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ABSTRACT

Cytotoxicity is a cornerstone of immune defense, critical for combating tumors and infections. This process relies on the
coordinated action of granzymes and pore-forming proteins, with granzyme B (GZMB) and perforin (PRFI) being key markers and
the most widely studied molecules pertaining to cytotoxicity. However, other human granzymes and cytotoxic components remain
underexplored, despite growing evidence of their distinct, context-dependent roles. Natural killer cell granule protein 7 (NKG7)
has recently emerged as a crucial cytotoxicity regulator, yet its expression patterns and function are poorly understood. Using
large publicly available single-cell RNA sequencing atlases, we performed a comprehensive profiling of cytotoxicity across immune
subsets and tissues. Our analysis highlights NKG7 expression as a strong marker of cytotoxicity, exhibiting a strong correlation with
overall cytotoxic activity (r = 0.97) and surpassing traditional markers such as granzyme B and perforin in reliability. Furthermore,
NKG?7 expression is notably consistent across diverse immune subsets and tissues, reinforcing its versatility and robustness as a
cytotoxicity marker. These findings position NKG7 as an invaluable tool for evaluating immune responses and a reliable indicator
of cytotoxic functionality across biological and clinical contexts.

1 | Introduction curative potential. Most immunotherapy strategies leverage the
antitumor capabilities of CD8+ T-cells and Natural Killer (NK)
Immunotherapy has revolutionized cancer treatment, signifi- cells. These cells exert antitumor functions through the release

cantly improving patient prognosis and, in some cases, offering ~ of specific cytokines, death-receptor signaling, or the release of
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cytotoxic granules. The deployment of cytotoxic granules is espe-
cially critical, as they induce targeted, rapid apoptosis of target
cells. Cytotoxic granules are specialized secretory lysosomes that
release their cytotoxic payload into the immunological synapse,
consisting of granzymes, perforin, and granulysin [1].

Granzymes are a core component of the cytotoxic granule-
mediated death machinery. These serine proteases cleave various
intracellular substrates to initiate target-cell death. In humans,
five granzymes (A, B, H, K, and M) have been identified,
each with differing substrate specificities and thus, the capac-
ity to induce distinct forms of cell death [2]. However, the
contexts, heterogeneity, and dynamics of granzyme expression
remain poorly understood. Originally considered redundant,
granzymes are now increasingly recognized for their distinct
and specialized functions. For example, granzyme A and B—
the most well-studied members of the granzyme family—induce
caspase-independent pyroptosis and caspase-dependent apopto-
sis respectively [3—-6]. Meanwhile, granzymes H, K, and M remain
poorly understood but exhibit unique functions, including the
induction of alternative apoptosis pathways, microtubule disrup-
tion, cytokine processing, extracellular matrix remodeling, and
modulating inflammatory responses [7, 8]. These latter processes
highlight some of the noncytotoxic functionalities increasingly
being attributed to granzyme activity. Perforin is a key mediator
of cytotoxicity and predominantly functions to facilitate the
delivery of cytotoxic effectors such as granzymes and granulysin
into target cells [9]. Granulysin is involved in cytotoxicity and
antimicrobial response, contributing to antitumoral responses
through membrane disruption and immune modulation [10].
Together, these granule components orchestrate the rapid and
efficient cytotoxic response while engaging in noncytotoxic roles
that can be either pro-tumorigenic or anti-inflammatory.

Tumors and pathogens have evolved mechanisms to evade cyto-
toxicity, including overexpressing specific granzyme inhibitors or
downregulating granzyme targets, thus reducing their suscepti-
bility to particular granzymes [11]. This highlights the potential
benefits of granzyme heterogeneity. For instance, granzyme B
is selectively inhibited by molecules such as Serpin-B9, while
the other granzymes are unaffected [12]. Similarly, granzyme
H degrades an adenoviral inhibitor of granzyme B [13]. This
evolutionary interplay underscores the necessity for the diverse
yet overlapping functions of the granzyme family.

In recent years, natural killer cell granule protein 7 (NKG7) has
emerged as a potent marker of cytotoxic populations. Increas-
ingly, NKG7 expression is used to identify cytotoxic populations
in sequencing datasets; however, research into the expression and
immunological role of NKG7 is in its infancy. Specifically, the
function and expression dynamics of NKG7 are largely unknown.
NKG7 was first identified to be expressed in the cytotoxic
granules of NK and T cells and has subsequently been shown
to regulate antitumoral effector functions [14-18]. It is thought
that NKG?7 is involved in the release of cytotoxic granules during
the immune response [14, 16, 19]. Clinically, NKG7 expression is
associated with improved patient outcomes across various tumor
entities [14, 20-23]. Altogether, current findings demonstrate the
importance of NKG7 in regulating antitumoral cytotoxicity and
its utility for the assessment and prediction of clinical responses
to immunotherapy.

Granzyme functions are diverse, yet much remains unknown
about this heterogeneity and it is often underappreciated. The
majority of research has focused on granzymes A and B, overlook-
ing the broader diversity of granzyme functions. NKG7, a newly
emerging player in cytotoxicity, shows promise as a strong corre-
late of cytotoxic activity. In our study, we comprehensively pro-
filed cytotoxic molecule usage across cytotoxic and noncytotoxic
populations in healthy patients, various tissues, and disease set-
tings. We found NKG7 expression outperforms traditional mark-
ers of cytotoxicity, such as granzyme B and perforin, in capturing
cytotoxic populations. Furthermore, NKG7 was found to be stably
expressed across tissues, cell subsets, and disease conditions.
While we confirmed some expected expression patterns such as
the expression of granzyme B in pDCs, we also identified previ-
ously overlooked markers [24]. For example, a notable proportion
of effector cells lack significant perforin expression. Our findings
suggest NKG7 may serve as a valuable pan-cytotoxicity marker,
crucial for identifying cytotoxic cells despite inherent granzyme
heterogeneity.

