS-M improve-
ment between baseline and last FU was observed only in
PTV variants (p = 0.001) (Fig 3D). However, the inter-
pretation of these results is limited by the sample size.

Statistically significant differences between non-
responders and responders were observed only for presence
of fixed skeletal deformities (r, = —0,535, p = 0.0006)
and spasticity (r, = —0,479, p = 0.015). Although non-
responders had a younger age of onset (12.0 & 8.4 vs
19.9 £ 11.1 years), younger age at DBS implantation
(27.4 £ 17.3 vs 38.2 £ 13.1 years), shorter disease dura-
tion at DBS surgery (15.4 £ 11.5 vs 18.3 & 9.1 years),
and higher baseline BFMDRS-M (51.6 £ 23.4 vs
41.3 + 22.2 points), these results were not statistically
significant. Based on binomial logistic regression for statis-
tically significant factors, likelihood of being a non-
responder was 13-fold higher for the presence of fixed
skeletal deformities before DBS, and spasticity was not sta-
tistically significant anymore in this model. Detailed clini-
cal characteristics of non-responders are outlined in
Supporting Information.

Considering BEMDRS-D, 9/23 (39.1%) patients
improved less than 25% at last FU compared to baseline
(Table 2). A statistically significant predictor of BEMDRS-D
non-responder status in regression analysis was not found.

Pallidal Spiking Pattern for DYT-VPS16

The firing rates of GPi and GPe neurons were compara-
ble, with 22.29 + 16.82 (median = interquartile range)
and 25.36 + 16.55 spikes/sec, respectively, (Dunn’s test,
p=0.31) (Fig 4A). Spiking regularity metrics indicated
similarities between the 2 nuclei, where firing regularity
recorded as 0.26 £+ 0.26 for GPi and 0.23 £ 0.28 for
GPe (Dunn’s test, p = 0.18) (see Fig 4A). The coefficient
of variation (CV) was recorded as 0.97 & 0.17 and
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FIGURE 2: Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) sub-scores evolution and dystonia distribution before and after deep
brain stimulation (DBS). (A) Distribution of dystonia of the cohort (n = 26) before DBS at baseline and at the last follow-up, including
last follow-ups <12 months after DBS (mean 102.5 + 57.3 months). Numbers in columns represent the number of affected patients.
(B) Mean BFMDRS-M at baseline (n = 26), 3 months (n = 8), 6 months (n = 6), 12 months (n = 16) and at the last follow-up >12 months
after surgery (mean 110.4 + 52.0 months, n = 24) (C) Mean BFMDRS-D at baseline (n = 23), 3 months (n = 8), 6 months (n = 6),
12 months (n = 15) and at the last follow-up >12 months after surgery (mean 109.7 & 55.1 months, n = 21) (D) Individual BFMDRS-M
sub-scores evolution after DBS implantation (n = 26) with following color-coding: green for high responders (>50%), yellow for
responders (25-50%), red for non-responders (<25% improvement in BFMDRS-M at the last follow-up compared to baseline).
(E) Individual BFMDRS-D sub-scores evolution after DBS implantation (n = 23) with color-coding based on improvement in BFMDRS-M.
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TABLE 2. Basic Demographics and Clinical Characteristics of the Cohort

Bold represents non-responders (n = 7).

together with ventral intermediate nucleus electrodes.

*At the baseline before DBS implantation.

bOther comorbidities are specified in Tables S1, S3.

“(BFMDRS baseline-BFMDRS last follow-up)/BFMDRS baseline x 100.
4Side not specified.

Age of Disease Fixed skeletal Other BFMDRS BFMDRS
Patient onset duration Last FU Body deformities  Neuropsychiatric movement motor disability
no. Gender (yr) before DBS (yr) (months) Site of onset distribution® and spasticity® fe " disorders” i © (%) imp < (%)

1 M 16 17 156 Neck G A, D 91.84 100.00

2 M 21 27 84 Neck, larynx G A 33.33 —25.00

3 M 8 16 204 NA G A, D, Em 54.76 —42.86
4 F 33 24 156 Neck S 37.50 0.00

5 F 8 34 144 ULs, LLs G Fx, Sp Em —8.99 NA

6 M 33 11 36 Right UL N D 92.86 50.00

7 M 15 5 72 Neck, trunk G A 91.67 85.71

8 M 30 29 2 LLs G Fx ID, A, D, Em 14.04 18.18

9 M 16 12 12 Neck, larynx then right UL G A, Em 75.51 80.00
10 M 6 9 216 uL! G Fx, Sp 1D, A, OCD —52.07 —15.79
11 M 8 11 48 LLs G —36.00 —42.86
12 F 15 13 37 Larynx G A, Em 19.23 33.33