2 | Results

2.1 | Cytotoxicity Profiling Reveals Conserved and
Distinct Patterns of Cytotoxic Molecule Expression
in Human PBMCs

To investigate cytotoxic molecule expression, we utilized a scR-
NAseq dataset of peripheral blood mononuclear cells (PBMCs)
from healthy donors [25]. This dataset, derived from multimodal
RNA and protein sequencing, encompasses well-defined cell
subsets (Figure 1A). Scoring cells for cytotoxicity-associated
transcripts (GZMA, GZMB, GZMH, GZMK, GZMM, GNLY,
PRFI, and NKG7) reveals a high density of cytotoxic molecule
expression in NK-Dim (CD56DimCD16+) and CD8-EM (Effector
Memory) (Figure 1B-C). Inspection of the cytotoxicity score
reveals NK-Dim, proliferative NK, and CD8 populations as high
expressers of cytotoxicity markers (Figure 1C). Despite being
classically described as an immature NK cell subset and pro-
inflammatory subset [26], NK-Bright (CD56BrightCD16-) cells
scored highly for cytotoxicity, with levels similar to what is seen
in classical cytotoxic populations such as CD4-CTLs and CD8-
EM cells. Innate-like populations also showed diverse levels of
cytotoxicity-associated transcripts ranging from highly cytotoxic
(gdT-V9D2) to poorly cytotoxic (MAIT) populations. Strikingly,
gdT cells exhibited a bimodal cytotoxicity distribution with sub-
populations both high and low in cytotoxicity (Hartigan’s dip
test, p < 2.2e-16). To further probe these results, the expression
of individual markers was evaluated across immune subsets
(Figure 1D). This interrogation revealed both expected and poorly
described or seldom appreciated granzyme expression patterns.
For example, the classic cytotoxic subsets (CD8-EM, NK-Dim,
and CD4-CTLs) all had similar and expected expression patterns.
These subsets expressed high levels of all cytotoxic molecules
except GZMK, which was low or absent. A similar expression
pattern was observed in gdT and proliferating NK subsets.
Conversely, NK-bright cells, which are typically described as
pro-inflammatory or regulatory in nature, expressed high lev-
els of all markers except GZMH. Interestingly, the gdT-V9D2
population could be distinguished from the remaining gdT cells
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FIGURE 1 | Pattern of cytotoxic molecule expression in human PBMC subsets. (A) The cellular subsets of human PBMC as identified using

integrated scRNAseq and scCITEseq data visualized on weighted-nearest neighbor (wnn) UMAP coordinates. (B) The density of expression for

cytotoxicity score overlayed on wnnUMAP. (C) Violin plots showing the “cytotoxicity score” across immune populations. (D) Violin plots showing the
imputed expression of cytotoxicity markers that contribute to the cytotoxicity score. Cellular subsets are abbreviated as follows: CD14t monocyte (CD14-
Mono), CD16" monocyte (CD16-Mono), CD56BrightCD16~ (NK-Bright), CD56DimCD16" (NK-Dim), central memory (CM), conventional dendritic
cell type 1 (cDC1), conventional dendritic cell type 2 (cDC2), cytotoxic T-lymphocyte (CTL), double-negative T-cell (dnT; CD4~CD8~ T-cells), effector
memory (EM), gamma delta T-cell (gdT), hematopoietic stem and progenitor cell (HPSC), innate lymphoid cell (ILC), mucosal-associated invariant
T-cell (MAIT), plasmacytoid dendritic cell (pDC), proliferating (Prolif), regulatory T-cell (Treg), Vy9V62 gamma delta T-cells (gdT-V9D2).

by the expression of GZMK. Additionally, gdT-V9D2 along with
CD8-Prolif cells were the only two populations assessed that
showed appreciable levels of expression of all cytotoxic molecules.
Meanwhile, MAIT cells expressed high levels of all cytotoxic
molecules except GZMB and GZMH. This reveals that the low
cytotoxicity score observed for MAIT cells is driven by the lack

of GZMB and GZMH. Of note, pDCs displayed high expression of
GZMB but no other cytotoxic molecule. Additionally, a low level
of expression of GZMA, GZMM, GNLY, and NKG7 was detected
in platelets. Evaluation of the cytotoxic landscape of human
PBMCs revealed known and unexpected expression patterns for
cytotoxic molecules. This analysis reveals that populations not
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typically considered cytotoxic can express appreciable levels of
cytotoxic molecules, while certain immunological subsets appear
to prefer the expression of particular cytotoxic molecule patterns.
However, the transcript level may not reflect the functional
cytotoxic activity in vivo, and further investigations are needed.

2.2 | NKG?7is a Reliable Marker of Cytotoxicity in
Human PBMC Subsets

Given the diverse patterns of cytotoxic molecule expression
observed in human PBMCs, we sought to further evaluate the
dynamics of cytotoxic molecule use. The correlation of each
cytotoxic gene with one another was evaluated within the two
most cytotoxic subsets (CD8 and NK cells). This revealed GZMK
as poorly and inversely correlated with the expression of other
cytotoxic genes in both CD8 and NK subsets (Figure S1A). This
prompted us to ask which cytotoxic gene is most strongly and
consistently correlated with cytotoxicity across all subsets present
within human PBMCs. To evaluate this, subsets were iteratively
scored for cytotoxicity using a signature of all cytotoxic genes
except the gene of interest. The correlation between the gene of
interest and the overall cytotoxicity score was then determined
and visualized. The analysis revealed that NKG7 expression
had the strongest correlation (r = 0.97) with cytotoxicity score
(Figure 2A). PRF1, GNLY, and GZMA (r = 0.95, r = 0.95, r = 0.94;
respectively) all had similar correlation values with cytotoxicity
score. Interestingly, GZMB had the second lowest correlation
score (r = 0.66), which was driven by the unique and singular
expression of GZMB in pDCs. Excluding pDC cells from analysis
resulted in a correlation score of r = 0.9 for GZMB (Figure S1B).

Given these findings and the known discordance of RNA and
protein, we sought to investigate the expression patterns of
NKG7 at the protein level. Interestingly, limited studies have
evaluated the protein expression of NKG7, perhaps due to
limited reagent availability. As such, we utilized the anti-TTIAl
antibody clone 2G9A10F5 (herein referred to as 2G9) [15]. This
monoclonal antibody recognizes a pentameric epitope (GYETQ)
at the C-terminus of TIAl. Similarly, the C-terminus of NKG7
contains the pentameric GYETL sequence (Figure S1C). Others
have established 2G9 as a cross-reactive antibody capable of
binding both NKG7 and TIA1 [15]. We validated these findings
using transfected HEK293T cells over-expressing tagged TIA-1
or NKG7. Western blot analysis confirmed that 2G9 is cross-
reactive for NKG7 and TIA-1 (Figure S1D). NKG7 and TIAI
genes are encoded on separate chromosomes, with NKG7 on
chromosome 19 and TIAI on chromosome 2. Furthermore, these
genes have different expression patterns, predicted structures,
and functions. Therefore, TIAI is not expected at appreciable
levels within immunological subsets. To verify this, we evaluated
the expression of NKG7 or TIAI in total or sorted PBMC subsets
using both bulk and single-cell RNAseq datasets (Figure SIE-
G). This revealed that minimal to no TIAI transcript can be
detected across immunological subsets. This observation was
further validated at the protein level where TTIA1 was not detected
in PBMC lysates incubated with the anti-TIA-1 antibody EPR9304
(Figure S1H). Although the expression of TIAl in PBMCs cannot
be completely excluded, these results suggest that the signal from
2G9 in PBMCs derives mainly from NKG7.

Hence, we evaluated the protein expression of NKG7 in cytotoxic
subsets from healthy PBMC samples using the 2G9 antibody.
This verified NK cells as potent expressers of NKG7 with both
CD56Bright and CD56Dim populations expressing NKG7. How-
ever, on a per-cell basis, CD56Dim NK cells exhibited significantly
higher NKG7 expression levels compared with CD56Bright cells
(Figure 2B). In line with transcriptomic data, the frequency of
NKG?7 expression in CD8 T-cells increased with differentiation
state (Figure 2C). Similarly, NKG7 protein expression in CD4 T-
cells mirrored transcriptomic trends, with the increased levels
observed in the CD4-EM subset (Figure 2D). However, this
increase did not reach statistical significance, as only a small
proportion (~12%) of CD4-EM cells were positive for NKG7.
Interestingly, phenotypic identification of CD4-CTLs is still a
matter of debate [27, 28]. However, NKG7 has appeared in
numerous transcriptomic signatures of CD4-CTLs. [29]. Indeed,
we found that NKG7-positive CD4 T-cells were enriched for
cytotoxic molecules such as GZMA, GZMB, and PRF (Figure 2E).
Therefore, NKG7 may serve as a valuable phenotypic marker to
capture CD4-CTLs.

2.3 | NKG7 Correlates with
Cytotoxicity-Associated Transcripts Across
Disparate Tissues

It was previously observed that NKG7 strongly correlates with
cytotoxicity in healthy PBMC subsets. However, the tissue-
specific expression patterns of NKG7 and other cytotoxic molecule
genes were poorly described. To address this, we took the Tabula
Sapiens scRNAseq dataset and probed the expression of cytotoxic
genes across NK and CD8+ T-cell populations from various
immunologically relevant organs. This revealed that NKG7 is con-
sistently expressed across NK cells from various tissue locations
(Figure 3A). In contrast, genes such as GZMH or GZMK showed
dynamic expression differences between NK cells from different
tissues. This possibly reflects known and expected differences in
the abundance of NK subsets in these tissues and their distinct
expression profiles of GZMH and GZMK.

Similarly, in CD8+ T-cells, NKG7 was consistently detected,
although there was a notable drop in expression observed in
salivary gland CD8+ T-cells. Across both NK and CD8+ T-cells,
GZMA, GZMM, PRFI, and NKG7 were consistently expressed and
detected regardless of tissue. Importantly, GZMB had variable
expression within CD8+ T-cells and was minimally detected in
lymph nodes, salivary glands, and thymic tissues. As such, this
robust expression of NKG7 extended across all tissues of the
Tabula Sapiens dataset and NKG7 gene expression was found to
be strongly correlated (r = 0.93) with the cytotoxicity signature
within NK and CD8+ T cells from various tissues (Figure 3B).
In contrast, GZMB showed a poorer correlation with cytotoxicity-
associated transcripts across tissues with a Pearson r = 0.72 (data
not shown). As mentioned, in this dataset NKG7 was found
primarily in NK, NKT cells, and T cells, while a low expression
level was observed in DCs and monocytes (Figure 3C). Altogether,
these data demonstrate that NKG7 captures potential cytotoxic
activity within traditionally cytotoxic populations regardless of
the tissue of origin.
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FIGURE 2 | NKG7 correlates with cytotoxicity across human PBMC subsets. (A) Scatter plots demonstrating the correlation between y-axis gene

expression and cytotoxicity signature across PBMC subsets. Pearson correlation is displayed and the shaded area represents the 95% CI. (B) Histograms
showing the expression of NKG7 in NK cell populations and the corresponding geometric mean fluorescence intensity in CD56Bright and CD56Dim
populations. p-values from Welch’s t-test. (C-D) Histograms showing the expression of NKG7 in EM, CM, and Naive CD8+ T-cells or EM, CM, and
Naive CD4+ T-cells, respectively; and dot plots showing the frequency of NKG7+ populations. P values from ordinary one-way ANOVA. (E) Histograms
showing the expression of GZMA, GZMB, PRF1, and in NKG7 positive and negative CD4+ T-cells, and corresponding dot plots indicating the frequency
of positive cells. Dashed lines in the histograms do not represent gating thresholds but are included for visual comparison. Gating was determined
based on unstained controls, isotype controls, or fluorescence minus one (FMO) controls, depending on the most appropriate approach for each marker.

p-values from unpaired t-test. *p < 0.05; ****p value < 0.0001.
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NK or CD8+ T-cells across all organs of the Tabula Sapiens dataset. Pearson correlation is displayed and the shaded area represents the 95% CI. (C) Violin

plots showing the expression of NKG7 across immune populations within the Tabula Sapiens dataset.

2.4 | NKG?7 is Consistently Expressed in Cells
Co-Expressing Multiple Cytotoxicity-Associated
Transcripts

While the expression of cytotoxic molecules is commonly
assessed in both flow cytometry and single-cell sequencing,
their co-expression at single-cell level is often overlooked in
downstream analyses. Therefore, we aimed to characterize the
co-expression patterns of cytotoxicity-associated transcripts, uti-
lizing single-cell data.

We observed that a considerable proportion (~27%) of proin-
flammatory NK-Bright cells co-expressed GZMA, GZMK, GNLY,
PRFI, and NKG7 (Figure 4). In contrast, the cytotoxic NK-Dim
subset consistently co-expressed GZMA, GZMB, GNLY, PRF1, and
NKG7, with subsets differing in their co-expression of GZMH and
GZMM. Interestingly, circa 20% of dnT cells were observed to
exhibit solitary expression of GZMK, while a small subset of dnT
cells co-expressed GZMK with either GZMA, GZMM, or both.
An appreciable frequency of CD8-Naive and CD8-CM population
subsets are characterized by the singular expression of cytotoxic
molecules, even though these subsets are largely not cytotoxic.
In contrast, cytotoxic subsets such as CD8-EM and CD4-CTLs
demonstrated diverse co-expression patterns. For example, while
the top five most abundant co-expression patterns for CD8-EM

and CD4-CTLs consistently contained GZMA and NKG7, there
was variable usage of other cytotoxic molecules. Within CD8-EM
cells, all remaining cytotoxic molecules were variably expressed.
However, within CD4-CTLs, there was consistent expression of
GZMH and GNLY, while GZMK was absent from the top five most
abundant CD4-CTL cell patterns. Notably, three of the top five
most abundant CD8-EM and CD4-CTL patterns did not contain
PRFI. Additionally, among cytotoxic populations (NK-Bright,
NK-Dim, CD8-EM, and CD4-CTL), NKG7-negative phenotypes
were only observed at low frequency within the CD8-EM subset.
This reiterates the abundant expression of NKG7 in cytotoxicity-
associated populations. These findings further highlight that
NKG7 is consistently observed across immune cell subsets that
co-express multiple cytotoxicity-associated transcripts.