13 F 12 11 131 Jaw, larynx, tongue G Myo 72.45 83.33
14 M 17 24 90 Left UL tremor G Fx A, Em, psychosis 32.35 —14.29
15 M 12 30 60 Larynx, tongue, jaw G 62.77 40.00
16 M 14 35 102 Larynx, UL? tremor G D Myo, f 65.71 63.16
17 F 13 28 155 Left UL G A, D 63.07 70.00
18 F 40 28 101 Neck, trunk G 59.82 34.78
19 F 19 15 168 Right LL G Fx ID, A, Em 32.45 41.18
20 M 11 8 120 Face then neck G ID, D, A, Em 77.22 66.67
21 M 19 17 134 Head myoclonus S A, D Myo 50.00 60.00
22 F 8 3 62 Left LL G Fx 17.33 16.67
23 M 16 14 144 Right UL G Myo 52.58 79.31
24 M 9 9 119 Left UL G Fx A, D, Em -3.01 NA

25 M 50 2 94 Neck G A, PTSD 39.13 NA

26 F 13 23 28  Neck, jaw, trunk G Fx 45.61 18.75

All patients had bilateral GPi placement of electrode except Patient 14, who had unilateral GPi on the right side and Patient 21, who had bilateral GPi

A = anxiety; BEMDRS = Burke-Fahn-Marsden Dystonia Rating Scale; D = depression; DBS = deep brain stimulation; Em = emotional lability; f
= freezing; F = female; FU = follow-up; Fx = fixed skeletal deformities; G = generalized; GPi = globus pallidus internus; ID = intellectual disability;
LL/s = lower limb/s; M = male; Myo = myoklonus; NA = not available; No. = number; OCD = obsessive-compulsive disorder; PTSD = post-

traumatic stress disorder; S = segmental; Sp = spasticity; UL/s = upper limb/s; yr = year.

1.02 £ 0.24 for GPi and GPe. The majority of neurons
(250%) exhibited irregular spiking in both nuclei. Con-
trarily, neural bursts were a rare phenomenon with only
5.26% and 3.45% of neurons presenting bursts. Approxi-
mately 45.7% of pallidal neurons presented significant
oscillations in at least 1 frequency band, and the degree of
neural oscillations remained comparable between GPi and

GPe (Fisher exact test, p = 0.3) (see Fig 4A). Approxi-
mately 70% of pallidal oscillatory neurons exhibit signifi-
cant oscillatory behavior in either the theta (4-8 Hz)
range (40.65%) or the alpha (8-12 Hz) range (30.89%).
Our findings further underscore the significance of pallidal
low-frequency oscillations regarding the dystonia patho-

physiology, even at the single-neuron level for
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FIGURE 3: Relationship between genotype, protein position, and response to deep brain stimulation (DBS) in terms of dystonia
severity. (A) Visualization of the mutations of patients with last follow-up >12 months after DBS analyzed in this study mapped
onto the AlphaFold model of the human VPS16 protein (orange ribbon, AlphaFold identifier: AF-Q9H269-F1). The model is
overlaid with the crystal structure of a short fragment of human VPS16 (residues 642-736) in complex with human VPS33 (PDB
ID: 4BX9). Target amino acid residues on VPS16 are represented as spheres, with following color-coding: green for high
responders (>50%), yellow for responders (25-50%), red for non-responders (<25% improvement in Burke-Fahn-Marsden
Dystonia Rating Scale-motor (BFMDRS-M) at the last follow-up compared to baseline) and gray for mixed responses to DBS. The
VPS33 protein is displayed as a pale blue surface, highlighting its major interaction interface with VPS16 in the human HOPS
complex. Missense mutations that were further analyzed through bioinformatics predictions are labelled in bold, with the
mutated amino acid in parentheses. Compound heterozygote (*), P21, was responder to DBS with 50% improvement in
BFMDRS-M. Start-loss mutation (c.1A>G mixed responses) and splice-site mutations (c.1204-2A>G responder; c¢.1204-2A>G non-
responder) analyzed in our cohort are not related to the position on the protein. (B) Detailed view of the p-sheet-rich globular
domain of human VPS16, showing mutations at positions Lys 82, Glu 96, Leu 97, Leu 155, and Arg 187. This close-up provides
clarity on the spatial positions of these mutations. (C) Relationship between type of mutation and BFMDRS-M score at baseline
before DBS. Missense mutations (n = 3, blue) and protein truncating variants (PTV) (n = 22, orange). Compound heterozygote
(p.Glu96Lys; p.Leu705Val), P21, was excluded from the graph (baseline BFMDRS-M 3 points). (D) Dystonia BFMDRS-M scores
evolution after DBS implantation according to the type of mutation. Missense mutations (n = 3, blue) and PTV (n = 22, orange).
Compound heterozygote (p.Glu96Lys; p.Leu705Val), P21, was excluded from the graph (baseline and last BFMDRS-M 3 and 1.5
points, respectively).