2.5 | NKG?7 Identifies Cytotoxic
Tumor-Infiltrating Cells

After showing that NKG7 is consistently expressed across tissues
and a core constitute of the polyfunctional cytotoxic program, we
next sought to evaluate cytotoxic molecule expression dynamics
in tumor-infiltrating immune cells. It is indeed known that the
tumor microenvironment (TME) can drastically alter expression
patterns of infiltrating cytotoxic immune cells. To investigate this,
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FIGURE 4 | NKG?7is consistently co-expressed with other cytotoxic molecules. Co-expression pattern of cytotoxic molecules across NK and T-cell

subsets. UpSet plots (top row) demonstrate the co-expression pattern and frequency observed. Meanwhile, heatmaps (bottom row) demonstrate the

expression profile of individual cells. n value represents the number of cells of a particular subset included in the analysis.

we utilized the Tumor Immune Cell Atlas [30]. This atlas contains
tumor-infiltrating cells (n = 314,679) from 177 patients spanning
12 tumor subtypes (Figure S2A). Looking at NKG7 expression, we
found high expression levels in NK cells, and CD8+ T cell subsets,
including exhausted, cytotoxic, and EM populations (Figure S2B).
We then scored cells within the dataset for overall cytotoxicity and
identified two areas of dense signal, corresponding to the CD8 T-
cell and NK cell populations (Figure 5A-C). Interestingly, cells
annotated as terminally exhausted CD8 T-cells show high levels
of expression of cytotoxicity genes. Consistent with previous
observations, NKG7 gene expression strongly correlates with
the overall cytotoxicity signature (Figure 5D). Indeed, NKG7 is
the strongest correlate of cytotoxicity across tumor-infiltrating
immune cells. Surprisingly, GZMH showed the second highest
correlation with cytotoxicity while GZMB scored poorly. The
low correlation of GZMB expression with the overall cytotoxicity
signature is driven by the unique and singular expression of
GZMB in pDC cells. However, even in the absence of pDC cells,
GZMB expression was a poorer correlate of cytotoxicity score
than NKG7 gene expression (Figure S2C). NK cells are a potent
cytotoxic population but are poorly captured within the Tumor
Immune Cell Atlas (n = 9496). Therefore, we utilized a pancancer
NK cell atlas (n = 34,900) to further investigate cytotoxic molecule
expression within tumor-infiltrating NK cells [31]. The NK cell
subsets referenced in this study were predefined within the
pancancer NK cell atlas dataset. Within these tumor-infiltrating
NK subsets, NKG7 was consistently expressed (Figure 5E). Addi-
tionally, NKG7 was highly expressed in tumor-infiltrating NK
cells from all disease subsets analyzed (Figure S2D). As such,
NKG7 gene expression positively correlated with the overall
cytotoxicity signature in tumor-infiltrating NXK cells (Figure 5F).
NKG7 was a stronger correlate for cytotoxicity than all other
markers except GZMA and PRFI (Figure S2E). Taken together,
these data demonstrate that NKG7 expression is maintained
on tumor-infiltrating immune cells in numerous malignancies.

Furthermore, NKG7 positively correlates with overall cytotoxi-
city, outperforming traditional markers of cytotoxicity such as
GZMB.

3 | Discussion

NKG?7 is an emerging component of the cytotoxic machin-
ery, yet its functional roles and expression dynamics remain
poorly understood. To address this gap, we conducted a com-
prehensive analysis of NKG7 expression alongside other core
components of cytotoxic granules, providing insights into its
reliability as a cytotoxicity marker across diverse contexts. As
such, in our study, NKG7 emerged as a robust and reliable
marker of cytotoxicity across healthy and disease contexts. Our
analyses revealed that NKG7 is consistently expressed across
various cytotoxic immune subsets and immunologically rele-
vant tissues. Notably, NKG7 demonstrated superior reliability
compared with traditional markers such as GZMB and PRFI.
Indeed, our analyses showed that NKG7 is consistently detected
across immune cell subsets that are characterized by the expres-
sion of multiple cytotoxicity-associated transcripts. For exam-
ple, while plasmacytoid dendritic cells (pDCs) express solitary
GZMB, this alone does not reflect engagement with the broader
cytotoxic program. In contrast, NKG7 expression correlated con-
sistently with cytotoxicity-associated signatures across immune
subsets.

Cytotoxic tumor-infiltrating lymphocytes (TILs) are critical deter-
minants of patient prognosis, with higher frequencies consis-
tently correlating with improved survival across malignancies
[32]. Transcript-based signatures, such as the cytolytic activ-
ity score (GZMA+ PRFI+), have been developed to quantify
TIL cytotoxicity and predict disease outcomes [33-35]. Notably,
we show that NKG7 outperforms many traditional markers,
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FIGURE 5 | NKG?7 correlates with cytotoxicity in tumor-infiltrating immune subsets. (A) Density of cytotoxicity score expression overlaid on UMAP

coordinates of the tumor immune cell atlas. (B) UMAP plot of the different cell subsets identified within the tumor immune cell atlas. (C) Violin plots
showing the cytotoxicity score of various cell subsets within tumor immune cell atlas. (D) Scatterplot of the correlation between y-axis gene expression
and cytotoxicity signature. Pearson correlation is displayed and the shaded area represents the 95% CI. (E) UMAP plot highlighting the NK subsets
identified within the pancancer NK atlas (left). The violin plot depicts the expression of NKG7 across various NK subsets within the pancancer NK atlas.
(F) Scatterplot of the correlation between NKG7 or Granzyme B (GZMB) expression and cytotoxicity score across NK subsets. Pearson correlation is
displayed and the shaded area represents the 95% CI.

offering improved resolution in capturing functional cytotoxi- of understanding NKG7’s integration into broader cytotoxicity
city. In line with this, NKG7 expression has been reported by programs.

other studies to be associated with favorable clinical outcomes

and to be important for effective T-cell immunity [14, 16, Our analysis revealed the underappreciated heterogeneity
18, 36]. This growing recognition underscores the importance of cytotoxic molecule usage. For instance, proinflammatory
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(NK-bright) and cytotoxic (NK-Dim) cells exhibit distinct
usage of GZMK and GZMH, suggesting a potential functional
specialization within cytotoxic programs ([37]. Similarly,
tissue-specific cytotoxic programs in NK and CD8+ T cells
demonstrated substantial variability in granzyme expression,
which likely reflects differences in subset composition and tissue
reprogramming. For example, differences in granzyme expression
among NK subsets may reflect tissue-resident programming,
while the maturation state influences granzyme patterns in CD8+
T cells. Despite these variations, NKG7 expression remained
consistent across tissues and subsets, further supporting its role
as a universal cytotoxicity marker.

Our results from single-cell analysis revealed cytotoxic cells
lacking PRFI, suggesting potential alternative pathways for
granzyme activity. Mechanisms mediating granzyme entry, such
as mannose-6-phosphate receptor or serglycin-mediated trans-
port, may underlie these observations [38, 39]. Notably, we
showed that NKG7 expression was preserved in PRFI-negative
populations, suggesting its potential role in cytotoxic programs
that operate independently of PRF1. However, the extent to which
these pathways operate independently of PRF remains unclear.
Experimental evidence from others indicates that perforin (and
not granzymes) is essential for effective tumor control [40]. This
suggests that perforin-negative populations may be leveraging
granzymes for noncytotoxic roles, such as extracellular matrix
(ECM) remodeling. Granzymes contribute to ECM remodeling
by cleaving proteins such as fibronectin and laminin, with
complex effects on tumor progression. While ECM degradation
can enhance immune infiltration and induce anoikis, it may
also promote metastasis by weakening cell adhesion. Addition-
ally, ECM breakdown releases immunomodulatory cytokines
and chemotactic fragments [41], demonstrating the dual roles
of granzymes in immune regulation and cancer progression.
Despite this complexity, our data show that NKG7 is con-
sistently co-expressed with cytotoxicity-associated transcripts,
including in PRFI-negative populations. This suggests that NKG7
may also mark immune cells involved in PRFI-independent
mechanisms. However, whether these cells are functionally
cytotoxic or performing noncytotoxic processes, remains to be
determined.

NKG7 consistently emerged as a central component of the
cytotoxic molecule expression program across NK subsets and
effector states such as CD8-EM and CD4-CTL, identifying cyto-
toxic cells regardless of their molecular programs. NKG7 also
functioned to demarcate CD4-CTLs, a subset with emerging
relevance in antitumor responses. Indeed, NKG7 is frequently
observed in gene signatures of CD4-CTLs across numerous
disease contexts [29, 42-46]. Additionally, NKG7 was consis-
tently highly correlated with cytotoxicity within TILs, surpassing
other canonical markers of cytotoxicity. This underscores its
stability and reliability as an effective correlate of cytotoxicity
signature in T cells, even in the immunosuppressive tumor
microenvironment.

Interestingly, while our results showed that NKG7 strongly cor-
relates with cytotoxicity-associated transcripts in NK cells under
steady-state conditions, the usage of these transcripts appears
to differ in tumor-infiltrating NK cells. Indeed, within tumor-
infiltrating NX cells, NKG7—while highly expressed and a strong

correlate of cytotoxicity signature—was surpassed by GZMA and
PRFI in terms of correlation with cytotoxicity score. This observa-
tion highlights the dynamic regulation of cytotoxicity-associated
gene usage across tissues and pathological states.

While our findings indicate that NKG7 expression is strongly
correlated with a broader cytotoxicity gene program, direct
functional experimentation evaluating the cytotoxic capacity of
NKG7-expressing cells is required. Indeed, functional insights
into NKG7’s role in cytotoxicity are in their infancy and
require further investigation. In addition, single-cell RNAseq
is subject to technical limitations such as transcript dropout
and gene-specific detection biases. As a result, it is not pos-
sible to fully distinguish whether the consistent detection of
NKG?7 reflects true biological abundance or enhanced technical
detectability. As such, interpretations of NKG7 expression pat-
terns should therefore consider both biological and technical
contributions.

Regardless, our results demonstrate that NKG7 is a central and
reliable marker of cytotoxicity-associated transcriptional pro-
grams. The consistent expression across diverse immune subsets,
tissues, and disease contexts underscores NKG7s utility as a robust
cytotoxicity correlate. Furthermore, the detection of NKG7 in
PRFI-negative populations raises intriguing possibilities about
NKG?7’s involvement in alternative cytotoxic or immunomodu-
latory pathways, warranting deeper mechanistic investigation.
While the precise functional role of NKG7 remains to be fully elu-
cidated, the consistent association with cytotoxic gene signatures
across both steady-state and pathological conditions supports its
value as a robust tool for identifying cells with cytotoxic potential.
These findings position NKG7 as a useful marker for advancing
our understanding of immune effector function as a potential
translational biomarker in studies of immune-mediated disease
and cancer.

4 | Methods

4.1 | Cell Culture and Transfection of HEK293T
Cells

Human embryonic kidney 293 cells (HEK293T) were cultured
in DMEM medium, containing GLUTAMax (Gibco, cat. 61965-
026), supplemented with 10% (vol/vol) Fetal Bovine Serum (FBS)
(Gibco, cat. A5256801) and 100 units/mL of penicillin G and 100
ug/mL of streptomycin sulfate (Gibco, cat. 15140-122) at 37°C, 5%
Co,.