monogenetic forms like DYT-VPSI6. Further detailed BFMDRS motor improvement across patients (n = 22) to

comparisons can be found in Table S2. generate sweet and sour spot mappings for DYT-VPSI6.
To visualize the average voxel-wise correlations in specific

Sweet and Sour Spots for DYT-VPS16 Patients planes, correlation heatmaps were placed at the lateral-
We performed voxel-wise correlation analysis between the most boundary (x = —28mm and 28mm for the left and
stimulation ~ E-field magnitude and  postoperative right hemispheres, respectively) for the sagittal plane,
9
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FIGURE 4: Comparative analysis of and globus pallidus internus (GPi) and globus pallidus externus (GPe) neural activity and deep
brain stimulation (DBS) sweet and sour spot mapping for DYT-VPS16. (A) The fraction of neurons exhibiting distinct spiking
patterns in GPi and GPe is depicted in a pie chart, while a heatmap illustrates the proportion of neuron types displaying
oscillatory behavior across various frequency bands. Box plots compare 6 selected neural features between the 2 nuclei.
(B) Average voxel-wise correlations between stimulation electric fields (E-field) magnitudes and Burke-Fahn-Marsden Dystonia
Rating Scale-motor (BFMDRS-M) score improvements are shown in sagittal (left) and axial (right) planes. The color-coded
reconstruction of GPi and GPe was performed using the Distal Atlas (with p > 0.5 thresholds for defining nuclei borders) via the

Lead DBS v2.5 suite.

and at the ventral-most boundary (z= —8mm) of the
globus pallidus for the axial plane (Fig 4B). At first
glance, a noticeable gradient along the anteroposterior
axis was observed, with sweet-spot voxels predominantly
located in the posterior region of the GPi, in contrast to
sour-spot voxels (see Fig 4B). Additionally, sour-spot
voxels are primarily located in the dorsolateral GPi,
whereas stimulation of ventral segments is associated
with better pallidal DBS outcomes (see Fig 4B). Indi-
vidual GPi lead positions in axial, coronal, and sagittal

10

planes for both sides, including responder status are

summarized in Figure S1.

Discussion

This is the largest cohort of patients with DYT-VPSI6
reported to date, in which we report correlations between
clinico-demographic parameters, surgical factors, and
genetic variants” spectrum and DBS outcomes, providing
valuable data for DBS prognostication in this distinct
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clinico-genetic syndrome. In 2 DYT-VPSI6 patients
(2/26), we analyze and report perioperative neurophysio-
logical MER findings. In our cohort, 18 different variants
were present, 4 of which were novel (c.1A>G, ¢.290 T>A,
c.1189A>G, ¢.1204-2A>G), not previously described in
mutation databases (ClinVar) or MDSgene systematic lit-
erature review.”°

VPS16-related dystonia was previously clinically
characterized by a craniocaudal gradient of dystonia with
progressive generalization,”® which is consistent with find-
ings seen also in our cohort. Most of our patients showed
craniocervical or upper limb involvement with generaliza-
tion in 23 of 26 cases at the time of DBS implantation.
However, 5 of our patients (19.2%) reported initial lower
limb involvement with further generalization, suggesting
an atypical caudocranial course.

DYT-VPS16 usually presents as isolated dystonia,
nevertheless, hyperkinetic comorbidities such as myoclo-
nus>”>'3 or choreathetosis'® have been mentioned previ-
ously. Four patients, 3 previously published (P13,"
P16, P237) and 1 newly described (P21), with a com-
bined myoclonus-dystonia phenotype were present in our
cohort (Table 2). P21 (compound heterozygote-p.E96K;
p-L705V) presenting with dystonia and myoclonus under-
went VIM implantation and bilateral GPi-DBS in a single
surgery with excellent clinical benefit and no reported
complications. High frequency stimulation of both VIM
electrodes resulted in complete suppression of myoclonic
head jerks, which had recurred after a microlesioning
effect had dissolved 1 month after surgery. Additional
bilateral GPi stimulation, which was programmed inde-
pendently 2 months later, alleviated cervical dystonia that
remained present despite VIM stimulation. Another
patient, P14 (c.1204-2A>G) underwent unilateral GPi
(right) because of a complex phenotype of dystonia
accompanied by psychosis and still improved 32.35% in
BFMDRS-M at last FU as compared to baseline.