For the transfection, HEK293T cells were seeded in a six-well
plate (1 x 10° cells/well) and incubated overnight. On the
next day, cells were transfected via the calcium phosphate
method, as previously described [47], so that they could
overexpress mNeon-NKG7 or 3xFLAG-TIA-1. Plasmids were
purchased from BioCat and sequences can be found as following:
mNeonGreen-Linker-NKG7(165aa), cloning vector pcDNA3.0,
cloning sites NotI(GCGGCCGC)- XhoI(CTCGAG); sequence:
GCGGCCGCCACCATGGTGAGCAAGGGCGAGGAGGATAAC
GCCTCTCTCCCAGCGACACATGAGTTACACATCTTTGGCTC
CATCAACGGTGTGGACTTTGACATGGTGGGTCAGGGCACC
GGCAATCCAAATGATGGTTATGAGGAGTTAAACCTGAAGT
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CCACCAAGGGTGACCTCCAGTTCTCCCCCTGGATTCTGGT
CCCTCATATCGGGTATGGCTTCCATCAGTACCTGCCCTACC
CTGACGGGATGTCGCCTTTCCAGGCCGCCATGGTAGATGG
CTCCGGATACCAAGTCCATCGCACAATGCAGTTTGAAGAT
GGTGCCTCCCTTACTGTTAACTACCGCTACACCTACGAGGG
AAGCCACATCAAAGGAGAGGCCCAGGTGAAGGGGACTGG
TTTCCCTGCTGACGGTCCTGTGATGACCAACTCGCTGACCG
CTGCGGACTGGTGCAGGTCGAAGAAGACTTACCCCAACGA
CAAAACCATCATCAGTACCTTTAAGTGGAGTTACACCACTG
GAAATGGCAAGCGCTACCGGAGCACTGCGCGGACCACCTA
CACCTTTGCCAAGCCAATGGCGGCTAACTATCTGAAGAAC
CAGCCGATGTACGTGTTCCGTAAGACGGAGCTCAAGCACT
CCAAGACCGAGCTCAACTTCAAGGAGTGGCAAAAGGCCTT
TACCGATGTGATGGGCATGGACGAGCTGTACAAGGGGTCT
GGTGGCAGTGGAGGGGGATCCATGGAGCTCTGCCGGTCCC
TGGCCCTGCTGGGGGGCTCCCTGGGCCTGATGTTCTGCCT
GATTGCTTTGAGCACCGATTTCTGGTTTGAGGCTGTGGGTC
CCACCCACTCAGCTCACTCGGGCCTCTGGCCAACAGGGCA
TGGGGACATCATATCAGGCTACATCCACGTGACGCAGACCT
TCAGCATTATGGCTGTTCTGTGGGCCCTGGTGTCCGTGAGC
TTCCTGGTCCTGTCCTGCTTCCCCTCACTGTTCCCCCCAGG
CCACGGCCCGCTTGTCTCAACCACCGCAGCCTTTGCTGCA
GCCATCTCCATGGTGGTGGCCATGGCGGTGTACACCAGCG
AGCGGTGGGACCAGCCTCCACACCCCCAGATCCAGACCTT
CTTCTCCTGGTCCTTCTACCTGGGCTGGGTCTCAGCTATCC
TCTTGCTCTGTACAGGTGCCCTGAGCCTGGGTGCTCACTG
TGGCGGTCCCCGTCCTGGCTATGAAACCTTGTGACTCGAG
3xFLAG-Linker-TTA1(386aa), cloning vectors: pcDNA3.0, cloning
sites NotI(GCGGCCGC)- XhoI(CTCGAG); sequence: GCGGC-
CGCCACCATGGACTATAAGGACCACGACGGAGACTACAAG
GATCATGATATTGATTACAAAGACGATGACGATAAGGGGT
CTGGTGGCAGTGGAGGGGGATCCATGGAGGACGAGATGCC
CAAGACTCTATACGTCGGTAACCTTTCCAGAGATGTGACAG
AAGCTCTAATTCTGCAACTCTTTAGCCAGATTGGACCTTGT
AAAAACTGCAAAATGATTATGGATACAGCTGGAAATGATC
CCTATTGTTTTGTGGAGTTTCATGAGCATCGTCATGCAGCT
GCAGCATTAGCTGCTATGAATGGACGGAAGATAATGGGTA
AGGAAGTCAAAGTGAATTGGGCAACAACCCCTAGCAGTCA
AAAGAAAGATACAAGCAGTAGTACCGTTGTCAGCACACAG
CGTTCACAAGATCATTTCCATGTCTTTGTTGGTGATCTCAG
CCCAGAAATTACAACTGAAGATATAAAAGCTGCTTTTGCA
CCATTTGGAAGAATATCAGATGCCCGAGTGGTAAAAGACA
TGGCAACAGGAAAGTCTAAGGGATATGGCTTTGTCTCCTTT
TTCAACAAATGGGATGCTGAAAACGCCATTCAACAGATGG
GTGGCCAGTGGCTTGGTGGAAGACAAATCAGAACTAACTG
GGCAACCCGAAAGCCTCCCGCTCCAAAGAGTACATATGAG
TCAAATACCAAACAGCTATCATATGATGAGGTTGTAAATCA
GTCTAGTCCAAGCAACTGTACTGTATACTGTGGAGGTGTTA
CTTCTGGGCTAACAGAACAACTAATGCGTCAGACTTTTTCA
CCATTTGGACAAATAATGGAAATTCGAGTCTTTCCAGATAA
AGGATATTCATTTGTTCGGTTCAATTCCCATGAAAGTGCAG
CACATGCAATTGTTTCTGTTAATGGTACTACCATTGAAGGT
CATGTTGTGAAATGCTATTGGGGCAAAGAAACTCTTGATA
TGATAAATCCCGTGCAACAGCAGAATCAAATTGGATATCCC
CAACCTTATGGCCAGTGGGGCCAGTGGTATGGAAATGCAC
AACAAATTGGCCAGTATATGCCTAATGGTTGGCAAGTTCCT
GCATATGGAATGTATGGCCAGGCATGGAACCAGCAAGGAT
TTAATCAGACACAGTCTTCTGCACCATGGATGGGACCAAAT
TATGGAGTGCAACCGCCTCAAGGGCAAAATGGCAGCATGT
TGCCCAATCAGCCTTCTGGGTATCGAGTGGCAGGGTATGA
AACCCAGTGACTCGAG. Cells were collected after 24 h from

the transfection, washed twice in PBS and then lysed to extract
proteins, as described in the next paragraph.

4.2 | Western Blots

Cells were lysed using RIPA lysis buffer supplemented with
protease and phosphatase inhibitors diluted 1:100 (cat. 5872,
Cell Signaling Technology). The total protein concentration was
determined with the Protein Assay Dye Reagent (cat. 5000006,
Bio-Rad,). For each sample, 20 pg of protein were prepared
in Laemmli buffer and separated on 15 % polyacrylamide gels
via SDS-PAGE. After electrophoresis, proteins were transferred
to nitrocellulose blotting membranes (cat. 10600004, Cytiva)
in a wet blotting Mini Trans-Blot Cell system (Bio-Rad). The
membranes were incubated with 5 % (w/v) bovine serum albumin
(BSA) (cat. 8076, Carl Roth) in TRIS-buffered saline with 0.05 %
(v/v) of Tween 20 (TBS-T) for 1 h at room temperature followed
by incubation with primary antibodies overnight at 4°C. All
primary antibodies were diluted in 5 % (w/v) BSA in TBS-T
with following dilutions: anti-NKG7 (clone 2G9A10F5, 1:200, cat.
IM2550, Beckman Coulter), anti-TIA-1 (clone EPR9304, 1:1000,
cat. ab140595, abcam), anti-FLAG (clone M2, 1:500, cat. F3165,
Sigma-Aldrich), anti-B-actin (clone 13E5, 1:1000, cat. 4970, Cell
Signaling Technology), anti-mNeonGreen (clone 32F6, 1:200, cat.
32f6, Proteintech), anti-NKG7 (polyclonal, 1:1000, cat. 65507, Cell
Signaling Technology), anti-FLAG (clone L5, 1:500, cat. NBPI-
06712, Novus Biologicals), anti-mNeonGreen (polyclonal, 1:1000,
cat. 53061, Cell Signaling Technology). After overnight incubation
with primary antibodies, the membranes were washed three
times with TBS-T for 5 min each and incubated with secondary
antibodies for 1 h at room temperature. All secondary antibodies
were used 1:15000 diluted in 5 % (w/v) BSA in TBS-T: IRDye
800CW Goat anti-Mouse (cat. 926-32210, LI-COR), IRDye 800CW
Donkey anti-Rabbit (cat. 926-32213, LI-COR), IRDye 680RD Goat
anti-Rat (cat. 926-68076, LI-COR), IRDye 680RD Goat anti-Rabbit
(cat. 926-68071, LI-COR), and IRDye 680RD Donkey anti-Mouse
(cat. 926-68072, LI-COR). After incubation with secondary anti-
bodies, the membranes were washed three times with TBS-T for
5 min each and the protein bands were imaged using the Odyssey
CLx system (LI-COR).

4.3 | Peripheral Blood Mononuclear Cell Dataset
4.3.1 | Dataset and Preprocessing

The PBMC dataset published and described in [25] was
downloaded from https://atlas.fredhutch.org/nygc/multimodal-
pbmc/. This dataset contains PBMCs from eight healthy donors
collected at three time points relative to HIV vaccination: prevac-
cination, 3 days postvaccination, and 7 days postvaccination. In
total, it includes 161,764 cells and 20,957 features, comprising RNA
expression and 228 CITE-seq antibody-derived tags (ADTS).

The original study performed quality control, cell type annota-
tion, and multimodal integration, using both RNA and ADT data
for cell type identification and dimensionality reduction (see [25]
for details). For our analysis, we focused only on cells from the
prevaccination time point. Cells annotated as doublets at the
celltype.ll annotation level were removed, reducing the dataset to
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https://atlas.fredhutch.org/nygc/multimodal-pbmc/

161,159 cells. All downstream analyses utilized the dimensionality
reduction and cell type classifications provided by the original
dataset authors.

4.3.2 | Custom Cell Type Annotation

The dataset authors provided cell type annotations at multiple
levels of resolution, with celltype.ll representing broad cell
classifications and celltype.l3 offering more detailed subtype
annotations [25]. To simplify and standardize labeling, we re-
annotated the dataset by consolidating celltype.l3 categories
into broader, more interpretable groups. This postprocessing
step retained the structure of the original dataset but grouped
similar populations under unified labels. Specifically, the follow-
ing groupings were applied. All B-cell subtypes, including “B
intermediate lambda,” “B naive kappa,” “B intermediate kappa,”
“B memory kappa,” “B naive lambda,” and “B memory lambda,”
were combined into a single category labeled “B_cells.” The
“Plasma” and “Plasmablast” subtypes were grouped together as
“Plasmablasts.” The NK subsets labeled “NK_1" through “NK_4~
were merged into a single category called “NK_Dim,” while
“Treg Naive” and “Treg Memory” were combined under the label
“Treg.” The “dnT_1” and “dnT_2” subsets were consolidated into
the “dnT” category. Similarly, the dendritic cell subsets “cDC2_1,”
“cDC2_2,” and “ASDC_mDC” were grouped as “cDC2,” while
“ASDC_pDC” and “pDC” were merged into the “pDC” category.
The gamma-delta T-cell subsets “gdT_2,” “gdT_3,” and “gdT_4"
were combined into a single “gdT” category, whereas “gdT_1" was
retained as “gdT_V9D2.”

9

For CD4+ T-cell subsets, “CD4 TCM_1" through “CD4 TCM_3”
were grouped as “CD4_CM,” and “CD4 TEM_1” through “CD4
TEM_4” were combined as “CD4_EM.” For CD8+ T cells, “CD8
Naive” and “CD8 Naive_2” were merged into “CD8_Naive,” while
“CD8 TEM_1” through “CD8 TEM_6" were consolidated under
“CD8_EM.” Additionally, “CD8 TCM_1” through “CD8 TCM_3”
were grouped as “CD8_CM.” To maintain consistency, format-
ting adjustments were applied, including replacing spaces with
underscores and standardizing nomenclature for “Platelets” and
“Prolif” (proliferating cells). This postprocessing step resulted in
28 distinct cell populations used for downstream analyses.

4.4 | Tabula Sapiens Dataset
4.41 | Dataset and Preprocessing

The TS_immune dataset from the Tabula Sapiens project
was downloaded from figshare (https://figshare.com/projects/
Tabula_Sapiens/100973). This dataset is a comprehensive single-
cell RNA sequencing atlas of 58,870 genes across 264,824 cells
from 24 different anatomical sites [48]. These data were derived
from both 10x Genomics and Smart-seq2 technologies, with the
majority of cells originating from 10x Genomics. For this analysis,
we filtered the data to retain only cells processed with 10x
Genomics, resulting in 249,961 cells. Donors with a low cell count
(fewer than 50 cells) were excluded, specifically TSP3 (2 cells),
TSP12 (48 cells), and TSP13 (0O cells), leaving 12 donors in the final
dataset.

4.4.2 | Data Annotation and Cleaning

The cell type annotations provided with the dataset were cleaned
and formatted to resolve inconsistencies and correct misspellings.
Details of this cleaning process are available in the GitHub
repository associated with this manuscript. See code availability
for more information.

4.4.3 | Normalization and Integration

The dataset was split into individual layers by donor, and data nor-
malization was then performed on each donor separately. Data
normalization was performed using the SCTransform function
(vst.flavor = “v2”, method = glmGamPoi). Principal component
analysis (PCA) was conducted using RunPCA with default
parameters. The datasets were then integrated using the Inte-
grateLayers function with canonical correlation analysis (CCA) as
the integration method. This step utilized PCA dimensions from
the SCTransform-normalized data.

4.4.4 | Dimensionality Reduction and Imputation

Uniform manifold approximation and projection (UMAP) was
calculated using RunUMAP on 30 dimensions of the integrated
CCA reduction. For specific visualizations, imputed values were
used to enhance interpretability. Imputation was performed using
RunALRA, which increased the proportion of nonzero entries in
the data matrix from 16.19% to 49.97%.

4.5 | Tumor Immune Cell Atlas

The tumor immune cell atlas dataset was downloaded from
Zenodo (https://zenodo.org/records/4263972) and is described in
detail in the accompanying publication [30]. The dataset origi-
nally contained 92,256 features across 317,111 cells, representing
13 tumor types from 181 patients and annotated with 25 cell types.
For the analysis, cells from the ovarian cancer (OC) subtype
were removed due to the low number of cells available (2432
total). Consequently, the analyzed dataset included data from 177
patients across 12 tumor subtypes.