Genetic background seems to be an important pre-
dictor of GPi-DBS efficacy in patients with dystonia.'’
Most of the available evidence in monogenic dystonia in
this regard is, however, based on small numbers. There-
fore, systematic reporting of DBS effects, both positive
and negative, in monogenic dystonia is crucial to better
understand its predictive value and support/assist decision-
making for DBS and patient information. Of 17 patients
with VPS16-related dystonia and implanted DBS reported
to date (13 of them included in this study Table 1), 11
had significant improvement,1’6’7’9’13’37 1 had partial
benefit,! 2 patients were reported as “no use DBS”! with-
out clearly explaining whether it was ineffective or not,
2 patients had no reported efficacy yet,” and recently
1 patient with dystonic tremor was successfully treated

Svorenova et al: Deep Brain Stimulation in DYT-VPS16

with VIM DBS*8. Although these reports suggest a poten-
tial benefit of DBS also in DYT-VPSI6 dystonia, our
study supports and extends these data reporting on a
DYT-VPSI6 cohort of 26 patients with this rare mono-
genic disorder.

Overall, it appears that neuropsychiatric features
(anxiety, emotional lability, and depression) are more
prevalent than in some monogenic types of dystonia (eg,
DYT-7TORIA or even DYT-SGCE).*® They also seem to
be secondary in a proportion of patients and could be alle-
viated with effective treatment of dystonia. Although cog-
nitive deterioration occurred in 2 patients in our cohort
after DBS implantation, this finding should be interpreted
with caution. In P5, this was based only on the treating
neurologist’s examination without formal neuropsycholog-
ical testing (accentuated difficulties in decision making
and following instructions, with cognitive difficulties were
present already before surgery). In P7, this was based on
formal neuropsychological testing, yet cognition was bor-
derline normal at baseline, while meeting mild cognitive
impairment criteria at FU. As we generally lack reported
(especially longitudinal) neuropsychological data in VPSI6
dystonia, it is not clear whether this deterioration occurred
because of stimulation side effects or a natural progression
of the disease, which appeared to be rather mild in both
cases.

DBS was efficacious in approximately three-quarters
of the patients for motor symptoms and in approximately
half of the cohort for disability, despite some potential
progression of the disease even under DBS. Less body
parts were affected by dystonia in our cohort at the last
FU as compared to baseline for all regions, except for pha-
ryngeal dystonia, which was still present at the last FU in
about one-third of our patients (7/26, 26.9%) (see
Fig 2A). This is in line with previous studies in general-
ized dystonia showing less benefit for the craniocervical
region including swallowing and speech,”f41 but the effi-
cacy of pallidal DBS for speech and laryngeal dystonia in
our cohort seems to be higher as compared to DYT-
KMT2B.** The recently described efficacy of thalamic
DBS in a blinded, randomized controlled trial of adductor
spasmodic dystonia®® and further tractography study™
support targeting of thalamic sensorimotor areas and
involvement of the additional cerebellar circuit, not the
pallidal one, in case of vocal cord motor activity.

As an observation related to the genetic background,
most of the non-responders (5/7) have variants situated
between ¢.1188 and c.1814 of the gene, corresponding
to amino acid residues p.396-605, a functionally
uncharacterized region. In this region, there is only
1 responder (P14, ¢.1204-2A>G) and even this patient
responds to DBS just above the set limit for
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responsiveness, 32.4% in BFMDRS-M at the last
FU. Furthermore, in the region of amino acid residues
642-736, which seems to be necessary and sufficient
for the interaction of VPS16 and VPS33A in the model
of HOPS complex described to date,”” 5 of our patients
were identified with 3 different variants (p.Argb47%, p.
GlIn714%, p.Lys724Glufs*44). All these patients were
classified as high responders (Table 1, Fig 3A, and
Table S1).

The mean overall significant improvement at the last
FU compared to baseline for the whole group was 41.6%
(26/26) and 34.8% (23/26) in BFMDRS-M and
BFMDRS-D, respectively. When patients with a FU
period of <1 year (P8, P9) were excluded to evaluate the
long-term effect of DBS, the mean improvement at the last
FU was 41.3% and 33.4%, respectively. Significant
improvements compared to baseline were also achieved for
both mean BFMDRS-M and BEMDRS-D scores at the
first FU, at 6 months FU for BEMDRS-M and the highest
improvement at 1-year post-DBS FU for both sub-scores.
However, these short-term results are limited by the incon-
sistent subset of patients included in the evaluation because
of data availability (see Fig 2B, C, Table S1).

Our study highlights the importance of DBS
implantation before the onset of musculoskeletal deformi-
ties or of making the patient aware of the potentially
insufficient effect of surgery once they are present as long
as these are the only statistically significant negative pre-
dictors of BEMDRS-M improvement in our cohort. Bino-
mial logistic regression for statistically significant factors
has shown that the likelihood of being a non-responder to
DBS is 13-fold higher if the patient had fixed skeletal
deformities before implantation. This relationship was not
observed for the disability sub-score.

Our sweet and sour spot estimation for DYT-VPS16
aligned with previous findings. Tisch et al*® suggested the
more postetior placement of DBS leads resulting in better
response to pallidal stimulation for generalized dystonia
patients. The sweet-spot region that we defined also aligns
with the antidystonic sweet-spot region (ventroposterior
GPi) defined by Reich et al.>* A study focusing on the
optimal stimulation target for DYT-7ORIA, involving a
similar number of patients, also suggested that the optimal
region is partially contained within the posterior section of
the GPi for this monogenic form of dystonia.” Horn

et al*®

proposed that optimal stimulation sites within the
pallidum correspond to somatotopic pallidal regions,
where focused ventroposterior stimulation is ideal for cer-
vical dystonia, whereas a more widespread mapping is pre-
ferred for generalized dystonia. In this regard, we did not
conduct an analysis considering the clinical phenotype of

our patients.
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There were no other statistically significant differ-
ences between responders and non-responders, but overall
non-responders had a younger age of onset, younger age
at DBS implantation, shorter disease duration at DBS sur-
gery, and higher baseline BFMDRS-M compared to
responders. This contrasts with the worse motor outcome
with longer dystonia duration and older age at dystonia
onset in patents with DYT-7ORIA or longer
dystonia duration in DYT/PARK-TAFI1."* However, a
better motor outcome with older age at onset was also
associated with DYT-SGCE."* Although the implantation
of DBS at a younger age in patients with VPSI6 dystonia
seems to lead to worse outcomes, these results should be
interpreted with caution. Age alone may not be a decisive
parameter for DBS surgery, but in the context of other
findings, such as significant motor deficits leading to early
fixed deformities and spasticity, it could help to set the
realistic expectations from procedure to the patients.
Although non-responders in our study tended to be youn-
ger, with faster disease progression and worse disease sever-
ity before surgery, it seems that early DBS implantation,
before these complications occur is a more important fac-
tor of long-term DBS efficacy, rather than the more
malignant phenotype of the disease in this subgroup of
patients. Early DBS implantation should, therefore, be
generally considered as an important factor of long-term
DBS success across the spectrum of isolated monogenic
dystonias.

The neural activity of the GPi and GPe was compa-
rable, with both nuclei demonstrating a high degree of
spiking irregularities and infrequent bursts. This finding is
partially consistent with the only available published single
unit activities for DYT-VPSI6, which reported a promi-
nent pallidal spiking irregularity (56.8%) alongside mod-
erate burstiness (20.3%).>> The observed discrepancies
may be attributed to differences in anesthetic administra-
tion protocols.

We acknowledge limitations to our study: the rela-
tively small number of patients enrolled because of rarity
of the disorder, the retrospective design as well as involve-
ment of different European centers with variable FU pro-
tocols and rather variable stimulation parameters settings
could influence the outcomes of this study. Furthermore,
BFMDRS was the only parameter consistently used to
assess outcomes. Other important indicators were not
available to address the full complexity of the disorder and
of related impairments and consequences. This raises a
strong need for a minimal standard recommendation/
guideline of FU and reporting in DBS studies for dysto-
nia, which would significantly increase harmonization of
data across different centers and cohorts, eventually lead-
ing to improved interpretability of DBS reporting studies
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in dystonia. We believe that this will lead also to better
prediction of outcome in cases with genetic dystonia that
have not yet been implanted.

In conclusion, bilateral pallidal DBS appears to be a
safe and effective treatment for dystonic features in major-
ity of patients with DYT-VPS16. Although DBS seems to
be generally well effective for all body regions, except pha-
ryngeal dystonia, it should be considered early before spas-
ticity and fixed skeletal deformities occur, because these
are statistically significant predictors of worse DBS out-
comes once they are present. Patients with medically
refractory  VPS16-related dystonia should be informed
about this surgical alternative.
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