4.6 | Pancancer NK atlas

The NK Atlas dataset was downloaded from Zenodo (https://
zenodo.org/records/8275845) and contained expression data for
13,493 genes across 142,304 cells and is described in detail in
the accompanying publication [31]. Data were filtered to include
only tumor-derived cells, resulting in a final dataset of 34,900
cells across 24 tumor types and 13 NK subtypes as defined in the
original dataset.

4.7 | Software and Versions

All analyses were conducted using the R programming
environment (v4.4.0) [49] on a platform of x86_64-apple-
darwin20 running macOS Ventura 13.0. The primary
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tools included the Seurat package (v5.1.0) [50] for data
normalization, integration, dimensionality reduction, and
visualization, with additional functionality provided by
SeuratDisk (v0.0.0.902) [51], SeuratWrappers (v0.3.2) [52], and
SeuratObject (v5.0.2) [53].

Visualization and data processing were performed using ggplot2
(v3.4.4) [54], dplyr (v1.1.4) [55], scCustomize (v2.1.2) [56], and
Nebulosa (v1.14.0) [57]. Heatmaps and density plots utilized
the “batlow” color scheme, accessed through the scico package
(v1.5.0) [58].

4.8 | Cytotoxicity Score and Correlation Analysis

Cytotoxicity score was calculated using the AddModuleScore
function from the Seurat package, based on a predefined gene set
consisting of GZMA, GZMB, GZMH, GZMK, GZMM, GNLY, PRFI,
and NKG?7.

For correlation analysis, expression data were first aggregated
using the AggregateExpression function. Module score was cal-
culated using AddModuleScore function across a series of gene
sets generated by iteratively removing one marker at a time from
the full cytotoxicity signature (see signature above). Pairwise cor-
relation plots were generated using the FeatureScatter function
to compare each module score with the expression level of the
excluded marker.

4.9 | Bulk RNAseq Dataset

The “Monaco” dataset [59] of RNA transcript abundance across
human peripheral blood immune cells was downloaded from
the Human Protein Atlas (https://www.proteinatlas.org). Data
were plotted using GraphPad Prism (v10.0.3, GraphPad Software,
Boston, Massachusetts USA, www.graphpad.com).

4.10 | PBMC s Isolation

Peripheral blood from healthy donors was provided by the Insti-
tute for Experimental Hematology and Transfusion Medicine
at the University Hospital Bonn, Bonn, Germany. PBMCs were
isolated from peripheral blood by Ficoll-Paque PLUS (Cytiva, cat.
17144003) density gradient, following the standard protocol. NK
cells were isolated from PBMCs using the EasySep Human NK
cell Isolation Kit (STEMCELL Technologies, cat. 17955). After
being isolated, PBMCs and NK cells were processed for flow
cytometry staining.

4.11 | Flow Cytometry

Flow cytometry staining was performed in 96-well round-
bottom microplates (cat 92697, TPP), at room temperature and
protected from light. Cells were firstly washed twice in PBS,
then incubated with 50 uL TruStain FcX (1:200, cat. 422302,
BioLegend) and Live/Dead Blue Fixable dye (1:1000, cat. 123105,
Invitrogen), for 15 min in room temperature. After washing
twice in PBS cells were then incubated with 50 uL of a cock-
tail of fluorescence-conjugated antibodies recognizing surface

molecules, for 20 min, at room temperature. The cocktail for the
surface staining contained the following antibodies at the indi-
cated dilution: BUV395-CD8 (clone RPA-T8, 1:200, cat. 563796,
BD Biosciences), BUV496-CD16 (clone 3GS8, 1:200, cat. 612944,
BD Biosciences), BUV563-CD56 (clone NCAMI16, 1:200, cat.
612928, BD Biosciences), BV570-CD45RA, (clone HI100, 1:100, cat.
304132, BioLegend), BV650-CD4 (clone OKT4, 1:200, cat. 317435,
BioLegend), BV785-CD62L (clone DREG-56, 1:200, cat. 304829,
BioLegend), and APC-Cy7-CD3 (clone SK7, 1:100, cat. 557832, BD
Biosciences). After the incubation with the antibody cocktail,
samples were washed twice in PBS and then incubated with
100 uL of eBioscience Foxp3/Transcription Factor Staining Buffer
Set (ThermoFisher, cat. 00-5523-00), for 15 min. Cells were then
washed twice with wash buffer and incubated for 30 min with
50 uL of a cocktail of fluorescence-conjugated antibodies reactive
against intracellular targets. The cocktail contained the follow-
ing antibodies: Pacific Blue-Granzyme A (clone CB9, 1:50, cat.
507207, BioLegend), BV711-Perforin (clone dG9, 1:50, cat. 308130,
BioLegend), AF488-Granzyme H (clone E3H7W, cat. 23455S, Cell
Signaling Technologies), PE-NKG7 (clone 2G9A10FS5, 1:100, cat.
IM3293, Beckman Coulter), PE-Dazzle-594-Granzyme B (clone
QA18A28, 1:50 cat. 396427, BioLegend), PE-Cy7-Granzyme K
(clone GM26E7, 1:50, cat. 370515, BioLegend), AF647-Granzyme
M (clone 4B2G4, 1:50, cat. 566996, BD Biosciences), and AF700-
Granulysin (clone B-L38, 1:50, cat. NBP3-18104AF700, Novus
Bio). As controls, a second antibody cocktail containing the
following IgG controls: BV711-Mouse IgG2k (clone MPC-11, cat.
400354, BioLegend), AF88-Rabbit IgG (polyclonal, cat. 4340S,
Cell Signaling Technologies), PE-Dazzle-594-Rat IgGlk (clone
RTK2071, cat. 400445, BioLegend), PE-Cy.7-Mouse IgGlk (clone
MOPC-21, cat. 400125, BioLegend), AF647-Mouse IgGlk (clone
P3.6.2.8.1, cat. 51-4714-81, eBioscience), and AF700-Mouse IgGlk
(clone MOPC-21, cat. 400143, BioLegend). After the incubation,
all the samples were washed in FACS Buffer (PBS, 0.02% (vol/vol)
FCS, 5 mM EDTA), and then fixed in 4% PFA (HistoFix, cat.
P087.5, Roth). Cells were washed twice in FACS buffer and
stored at +4°C, until acquisition. Samples were acquired on a
Sony ID7000 7 lasers. Data were analyzed using FlowJo Software
(v10.9.0, BD Life Sciences).

4.12 | Statistical Analysis

Statistical analyses were performed using GraphPad Prism
(v10.0.3, GraphPad Software) or R programming environment
(v4.4.0) [49]. The specific statistical test used for each analysis are
indicated in the corresponding figure legends.

413 | Figure Preparation

Figures were arranged and formatted using Adobe Illustrator
(v27.5, Adobe Inc.) and/or GraphPad Prism (v10.0.3, GraphPad
Software)
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